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Abstract: In today’s scenario, frequent requirement changes in software development are a notable issue in the 

software field. Because of the frequent changes, fulfilling the user’s requirement is very difficult. As a solution to such 

issues, Agile Software Development (ASD) has efficiently replaced the traditional methods of software development 

in industries. Due to various aspects of ASD, it is extremely hard to follow, maintain and estimate the general item. 

Hence, in order to tackle the Effort Estimation Problem (EEP) in ASD, various types of EEP have been identified in 

existing methods. The Evolutionary Cost-Sensitive Deep Belief Network (ECS-DBN) model implemented in this 

paper for effort prediction in any agile technique. The ECS-DBN method has no impact on agility because it uses 

simple and small inputs. The proposed method used in planning stage of software development to support the project 

managers in further development of agile software. The project managers characterize the structure of the ECS-DBN, 

while the parameter estimation consequently gained from a dataset. This paper used different statistics like accuracy, 

prediction at 𝑚 level to evaluate the accuracy of the model. The ECS-DBN method achieved nearly 99% accuracy 

compared to the existing methods. 

Keywords: Agile projects, Effort estimation, Evolutionary cost-sensitive deep belief network, Software development, 

Planning stage. 

 

 

1. Introduction 

Nowadays, software is significantly used in many 

applications like home appliances, nuclear-power-

plants, automobiles, telecommunications, medical 

devices and so on [1]. The software testing process is 

an important task in developing software to make it 

free from bugs and defects and additionally, it 

improves the quality of software. The software 

quality estimation uses several factors such as 

reliability, efficiency, software functionality, 

testability and so on. In these quality factors, software 

reliability is a more significant factor because it 

checks how far software is consistent by tolerating 

failures during the lifetime of software [2, 3]. The 

definition of software reliability is the successful 

running of the system with no error at a particular 

time period. To make the system more efficient with 

less error and less maintenance, there is a need of 

predicting and estimating software reliability using 

recent techniques and methodologies. Earlier 

researches focused on to reduce complexities and the 

failure rate in the system. It is a very challenging 

process for existing methods to calculate the finite 

cost in a large area with a population at the random 

movement of many components. [4]. At present, the 

software testing takes more time and cost and it 

makes the SD process an expensive task. But, the cost 

of testing decreases with the reduction of testing time 

[5]. However, most of the software delivered without 

enough testing, which is due to marketing pressures 

and the aim to save testing time and cost, but 

delivering a software without sufficient testing may 

lead to loss of revenue [6, 7]. The software testing is 

an essential technique to develop a bug-free software 

and it is very helpful for software developers. Several 

existing research works implemented to improve the 

quality of the software.  
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The process of determining the best predicted 

effort required to develop a software project is termed 

as software EE. This estimation can be divided into 

three levels: First stage consists of size estimation, 

the second stage involves EE and the third stage is 

cost estimation, the EE is calculated in terms of PM 

(Person-Months) [8-9]. ASD process is an iterative 

and incremental approach, which improves the 

overall product development routine by using 

customer feedback and continuous evaluation of 

documentation projects. Agile methodology plays a 

bigger role in implementing communication goals 

between customers in a planned manner. The main 

issue of determining EE in agile methods is to focus 

on the effort and degree of difficulties of teamwork 

rather than an individual [10]. Some of the existing 

work showed that while using ASD, development 

team used story point approach [11] to calculate the 

effort with the help of user story and project velocity 

as inputs. The main task is to estimate the required 

effort to reduce the technical complexity of the 

project. Agile software has many advantages, as it is 

iterative, modular, incremental, customer oriented, 

and time-bound [12]. Therefore, the main objective 

of this research is to implement a method that will 

facilitate the assessment of the required effort. The 

proposed ECS-DBN method helped overcome the 

problems of traditional effort, cost prediction models 

because the ECS-DBN method can able to run the 

model with missing data, also reflect causal 

relationships. The ECS-DBN is very flexible 

compared to other existing methods, because the 

method purely based on empirical data, expert 

judgement or the combination of both. This proposed 

method is suitable in the planning stage, even before 

the development of software, and it helps project 

managers in further ASD. It should not affect the 

agility and it should be suitable for any agile method. 

