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Abstract: This article presents an effective method for image denoising using non-local means with packing of multi 

patches (NLM-PMP) in non-subsampled contourlet (NSC) domain which works based on multi-scale decomposition 

and directionality. Guided filter with image statistics (SGIF) is utilized to further process the obtained denoised 

image for mitigation of ringing artifacts those are invariably appeared, which leads to the local structure preservation 

like textures, edges and small details efficiently. The authors decomposed the image into low-pass subband 

coefficients and bandpass subband coefficients including the base and the detail scales. The low frequency noise in 

the base sub-band and the edges with small textural details in the detail scale are processed independently using an 

NLM-PMP filter. In addition, SGIF is applied to enhance the visual perception of denoised image.  Experimental 

results indicate that the proposed approach is competitive at lower noise strength with respect to peak signal to noise 

ratio and structural similarity index measure and excels in performance at higher noise strength compared with 

several state-of-the-art algorithms. 

Keywords: Image denoising, Non-local means, Guided filtering, Nonsubsampled contourlet transform, Peak signal-

to-noise ratio, Structural similarity index. 

 

 

1. Introduction 

The restoration of the original image from its 

noisy observation contaminated during acquisition, 

reception or transmission is a stepping stone for 

many image processing or computer vision tasks. 

Often the characteristics of noise depend on the 

sensor type, pixel dimension, exposure time, ISO 

speed, temperature, and ambient illumination level. 

However, in most of the applications, the 

distribution of noise can be characterised as additive 

white Gaussian noise (AWGN). 

  

𝑦 =  𝑧 + 𝜂    (1) 

 

where 𝑦 is the observed (noisy) image, 𝑧 is the 

latent image and 𝜂 ∈ ℵ(0, 𝜎2) is the Gaussian noise 

of zero mean and 𝜎2 variance.  

Available denoising methods can be broadly 

categorised into three classes: spatial, transform and 

dual domain approaches. The underlying idea 

behind spatial filtering techniques differs only to the 

extent of the weights (kernels) that are calculated 

either locally or non-locally to estimate different 

data points in an image [1]. Bilateral filter (BF) [2], 

non-local means filter (NLM) [3] and recently 

proposed guided image filter (GIF) [4] are few 

modern edge preserving filters that exploit either 

local, non-local or both self-similarity among the 

image patches for its restoration in the spatial 

domain. In contrast to spatial domain approaches, 

transform domain techniques represent signals with 

fewer non-zero coefficients. The energy-compaction 

property of several multi-resolution signal 

transformation 𝑇  is proved to be suitable for 

preserving the key signal components of the image 

by thresholding out the noise. The universal 

VisuShrink [5], the unbiased estimator-based 

SureShrink [6], the Bayesian prior-based 

BayesShrink [7], the statistical co-dependent 
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bivariate shrinkage-based BiShrink [8], the 

probabilistic shrinkage function-based ProbShrink 

[9], the linear weight estimation-based Stein's 

unbiased risk estimate-linear expansion of 

thresholds (SURE-LET) [10] and the recently 

proposed NeighShrink [11] are few thresholding 

techniques that were applied in wavelet domain to 

preserve the high magnitude signal coefficients. 

However, the inability of wavelets in representing 

the curved edges (C2 singularity) degrades the 

performance of wavelet-based image denoising 

approaches. The implementation of anisotropic 

scaling in curvelet transform aides in representing 

image edges more sparsely compared with wavelets. 