The prediction accuracy is determined by various 

statistics in software estimation. The most commonly 

used metrics are the Magnitude of Relative Error 

(MRE), the Mean Magnitude of Relative Error 

(MMRE), and the Prediction at Level 𝑚 (Pred. (m)). 

This paper is composed as follows: the 

investigation of existing models for software Effort 

Prediction (EP) is described in Section 2, ECS-DBN 

is explained in Section 3, the experimental results are 

given in Section 4. The conclusions as well as the 

outlines of future work are presented in Section 5. 

2. Literature review 

Considerable effort is missing in the domain of 

EE for ASD and most of the researchers have used 

traditional EE techniques for determining the 

software effort that provides inaccurate results. This 

section presented a brief valuation of some essential 

contributions to the existing literatures. 

O. Malgonde, and K. Chari, [13] explored a 

critical aspect of agile development, i.e., EP, that cuts 

across these tools and agile project teams. The work 

developed a model for story-EP uses variables that 

were readily available when a story was created. The 

method used seven predictive algorithms to predict a 

story’s effort and developed an Ensemble-based 

Learning Method (EL) for predicting story effort. The 

experimental result demonstrated the approach by 

optimizing sprint planning for two projects from our 

dataset using an optimization model. But the 

experiments were limited to the dataset which has the 

potential of impacting the generalizability of findings. 

This is an inherent limitation; moreover, the method 

provided limited conclusions on the superior 

performance of the prediction methods and restrict 

the inferences to EE in ASD projects.  

P. Xiao, B. Liu, and S. Wang [14] developed an 

improved feedback-based defect prediction strategy, 

which combined the defect prediction with the 

feedback control mechanism during the Software 

Testing Process (STP) to address the problem of 

ranking optimization. In addition, a novel approach 

called feedback-based integrated prediction (FIP) 

was proposed to improve the prediction accuracy, 

where a global predictor and a local predictor were 

employed to make an integrated prediction using the 

weight to adjust the effects of predictors at different 

test stages. The performance of FIP was investigated 

on 10 public datasets by systematic experiments, 

which stated that FIP had better robustness and 

prediction efficiency when compared to traditional 

DP. The experimental results showed that FIP had a 

strong tolerance for defect misclassification, 

although false positive can affect the prediction 

performance of FIP 

V. Nguyen, B. Boehm, and L. Huang [15] 

investigated the use of moving windows to determine 

relevant training data for COCOMO calibration. This 

method presented a windowing calibration approach 

and accessing the performance of EE models to 

calibrate the COCOMO, windows and all data. This 

study provided empirical evidence to support the use 

of small windows of completed projects to calibrate 

models when COCOMO-like data was available. 

Additionally, when the change in SD over time was 

rapid, the use of windows was more justifiable for 

improving estimation accuracy. If the windows large 

in size, then this method produced worse estimations. 

Z. W. Zhang, X. Y. Jing, and T. J. Wang [16] 

implemented a novel Non-Negative Sparse Graph 

based Label Propagation approach (NSGLP) for 
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semi-supervised learning in software defect 

prediction. The NSGLP improved the generalization 

capability by using few labeled data and abundant 

unlabeled data. The class-balance labeled training 

dataset was constructed by NSGLP method and learn 

a sparse graph for characteristics of defect data by 

Laplacian score sampling and sparse representation. 

The NSGLP method used the constructed graph to 

predict the labels of the unlabeled software modules 

through label propagation approach. The NSGLP 

method provided better performance compared to 

existing semi-supervised software prediction task on 

ten NASA datasets. But, the proposed method leads 

poor performance in defect prediction due to 

insufficient labeled data.  

M. Boopathi, R. Sujatha, C. S. Kumar, and S. 

Narasimman [17] proposed a hybrid technique, 

namely Markov chain and Artificial Bee Colony 

(ABC) optimization methods were used to achieve 

the software code coverage. A number of paths were 

generated using Linear-Code-Sequence-And-Jump 

(LCSAJ) coverage. The LCSAJ was employed to 

decrease the number of independent paths as related 

to the paths generated by original path testing. The 

qualities of test cases enhanced in each iteration of 

ABC optimization and determined the sequences of 

complete LCSAJ independent paths in a software 

code. The calculation of test tolerability and 

reliability of different kind of critical software is 

difficult to through ABC optimization with mutation 

testing.  

S. Bilgaiyan, S. Mishra, and M. Das [18] focused 

on as hybrid Neural Network (NN) namely, Feed 

Forward Back Propagation (FFBP) and Elman NN 

(ENN) to solve the EEP. These hybrid method was 

applied to a dataset that consists of 21 projects based 

on ASD from 6 different software houses. The 

limitation of the proposed method was not performed 

well for other datasets from heterogeneous software 

development methods.  

P. Pospieszny, B. Czarnacka-Chrobot, and A. 

Kobylinski [19] developed an ensemble three 

machine learning such as Support Vector Machine 

(SVM), NN and Generalized Linear Models (GLM). 

These models were intended to serve as a decision 

support tool for any organization developing and 

implementing software systems regardless of the 

industry sector where incorrect estimation may lead 

to negative implications. But, the limitation was that 

the method supported only small group industries, 

whereas the method provided poor performance in 

large scale industries for EEP. 

The proposed ECS-DBN method is implemented 

to overcome the above issues addressed by the 

existing methods, and to estimate the effort costs 

automatically to improve the performance of cost-

sensitive DBN. 

3. Proposed method 

Agile methods avoid the formalisms of traditional 

specification and design techniques. The downside of 

this is a lack of specification metrics for project 

planning. At the same time, agile project managers 

have to plan their projects as any other traditional 

project manager for the EP. The main purpose of this 

paper is to build a ECS-DBN which can help agile 

project managers to predict project effort. The basic 

steps of the proposed method are depicted in Fig. 1. 

3.1 Cost-sensitive deep belief network 

The main aim of cost-sensitive learning is to 

reduce the overall cost of the training dataset. The 

cost of misclassifying 𝑥  as class 𝑗  when 𝑥  actually 

belongs to class 𝑖 , denotes the sample data as 

𝑥, 𝐶𝑖,𝑗  ∈  [0, 1]  for total number of classes 𝐾 . In 

addition, 𝐶𝑖,𝑗 =  0, when 𝑖 =  𝑗, which indicates the 

cost of correct classification is 0. 

Given the misclassification costs 𝐶𝑖,𝑗 , a data 

sample should be classified into the class that has the 

minimum expected cost. Based on decision theory, 

the decision rule minimizes the expectation cost of 

𝑅(𝑖|𝑥) for classifying an input vector 𝑥 into class 𝑖 
can be expressed as in Eq. (1): 

 

     𝑅(𝑖|𝑥) = ∑ 𝑃(𝑗|𝑥)𝐶𝑖,𝑗
𝐾
𝑗=1,𝑗≠1    (1) 

 

Where 𝑃 (𝑗|𝑥)  is the posterior probability 

estimation of classifying a data sample into class 𝑗. 

Given the prior probability 𝑃 (𝑥𝑛) , the general 

decision rule indicates which action to take for each 

data sample 𝑥𝑛, thus the overall risk 𝑅 is described in 

Eq. (2). 