Starck et al. [12] employed hard thresholding on the 

magnitude of complex curvelet coefficients for 

denoising. However, these transform domain-based 

thresholding (shrinkage) techniques suffer from 

inevitable ringing artefacts due to a sudden jump in 

coefficient magnitudes. Dual domain or hybrid 

approaches combine the advantages of both spatial 

and transform domain techniques to improve the 

overall image denoising quality. The multi-

resolution BF (MBF) incorporated both BF and 

wavelet thresholding in the approximation and the 

detail scales to suppress simultaneously the coarser 

grain (or low-frequency) and fine grain (or high-

frequency) noise [13]. Knaus et al. [14] proposed a 

dual domain image denoising method by integrating 

joint BF and short time Fourier transform-based 

wavelet shrinkage technique. The inability of 

wavelets in representing edges [15] and the 

limitation of BF in preserving gradient direction of 

edges may degrade the overall performance of such 

techniques. Recently, NLM filter instead of BF has 

been considered in several kinds of literature to 

improve the performance of hybrid domain 

approaches [16] and [17]. Further, the procedure of 

denoising is considered as pre-processing stage in 

[18]. However, the block matching 3D collaborative 

filter (BM3D) excelled in denoising by grouping the 

similar (non-local) patches and collaboratively 

filtering the 3D blocks using 1D wavelet 

thresholding [19]. Though BM3D is considered the 

state-of-the-art technique, it is still unable to denoise 

few homogeneous regions that manifest as low-

frequency noise [20]. Moreover, the patch-based 

methods that search for a greater number of patches 

with similar local spatial structures may reduce at a 

higher noise level and thus restricts the performance 

of denoising. Motivated by the fact that the residual 

sparsity among the non-local similar patches can be 

reduced under a constrained prior model, recently 

Zha et al. [21] proposed a new image denoising 

technique – called group sparsity residual constrain 

(GSRC) – to enhance the performance of group 

sparse-based methods (that includes state-of-the-art 

BM3D technique). Though the GSRC technique 

achieves numerically improved results with a 

modest increase in visual quality at higher noise 

strength, the iterative method puts higher 

computational burden. Similarly, the sophisticated 

Cauchy filter-based image denoising technique 

provides comparable results with higher 

computation complexity [22]. The NLM, an 

averaging filter utilises the similarity among the 

patches to denoise the image. Though it is very 

efficient in preserving edges, it is unable to process 

efficiently near the textured regions [23]. The 

energy compaction property of the curvelet that 

represents any signal in several scales can be used to 

separate various spatial frequencies of image 

efficiently. Recently, author in [24] presented a 

denoising approach that utilized the combination of 

nonsubsampled contourlet and bandelet transforms 

for efficient denoising performance. However, this 

approach ignores the artifacts those are introduced 

after the denoising procedure. 

In [25], author incorporated the advantages of 

both (multiscale) NLM filtering and hard 

thresholding in three different scales of the curvelet: 

the approximation, the coarser and the fine scale. 

The edge preserving the property of the non-linear 

NLM filter ensures the suppression of noise in the 

approximation scale and aids in preserving well 

connected edges with small image details in the fine 

scale. Unlike multiscale filtering, the hard 

thresholding in the coarser scale at different 

orientations is employed to separate the signal from 

the insignificant noise coefficients. The inevitable 

ringing artefacts in the reconstructed image are 

further processed by GIF to obtain the final denoised 

image. The results of this on both grayscale and 

colour images have shown encouraging quantitative 

and qualitative improvement compared with several 

state-of-the-art techniques at higher noise strength. 

However, this technique unable to preserve the fine-

scale details at lower noise strength and it is quite 

hard to sampling on a grid of rectangular for the 

transform presented in [25] since it was 

implemented in continuous and the directions apart 

from horizontal and vertical are very unlike on the 

grid of rectangular.  

To address this issue, an effective method for 

image denoising using non-local means with 

packing of multi patches (NLM-PMP) in non-

subsampled contourlet (NSC) domain is proposed, 

which works based on multi-scale decomposition 

and directionality. Guided filter with image statistics 

(SGIF) is utilized to further process the obtained 
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denoised image for mitigation of ringing artifacts 

those are invariably appeared, which leads to the 

local structure preservation like textures, edges and 

small details efficiently. The performance of the 

proposed hybrid technique is tested on greyscale 

images and it works well at low-noise strengths. The 

experimental results compared with several state-of-

the-art techniques demonstrate the competitiveness 

of the proposed approach at lower noise strength, 

while yielding better performance at a lower value 

of 𝜎. 

The rest of the article is organised as follows: we 

first explained the procedures of NLM, NSCT and 

SGIF in Section 2. The proposed algorithm is 

explained in Section 3. The experimental results in 

terms of denoising quality and computational 

complexity are presented and discussed in Section 4. 

Finally, Section 5 concludes the paper. 

2. Background: NLM, NSCT and SGIF 

2.1 Non-local means 

The basic principle of NL-means is simple and 

intuitive, in which weighted average is utilized to 

estimate the true value of clean pixel by exploring 

like pixels, where exponential decomposition of 

weights occurs with the mitigation of similarities. 