 

 

 
Figure. 1 Structure of the proposed ECS DBN method 
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   𝑅 = ∑ ∑ 𝑅(𝑖|𝑥𝑛)𝑃(𝑥𝑛)𝐾
𝑖=1

𝑁
𝑛=1     (2) 

 

 Based on Bayes hypothesis, a perfect 

classifier will give a choice by computing the desire 

risk of grouping a contribution to each class and 

predicts the mark that achieves the minimum overall 

expectation risk. The classification error penalties are 

described by misclassification costs. In cost-sensitive 

adapting, all misclassification costs are basically non-

negative. Mathematically, the probability that a 

sample data 𝑥 ∈ 𝑆 belongs to a class𝑗, a value of a 

stochastic variable 𝑦, can be expressed as in Eq. (3): 

 

𝑃(𝑦 = 𝑗|𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝑏 + 𝑊𝑥)    (3) 

 

The misclassification edge esteems acquainted 

with transforming posterior probabilities into class 

labels to such that the misclassification costs are 

limited. Introducing the misclassification limit 

esteem 1 − 𝐶𝑖,𝑗  on the obtained posterior 

probability 𝑃 (𝑦 = 𝑗|𝑥) , one can obtain the new 

probability 𝑃𝜉 that are described in Eq. (4): 

 

𝑃𝜉(𝑦 = 𝑗|𝑥) = 𝑃(𝑦 = 𝑗|𝑥). (1 − 𝐶𝑖,𝑗) (4) 

 

Generally, the misclassification threshold values 

for minority classes are larger than majority classes. 

The hypothesized prediction 𝑓(𝑥) of the sample 𝑥 is 

the member of the maximum probability among 

classes, can be obtained by using the following Eq. 

(5):  

 

𝐹(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗

𝑃𝜉(𝑦 = 𝑗|𝑥)   (5) 

 

The proposed cost-delicate learning technique 

only concerns about the yield layer of a DBN. For 

imbalanced order issues, the earlier probability 

dispersion of various classes is basically imbalanced 

or non-uniform. To reflect class imbalance, there is a 

need to present the misclassification cost at the yield 

layer to mirror the imbalanced class dispersions. 

Moreover, conventional preparing calculations 

generally assume uniform class dispersion with 

equivalent misclassification costs, 𝑖. 𝑒. ∀𝑖, 𝑗 ∈  [1, 2,·
 · · , 𝐾], 𝑖𝑓 𝑖 =  𝑗;  𝐶𝑖,𝑗 = 0, 𝑖𝑓 𝑖 ≠  𝑗;  𝐶𝑖,𝑗 =  1 , 

which isn't valid in some real-time applications. To 

maintain a strategic distance from hand tuning of 

misclassification costs, adaptive DE calculation is 

executed in this paper.  

Adaptive DE calculation is a basic successful and 

proficient developmental calculation which could 

acquire ideal arrangement by advancing and updating 

a population of individuals during several 

generations. It endeavors to adaptively self-update 

the control parameters without the need of earlier 

learning. 

3.2 Evolutionary cost-sensitive deep belief 

network 

Evolutionary Algorithm (EA) is broadly utilized 

for optimization calculation which is driven by the 

natural advancement process. The EA calculation can 

be intended to streamline the misclassification costs 

that are unknown. In this paper, ECS-DBN is 

proposed by combining cost-sensitive capacity into 

its characterization with the misclassification costs 

through adaptive differential advancement. The 

initial step is to select the cost of misclassification 

randomly, then train a DBN with the training dataset. 

According to execution on preparing dataset, 

appropriate misclassification costs are chosen to 

generate the population of the next generation. In this 

generation, crossover and mutation administrators 

are utilized to enhance the new population for 

misclassification costs. To reach the maximum 

number of generations, Adaptive DE calculation 

continuously iterates the next generation between 

selection and mutation.  

3.2.1. Chromosome encoding 

Chromosome encoding is a major process in EA 

that aims for effective representations for important 

variables for better execution. In some applications, 

misclassification costs in DBN are generally obscure. 

Therefore, in proposed approach every chromosome 

describes the misclassification costs for various 

classes to obtain the appropriate expenses. The 

misclassification costs for ECS-DBN choose the best 

chromosome from the last developed method. The 

chromosome encoding here straightforwardly 

encodes the misclassification costs as qualities in the 

chromosome with numerical type and esteem scope 

of [0, 1].  

3.2.2. Population initialization 

The initial population received by means of 

consistently random testing in feasible solution space 

for every factor inside the predetermined scope of the 

relating variable. The population hold conceivable 

misclassification expenses and structures the unit of 

development. The development of the 

misclassification costs is an iterative process with the 

population in each iteration cycle is called generation. 
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3.2.3. Adaptive DE operators 

After initialization, adaptive DE evolves the 

population with a sequence of three evolutionary 

operations, i.e. mutation, crossover, and selection, 

generation by generation. Mutation is carried out with 

DE mutation strategy to create mutation individuals 

based on the current parent population. After 

mutation, a binomial crossover operation is utilized 

to generate the final offspring. In adaptive DE, each 

individual has its associated crossover probability 

instead of a fixed value. The selection operation 

selects the best one from the parent individuals and 

offspring individuals according to their 

corresponding fitness values. In this way, the control 

parameters are automatically updated with the 

appropriate values without the need of prior 

parameter setting knowledge in DE. 

3.2.4. Fitness evaluation 

Fitness evaluation enables us to pick the suitable 

misclassification costs. In this proposed strategy, 

every individual chromosome is introduced into 

individual DBN as misclassification costs. At this 

point, it creates suitable misclassification costs for 

DBN by utilizing the preparation set. G-mean of 

preparing set picked as the target work for the process 

of optimization. 

3.2.5. Termination condition 

EA are designed to evolve the population 

generation by generation and maintain the 

convergence as well as diversity characteristics 

within the population. A maximum number of 

generations set to be a termination condition of the 

algorithm. In this implementation, the solutions 

converged when the best fitness value remains 

unchanged over the past 30 generations. The 

algorithm stops once it reaches the maximum number 

of generations or meets the convergence condition. 

3.3 ECS-DBN creation 

The misclassification costs are used to form an 

ECS-DBN, when the process of optimization ends 

with best individual. The best individual is obtained 

from the last generation. Initially, the intention was 

to build a ECS-DBN model for sprint (iteration) EP. 

The model was planned to use the existing database 

of software projects for model validation. These are 

the projects of a micro software company, which used 

agile methods for several years. The scrum master 

has two datasets, 

 The list of software entities with complexity 

classification extracted from the project log 

for each task [20].  

 The list of knowledge and skills calculated 

for each developer, including motivation and 

experience, classified into 5 levels (from 1, 

very low level, to 5, very high level), and 

updated twice a year [21]. 

 
When planning new tasks, the project developers 

and the project manager try to find the best solution 

for both sides: developers’ ideas and project 

productivity. When working on a task, the developers 

record their working hours and the types of activities 

(that takes only 1-2 minutes at the end of a workday). 

So, they always know the real task and project status. 

Consequently, the authors realized very early in the 

process that it was convenient to build an ECS-DBN 

model for task EP because it is easier to collect input 

data which are less complex. It is easier for a project 

manager to estimate a node value (e.g. whether the 

complexity of a report is “low”, “medium” or “high”) 

and easy to predict the iteration duration based on 

each developer’s prediction effort. 

4. Experimental result 

The proposed ECS-DBN method has been 

implemented in Java NetBeans 8.2 version, 32 bit 

operating system and 8GB RAM. The data used in 

this research originated from agile projects of a small 

software company. In order to evaluate the efficiency 

of the proposed system an evaluation metric is 

employed. The MMRE and the Pred. (m) are the two 

important metrics that are used in this research to 

assess the accuracy of prediction in software 

estimation. But, in this research, there is only one 

prediction per one task used for predicting the 

performance of ECS-DBN. 

Therefore, other statistical measures are also used 

to assess the accuracy of this model: Relative 

Absolute Error (RAE), Accuracy, Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), 

and Root Relative Squared Error (RRSE). These 

measures are chosen due to their simplicity of use and 

because of their application areas [22, 23]. 

4.1 Dataset description 

The data collected from the small software 

company for agile projects to estimate the effort task. 