More precisely, let 𝑈𝑖 and 𝑉𝑖  be the original pixel 

value and the added noise, for 𝑖 = 1,2, . . . . , 𝑀 , 

where M is the number of pixels in the image and 

hence the observed noisy pixel is 𝑈𝑖 + 𝑉𝑖 = 𝑍𝑖. NL-

means estimates 𝑈𝑖 as  

 

𝑍𝑖̂ =
1

𝐶
∑ 𝑊𝑖𝑗𝑍𝑗𝑗∈𝑁𝑖

   (2) 

 

Where 𝑁𝑖 denotes the search window centered at 

i, which could be as large as the whole image and 

usually chosen empirically, {𝑊𝑖𝑗| 𝑗 ∈ 𝑁𝑖} are the 

weights.The weight 𝑊𝑖𝑗 is determined as an 

emphasizing function of the resemblance or 

parallelly a mitigating function in some distance 𝑈𝑖 

and 𝑈𝑗 , which are usually strange and 𝑍𝑖  and 𝑍𝑗  are 

utilized instead. NLM follows well known and most 

effective distance measurement named squared 

Euclidean distance. More exactly, the formula for 

the distance between two pixels those are noisy is 

  

𝐷𝑝𝑖𝑥𝑒𝑙(𝑍𝑖 , 𝑍𝑗) ≝ (𝑍𝑖 − 𝑍𝑗)
2

− 2𝜎2 (3) 

 

NLM expands to the comparison of pixel to the 

comparison of patch to induce the distance stronger 

to noise. Similar patches have similar centres based 

on the observation that in natural images and 

utilized the following squared distance i.e., based on 

patch 

 

𝐷𝑝𝑎𝑡𝑐ℎ(𝑍𝑖, 𝑍𝑗) ≝ ∑ (𝑍𝑖(𝑘) − 𝑍𝑗(𝑘))
2

𝑑

𝑘=1

− 2𝑑𝜎2 

(4) 

 
Where 𝑍𝑖(𝑘) and 𝑍𝑗(𝑘) are the pixels in the 

patches centered at the 𝑖𝑡ℎand 𝑗𝑡ℎ pixels respectively, 

and d is the number of pixels in patch. NL-means 

uses an exponential kernel as the weight function: 

 

𝑊𝑖𝑗 ≝ 𝑒𝑥𝑝 (−
𝑚𝑎𝑥{𝐷𝑝𝑎𝑡𝑐ℎ(𝑍𝑖,𝑍𝑗),0}

𝑑𝜎2𝑇2 ) (5) 

 

Where 𝑑𝜎2  is for normalization, 𝑇  is a decay 

parameter and 𝑚𝑎𝑥 are used so that the weight is set 

to 1 when the distance is negative. The above 

process denoises the image pixel by pixel. This has 

been extended to patch wise implementation. 

Similar to the pixel wise process, a weight function 

is defined between two patches, but each patch is 

denoised as a weighted average of all patches 

centered in the search window of the first patch. 

2.2 Non-subsampled contourlet transform 

Contourlet transform (CT) is an approach of 

two-dimensional transform [26] which is utilized to 

represent an image with several properties like 

multiresolution, anisotropy, localization, critical 

sampling and directionality. Multi-scaling and 

directionality are the basis of CT. Ideally, few 

coefficients extracted from the image by utilizing 

CT can represent the image contours effectively. 

Human visual system (HVS) and curvelet transform 

are the motivated concepts of CT. The curvelet 

transform [27], which can grasp the smoothness of 

image contours with unlike stretched shapes and in 

mixture of directions. However, the curvelet 

transform was implemented in continuous domain 

only and the directionality will be different on 

rectangular grid. Hence, CT is developed in discrete 

domain with multiresolution and multi directionality. 

CT is an integration of Laplacian pyramid (LP) and 

directional filter banks (DFB) which are double 

filter bank structures and the same also called as a 

pyramid directional filter bank (PDFB). Only one 

band-pass image will be obtained by the utilization 

of LP decomposition, which avoids scrambling of 

frequency. DFB suits for higher frequencies only 

since it leaks the low frequency at directional sub 

bands. 
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Figure. 1 Structure of NSCT frame work with the 

integration of NSPFB and NSDFB 

 

However, the CT is not without flaws since it is 

not a shift invariant due to the up and down 

samplings presence in the filter bank structures. To 

regain the CT multiscale and directional properties, 

non-subsampled filter bank (NSFB) versions of LP 

and DFB structures is replaced with the 

conventional filter banks. Fig. 1 demonstrates that 

the construction of integration of the NSPFB and 

NSDFB to implement NSCT [28]. Care must be 

taken in NSCT construction when DFB is applied to 

the coarser scales of the LP. Due to the tree-

structure nature of NSDFB, the response of 

directionality at the frequencies of lower and upper 

suffers from the effect of aliasing, which can be a 

serious issue in later pyramid stages, where the DFB 

pass band region is labelled as “Good” or “Bad.” 