But, these data are not suitable for direct use in the 

ECS-DBN model. That must be prepared, but it 

requires more time to process the training data, so the 

data are separated in three datasets. The first dataset 

consists of 40 tasks, the second of 50 tasks, and the 
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third of 70 tasks. Tasks are grouped chronologically 

based on creation time. Grouping made neither by 

size, nor by complexity, nor according to the 

developer who performs the task, but it completely 

based on the creation time. All the datasets include 

the tasks of different duration and complexity, 

created by different developers. 

4.2 Performance evaluation 

Numerical measures are the most commonly used 

measures to evaluate and validate fault prediction 

models. The detail of these measures is given below. 

4.2.1. Mean magnitude of relative error (MMRE) 

MMRE is the average of the MREs calculated 

over all the reference tasks, which are given in the Eq. 

(6). 

 

𝑀𝑀𝑅𝐸 =
1

𝑛
∑ 𝑀𝑅𝐸𝑖

𝑛
𝑖=1     (6) 

 

MRE represents the normalized measure of 

deviations between the actual and the estimated 

values that are depicted in Eq. (7): 

 

𝑀𝑅𝐸 =
|𝑦𝑖−𝑓(𝑥𝑖)|

𝑦𝑖
      (7) 

 

Where, 𝑥𝑖 is the predict value/actual value and 𝑦𝑖 

is an observed value. 

4.2.2. Prediction at level m 

MMRE is the measure of standard deviation 

(spread) of a variable 𝑥𝑖 , while Pred. (m) is the 

measure of peak (kurtosis) of a variable 𝑥. MMRE 

prefers models that predict estimates below the mean, 

and it is also sensitive to outliers. A sensitivity to 

outliers allows MMRE to detect the model 

occasionally tends to be very inaccurate. Pred. (m) 

measures the percentage of estimates that are within 

𝑚 percent of the actual values. It is usually set to m = 

25. Pred. @(25%) detects what percentage of 

estimates is within a tolerance of 25%. 

4.2.3. Accuracy 

Accuracy is the percentage of the correctly 

classified samples over the total number of samples. 

The accuracy can range from 0% to 100%. The 

general formula for accuracy can be given in Eq. (8), 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
     (8) 

 

Where, TN is True Negative, TP is True Positive, 

FN is False Negative and FP is False Negative.  

4.2.4. Mean absolute error  

MAE is the average of the absolute values of the 

prediction errors, given by the Eq. (9): 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑓(𝑥𝑖 − 𝑦𝑖)|1

𝑛      (9) 

 

Where 𝑛 is the number of predictions, 𝑓(𝑥𝑖) is a 

predicted value. All the errors are weighted equally 

due to linear score.  

4.2.5. Root mean square error 

RMSE is another measure of deviation between 

the predicted 𝑓(𝑥𝑖) and the real value𝑦𝑖. RMSE is the 

square root of MSE that predict the mean relative 

error. The formula for RMSE is given in Eq. (10) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑓(𝑥𝑖) − 𝑦𝑖)2𝑛

𝑖=1               (10) 

 

Large errors are weighted more heavily because 

the errors are averaged after they squared. The error 

variance can be detected if RMSE and MAE are used 

together. The variation is greater if the difference 

between them is larger. If all the errors have the same 

magnitude, MAE = RMSE, otherwise, RMSE > 

MAE. 

Both MAE and RMSE are useful for the 

comparison of the prediction errors of different 

models for a particular variable and not for the 

comparison between variables. That shows errors in 

the same unit and scale as the parameter itself, so they 

are scale-dependent. 

The method also includes measures that can be 

used for the comparison of models those errors are 

measured in different units. Such measures include in 

Eqs. (11) and (12): 

 

𝑅𝐴𝐸 =
∑ (|𝑓(𝑥𝑖−𝑦𝑖)|)𝑛

𝑖=1

∑ (�̅�𝑖−𝑦𝑖)𝑛
𝑖=1

               (11) 

 

𝑅𝑅𝑆𝐸 = √
∑ (𝑓(𝑥𝑖−𝑦𝑖))

2𝑛
𝑖=1

∑ (�̅�𝑖−𝑦𝑖)2𝑛
𝑖=1

               (12) 

 

Where �̅�𝑖 is the mean value of𝑦.  