Hence, one can view that for coarser scales, the 

high-pass channel in effect is filtered with the DFB 

pass band bad portion, which leads to the effect of 

severe aliasing and in some observed cases a 

considerable loss of directional resolution. This 

problem gets overcome by judiciously up sampling 

the NSDFB filters. 

2.3 Statistics based guided image filter (SGIF) 

The proposed SGIF method is explained as 

follows: 

If 𝒢 is a guided image centered at a pixel 𝓂 in a 

local square window 𝓌, then the filtered output 𝕆 

at a pixel 𝓃 is given by 

 

𝕆𝓃 = 𝑎𝓂𝒢𝓃 + 𝑏𝓂, ∀𝓃 ∈ 𝓌𝓂  (6) 

 

Where 𝑎𝓂  and 𝑏𝓂  are the linear coefficients 

which are constant in window𝓌𝓂 . To determine 

linear coefficients, constraints have to be derived 

from the input image 𝕀. In other way, to get noise 

free output, unwanted components ℕ (like noise or 

texture) must be subtracted from 𝕀. 

𝕆𝓃 = 𝕀𝓃 − ℕ𝓃    (7) 

 

The solution for this problem should minimize 

the difference between 𝕀  and 𝕆 . It should also 

maintain the relation in Eq. (7). Hence, 𝑎𝓂 and 𝑏𝓂 

are the linear coefficients that can minimize the cost 

function in window 𝓌𝓂 as 

 

𝐸(𝑎𝓂, 𝑏𝓂) = ∑ {(𝑎𝓂𝒢𝓃 + 𝑏𝓂 − 𝕀𝓃)2 +𝓃∈𝓌𝓂

𝓇𝑎𝓂
2}        (8) 

 

where 𝓇  is the regulization parameter. Eq. (8) 

represents the linear regression model. The solution 

for this is directly given by 

  

𝑎𝓂 =

1

|𝓌|
∑ 𝕊𝓃𝕀𝓃−𝜇𝓂 𝕀̅𝓃𝓃∈𝓌𝓂

𝜎2
𝓂+𝓇

  (9) 

𝑏𝓂 = 𝕀̅𝓃 − 𝑎𝓂𝜇𝓂   (10) 

 

Here |𝓌| is the number of pixels in a window 𝓌𝓂 

centered at pixel 𝓂, 𝜇𝓂 is the mean, and 𝜎2
𝓂 is the 

variance in the window𝓌𝓂. 𝕀̅𝓃 is the mean of input 

𝕀𝓃in 𝓌𝓂 and is given by 

 

𝕀̅𝓃 =
1

𝓌
∑ 𝕀𝓃𝓃∈𝓌𝓂

   (11) 

 

Once linear coefficients are obtained, then 

output 𝕆𝓃 can be solved according to Eq. (6). But 

different overlapping windows 𝓌𝓂  centered at 𝓂 

contain pixel 𝓃 in common. To resolve this problem, 

take average of all estimates of 𝕆𝓃 . Hence, the 

filtering output can be given as 

 

𝕆𝓃 = 𝑎𝓂̅̅ ̅̅ 𝒢𝓃 + 𝑏𝓂
̅̅ ̅̅    (12) 

 

Where 𝑎𝓂̅̅ ̅̅ =
1

𝓌
∑ 𝑎𝓂𝓃∈𝓌𝓂

 and 𝑏𝓂
̅̅ ̅̅ =

1

𝓌
∑ 𝑏𝓂𝓃∈𝓌𝓂

 are the averages of all linear 

coefficients. In this article, filtering output of guided 

image 𝕀  in the guiding of 𝒢  is denoted 

as 𝑆𝐺𝐼𝐹𝔶,𝓇(𝕀, 𝒢) , where 𝔶  is the filter 

size/neighborhood size and 𝓇  is the degree of 

smoothing/regulization parameter. The behaviour of 

the SGIF controlled by these parameters 𝔶 and𝓇. If 

the guided image has a variance 𝜎2
𝓂  higher than 

the threshold𝓇(𝜎2
𝓂 ≥ 𝓇), within a window 𝓌𝓂 , 

then the pixel in the center of the window remain 

unchanged, whereas if a pixel is in the centre of low 

variance window whose variance is less than, then 

pixel value is replaced by the average of the 

neighbourhood. 

The basic idea is to find weight corresponding to 
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Figure. 2 Proposed image denoising framework 

 

a pixel in an image based on its horizontal and 

vertical edge strengths. In theory, to find a weight 

corresponding to a pixel at a location (𝑚, 𝑛) in an 

image take a square window 𝓌 of size 𝑝 × 𝑝 around 

its neighbourhood. Consider ℚ as a matrix and find 

its covariance matrix by considering row as an 

observation, column as a variable. 

 

𝑐𝑜𝑣(ℚ) = 𝐸[(ℚ − 𝐸[ℚ])(ℚ − 𝐸[ℚ])𝑇]      (13) 

 

Calculate unbiased horizontal estimate of a 

covariance matrix at a pixel location (𝑚, 𝑛) as 

 

𝔘ℰΗ

𝑚,𝑛(ℚ) =
1

𝑝−1
∑ (ℚ𝓀 − ℚ̅)(ℚ𝓀 − ℚ̅)𝑇𝑝

𝓀=1     (14) 

 

Where ℚ𝓀  is the 𝓀𝑡ℎ observation of the 𝑝  -

dimensional variable and ℚ̅  is the average of the 

observation. Interestingly diagonal of 𝔘ℰΗ

𝑚,𝑛(ℚ)is a 

variance vector. Compute Eigen values 𝜆ℰΗ

𝓀  of 

𝔘ℰΗ

𝑚,𝑛(ℚ). As the size of matrix is 𝑝 × 𝑝, number of 

Eigen values can be found is 𝑝. To get horizontal 

edge strength ℮ℰΗ
, add all these Eigen values. 

 

℮ℰΗ
(𝑚, 𝑛) = ∑ 𝜆ℰΗ

𝓀𝑝
𝓀=1    (15) 

 

Similarly, to take vertical edge strength into 

account, take every column as an observation and 

row as a variable. Calculate the unbiased vertical 

estimate 𝔘ℰ𝒱

𝑚,𝑛
, and then compute the Eigen values 

𝜆ℰ𝒱

𝓀 . Add these Eigen values to get the vertical edge 

strength ℮ℰ𝒱
 as, 

 

℮ℰ𝒱
(𝑚, 𝑛) = ∑ 𝜆ℰ𝒱

𝓀𝑝
𝓀=1    (16) 

 

To find the weight 𝕎(𝑚, 𝑛) of a pixel at 

location (𝑚, 𝑛) , take a sum of ℮ℰΗ
(𝑚, 𝑛)  and 

℮ℰ𝒱
(𝑚, 𝑛) 

 

𝕎(𝑚, 𝑛) = ℮ℰΗ
(𝑚, 𝑛) + ℮ℰ𝒱

(𝑚, 𝑛) (17) 

3. Proposed frame work 

Image denoising using non-local means with 

packing of multi patches (NLM-PMP) in non-

subsampled contourlet (NSC) domain is proposed. 

In addition, statistics based guided image filter 

(SGIF) is utilized to enhance the denoised image 

visual quality by mitigating the ringing artifacts. Fig. 

2 demonstrates that the proposed image denoising 

frame work. NSCT utilized for obtaining the multi-

scale decomposition and multi directional 

coefficients which provides the spatial and spectral 

information at different scales and different 

directions as well. This motivates the authors to 

utilize both the NSCT and NLM-PMP for getting 

the enhanced denoising performance even at higher 

noise levels with improved qualitative performance 

both in terms of quality assessment and visual 

perception with enhanced textured regions. Further, 

statistics based guided image filter (SGIF) is utilized 

for better preservation of local structures like edges, 

textures and small details. 

 

Algorithm 1: Proposed hybrid image denoising  

Step 1: Select and read a noisy image 

Step 2: Apply NSC transform to decompose the 

noisy image using non-subsampled Laplacian 

pyramid filter banks for multi scale decomposition 

and non-subsampled directional filter bank for multi 

dimensionality (refer section 2.2).  

Step 3: Obtain the low-pass subband and band-pass 

subband directional coefficients from the NSCT 

frame work. 

Step 4:  Filter the coefficients of NSCT using NLM-

PMP methodology (refer section 3.1) 

Step 5: Obtain filtered coefficients at different scale 

regions using NSCT and NLM-PMP approaches. 

Step 6: Apply inverse NSC transform to obtain the 
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spatial filtered output. 

Step 7: Compute the SGIF to get retain the textured 

regions at higher noise levels for the obtained output 

at step 6. 

3.1 Non-local means with packing of multiple 

patches (NLM-PMP) 

The NLM-PMP is based on the idea of separable 

filtering which is common in the image processing 

literature. For example, in [29], author presented 

bilateral filtering based separable formulations and 

similarly NLM based separable formulation was 

presented in [30]. These filters are not separable 

since they can’t execute the process of filtering by 

fast processing of columns and rows (as can be done 

for linear filters with separable kernels). As a matter 

of fact, filtering results of row adopted by column 

result is ideally dissent from the results obtained by 

the operations done in reversible manner. Therefore, 

in our proposal authors considered both the 

possibilities into account and derived the denoised 

output image as these primitive’s optimization. The 

optimality is in the sense of a certain replacement of 

the mean-squared error that is popularly referred to 

as Stein’s unbiased risk estimator [31], [32] which 

resolves the  2 × 2 linear system. The methodology 

presented in this is differ from that the separable 

bilateral algorithm and gives much better results of 

denoising framework. 

The major novelty of NLM-PMP, however, is 

the proposal of an algorithm that can reduce the 

complexity of one-dimensional NLM from 𝑂(𝑁𝑆𝐾) 

to 𝑂(𝑁𝑆), where N is the length of the signal. This 

is established on the reflection that the distances of 

patch regarded in the NLM of a one-dimensional 

signal can be calculated from 𝑂(𝑁𝑆)  entries of a 

matrix which is specially implanted, which is found 

by applying a box or Gaussian filter along the matrix 

sub diagonals which is computed through lifting, 

namely, via the tensor product of the signal with 

itself. As is well-known, box and Gaussian filtering 

can be performed using 𝑂(1)  operations with 

respect to the filter length.  

The NLM-PMP algorithm as an outcome need 

O(NS) operations to calculate the full patch set 

distances in NLM. To the best of author knowledge, 

the observation that lifting can be utilized for 

efficiently calculating the distances of patch is novel. 

We further utilize this lifting-based algorithm to 

implement a fast-separable NLM formulation for the 

images of 2D i.e., grayscale images. The proposed 

NLM-PMP complexity is 2𝑁 × 𝑂(𝑁𝑆)  =  𝑂(𝑁2𝑆) 

for an 𝑁 × 𝑁 image, which is substantially smaller 

than the 𝑂(𝑁2𝑆2𝐾2) complexity of standard NLM. 

4. Results and discussion 

This section describes the experimental analysis 

of proposed denoising system. The denoising quality 

of the proposed algorithm is evaluated qualitatively 

as well as quantitatively for grayscale images. The 

experiments were conducted on a few standard 

grayscale images as shown in Fig. 3. To perpetuate 

uniformity in comparison, all the images were 

contaminated with simulated gaussian noise of 

standard deviations, 𝜎 = [10,20,30,40]. 

 

 

 
           (a)                     (b)                               (c)    (d)                             (e) 

 

 
           (f)                     (g)                               (h)    (i)                             (j) 

Figure. 3 Test images of: (a) Barbara, (b) Boat, (c) Building, (d) Cameraman, (e) Couple, (f) Goldhill, (g) House, (h) 

Lake, (i) Lena, and (j) Peppers 
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4.1 Quality evaluation parameters  

Quality assessment of images is a vital part in 

any application. It gives the mathematical proof of 

specific methodologies robustness, imperceptibility 

and efficiency.  Here we considered few parameters 

to prove the algorithm stability and efficiency over 

BW applications. The quality metrics utilized here 

are like peak signal-to-noise ratio (PSNR), mean 

square error (MSE) and structural similarity (SSIM) 

index. PSNR can be formulated as, 

 

𝑃𝑆𝑁𝑅 = 10 log10
2552

𝑀𝑆𝐸
   (18) 

 

𝑀𝑆𝐸 =
1

𝑀 × 𝑁
∑ ∑[𝐼(𝑥, 𝑦) − 𝑂(𝑥, 𝑦)]2

𝑁−1

𝑦=0

𝑀−1

𝑥=𝑜

 

 

Where M and N are the number of rows and 

number of columns in an image, x and y represents 

the spatial coordinates, I denote original image and 

O is a denoised image. 

The SSIM index is calculated as  

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
     (19) 

 

Where  

𝜇𝑥 and 𝜇𝑦 are the mean of x and y. 

𝜎𝑥
2and 𝜎𝑦

2are the variances of x and y. 

𝜎𝑥𝑦is the covariance between x and y. 

𝑐1 = (𝑘1𝐿)2 and 𝑐2 = (𝑘2𝐿)2 are two variables to 

stabilize the division with weak denominator. 

𝐿  is the dynamic range of the pixel values, 𝑘1 =
0.01and 𝑘2 = 0.03 

4.2 Visual analysis 

The denoising quality of the proposed algorithm 

was evaluated and compared using PSNR (in dB) 

and SSIM indices. CT [12], NLM filtering [3], MBF 

[13], NLM method noise thresholding (NLMNT) 

[17] and the state-of-the-art BM3D [19], GSRC [21] 

and CT-NLM-GF [25] are considered in denoising 

quality comparison for the grayscale image. Fig. 4 

disclose that the denoised outcome of the proposed 

and conventional denoising approaches with a value 

of 𝜎 = 10 . It is clear that the obtained denoised 

image of proposed model looks more qualitative 

over the other denoising models where the texture 

information is lost. Similarly, for the values of 𝜎 =
20, 30  and 40 , the obtained denoising results are 

shown in Fig. 5, Fig. 6 and Fig. 7 respectively.  

 

 

 
         (a)                               (b)                                           (c)                         (d) 

 

 
         (e)      (f)                                   (g)                        (h) 

Figure. 4 Denoised output images of ‘Lena’ using the: (a) CT [12], (b) NLM [3], (c) MBF [13], (d) NLMNT [17], (e) 

BM3D [19], (f) GSRC [21], (g) CT-NLM-GF [25], and (h) proposed denoising model with 𝜎 = 10 
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         (a)                               (b)                                           (c)                         (d) 

 

 
         (e)      (f)                                   (g)                        (h) 

Figure. 5 Denoised output images of ‘Lena’ using the: (a) CT [12], (b) NLM [3], (c) MBF [13], (d) NLMNT [17], (e) 

BM3D [19], (f) GSRC [21], (g) CT-NLM-GF [25], and (h) proposed denoising model with 𝜎 = 20 

 

 

 
         (a)                               (b)                                           (c)                         (d) 

 

 
         (e)      (f)                                   (g)                        (h) 

Figure. 6 Denoised output images of ‘Lena’ using the: (a) CT [12], (b) NLM [3], (c) MBF [13], (d) NLMNT [17], (e) 

BM3D [19], (f) GSRC [21], (g) CT-NLM-GF [25], and (h) proposed denoising model with 𝜎 = 30 

 

 

 

 

 

 

 



Received:  December 19, 2018                                                                                                                                            84 

International Journal of Intelligent Engineering and Systems, Vol.12, No.3, 2019           DOI: 10.22266/ijies2019.0630.09 

 

 
         (a)                               (b)                                           (c)                         (d) 

 

 
         (e)      (f)                                   (g)                        (h) 

Figure. 7 Denoised output images of ‘Lena’ using the: (a) CT [12], (b) NLM [3], (c) MBF [13], (d) NLMNT [17], (e) 

BM3D [19], (f) GSRC [21], (g) CT-NLM-GF [25], and (h) proposed denoising model with 𝜎 = 40 

 

 

Table 1. Mean PSNR (dB) and SSIM measure between original and denoised images for different denoising approaches 

on test images in Fig. 3 

                                           PSNR in dB SSIM 

Denoised methods 𝜎 = 10 𝜎 = 20 𝜎 = 30 𝜎 = 40 𝜎 = 10 𝜎 = 20 𝜎 = 30 𝜎 = 40 

CT [12] 32.592 29.594 28.043 26.96 0.938 0.88 0.834 0.797 

NLM [3] 35.10 31.452 29.035 27.252 0.956 0.901 0.839 0.776 

MBF [13] 33.38 30.107 28.32 27.14 0.934 0.882 0.841 0.805 

NLMNT [17] 34.74 31.69 29.597 27.91 0.958 0.907 0.853 0.798 

BM3D [19] 36.15 32.70 30.57 28.766 0.965 0.928 0.889 0.850 

GSRC [21] 35.37 32.32 30.652 29.02 0.958 0.918 0.887 0.858 

CT-NLM-GF [25] 35.44 32.08 30.52 29.08 0.962 0.919 0.896 0.864 

Proposed 43.63 35.07 31.82 29.38 0.998 0.9933 0.986 0.9756 

 

4.3 Quantitative analysis 

Table 1 demonstrates that the quality evaluation 

parameters like PSNR and SSIM for the denoising 

algorithms like CT [12], NLM [3], MBF [13], 

NLMNT [17], BM3D [19], GSRC [21], CT-NLM-

GF [25] and proposed denoising model with the 𝜎 

values ranging from 10 to 40, where our proposed 

model obtained the best values of both PSNR and 

SSIM which are highlighted in bold letter for visual 

convenience. However, here mean PSNR is 

considered instead of individual image PSNR which 

is further compared with conventional denoising 

approaches as demonstrated in Table 1. 

The comparative quality analysis of proposed 

and conventional denoising approaches with PSNR 

and SSIM is disclosed in Fig. 8 and Fig. 9 

respectively. 

Figure. 8 Performance comparison of proposed and 

conventional denoising algorithms with PSNR for various 

values of 𝜎  
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Figure. 9 SSIM values of proposed and existing denoising 

models with different 𝜎 values 

 

Figure. 10 Comparison of execution time (in sec) for the 

proposed and existing denoising approaches with an 

image of size 512𝑥512 

4.4 Computational complexity 

Further, the computational complexity also 

considered to disclose the efficacy and robustness of 

proposed hybrid denoising framework with 

comparison to the other denoising algorithms 

discussed in the literature. Table 2 demonstrates that 

the execution time (in sec) of the denoising 

algorithms with the results disclosed in Figs. 4-7.  

The utilization of NLM-PMP and SGIF 

algorithms in our NSC-based hybrid denoising 

approach assists in understating the complexity 

denoising of a digital image complexity. In addition, 

the operation speed of proposed model is enhanced 

by restricting the level of decompositions. Like the 

quality evaluation parameter comparison which is 

done for the proposed and conventional denoising 

 

Figure. 11 Performance of execution time (in sec) with 

the proposed and conventional denoising schemes for an 

image with size 256𝑥256 

 

approaches disclosed in Table 1, the execution time 

complexity also done with the same approaches as 

NLM [3], NLMNT [17] and CT-NLM-GF [25]. 

Computation of execution time is done on a RAM of 

size 4.00 GB, 64-bit Intel(R) Core™, i3, 5005U 

CPU @ 2.00 GHz PC using MATLAB R2016b 

environment. 

Fig. 10 shows that the performance of time 

complexity with the image of size 512𝑥512 for the 

denoising algorithms like NLM [3], NLMNT [17], 

CT-NLM-GF [25] and proposed hybrid model with 

variable 𝜎. The existing denoising models consumed 

more time while executing the procedure of image 

denoising as shown in Fig. 10, where in our method 

the time complexity is reduced dramatically. In 

addition, an image with size 256𝑥256  also tested 

for the time complexity analysis which is disclosed 

in Fig. 11. 

5. Conclusions 

Most image denoising methods assume that the 

signal is smooth or piecewise smooth and the noise 

is oscillatory. However, many fine structures and 

small details of an image are as oscillatory as noise, 

which poses challenges in image modelling. The 

proposed method analysed the noisy image in NSC 

domain to denoise both the smooth (low-frequency) 

and oscillatory (high-frequency) noise. Unlike the 

development of spatial domain, implementation of 

NLM-PMP filter in NSC domain extracts more 

adequately the self-similarity among the high 

correlated coefficients within individual scales with 

less computational time. In addition, the inevitable 
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ringing artefacts in the reconstructed image (which 

is mostly ignored in many transform domain 

techniques) is further processed using SGIF to keep 

the sharp image edges with a minimum loss of fine 

details. Comparative analysis also given for several 

denoising approaches presented in the literature with 

respect to the quality metrics like PSNR and SSIM. 

Further, the computational complexity also 

calculated for showing the robustness of proposed 

denoising method with other approaches.  

In future, the denoising algorithms can be 

implemented on FPGA with reduced time 

complexity and power. 
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