4.3 Parameter evaluation 

The experiments were conducted to evaluate the 

performance parameters such as MMRE, Pred. m, 

accuracy, MAE, RMSE, RAE and RRSE. The 

prediction accuracy for all the datasets is shown in 

Table 1 that represents the performance of parameters 

of proposed ECS-DBN.  
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Table 1. Results of various parameters of proposed method 

Number of tasks 40 (first) 50 (second) 70 (last) 90 (40+50) 160 

Accuracy 92% 97% 97.86% 97% 99.487% 

MAE 0.1056 0.0521 0.0520 0.0454 0.023 

RMSE 0.190 0.1298 0.1121 0.111 0.054 

MSE 0.0435 0.0360 0.033 0.033 0.0232 

RAE 35.18% 24.20% 18.09% 17.25% 9.23% 

RRSE 50.27% 40% 30.95% 32.31% 17.21% 

Pred. (25)% 100% 100% 100% 100% 100% 

Pred. (10)% 93% 100% 100% 100% 100% 

MMRE 12.50 2.94 4.21 6.59 6.10 

 

For a dataset of 160 instances, only the effort of 

one task is wrongly classified. The true effort for the 

last set of data will be 2.4% which is indicated by the 

values of MAE. The error variance is relatively small 

that is indicated by the small differences between 

RMSE and MAE values. The Pred. (m) (i.e. 10 and 

25%) and the MMRE metrics are also applied to this 

dataset. Since the ECS-DBN model estimates effort 

as a set of probability distributions of all possible 

classes, a Conversion method is used to obtain the 

estimated effort as a discrete value. The class 

probabilities should be normalized, so that their sum 

equals one. The estimated effort is then given by the 

Eq. (13): 

 

𝐸𝑓𝑓𝑜𝑟𝑡 = ∑ 𝜌𝑐𝑙𝑎𝑠𝑠𝑖𝜇𝑐𝑙𝑎𝑠𝑠𝑖
𝑛
𝑖=1               (13) 

 

Where 𝜇𝑐𝑙𝑎𝑠𝑠𝑖 is the mean of class 𝑖, and 𝜌𝑐𝑙𝑎𝑠𝑠𝑖 

is its respective class probability.  

4.4 Comparative analysis 

The proposed method ECS-DBN are compared 

with existing methods such as hybrid FFBP and ENN 

[18] and ensemble machine learning such as SVM, 

and GLM [19]. S. Bilgaiyan, et al., [18] focused on 

two types of ANN- FFBP and ENN to solve the EEP. 

The FFBP-ENN method has high computation speed, 

fixed computation time and fault tolerance with 

respect to Elman network. The FFBN-ENN method 

didn’t perform well in other datasets collected from 

heterogeneous SD methods, which was considered as 

a limitation of this method. The Table 2 describes the 

comparison results of proposed with existing 

methods in terms of MMRE, Pred. (25) and RMSE.  

P. Pospieszny, et al., [19] aimed to narrow the gap 

between up-to-date research results and 

implementations within organizations by proposing 

effective and practical machine learning deployment. 

This was achieved by smart data preparation and 

applying ensemble averaging of three machine 

learning algorithms (SVM, NN and GLM) on ISBSG 

dataset. The limitation was the impact of software 

sizing especially on EE. As an input variable, it has 

the most significant impact on forecasting the 

mentioned output parameter. The hybrid method 

[ENN+FFBP] achieved nearly 14.90 MMRE and 

13.49 MMRE, whereas the proposed ECS-DBN 

achieved 12.50 MMRE by using evolutionary 

algorithm. The performance measure like Pred. 25% 

and MSE for existing methods achieved 95.23% and 

0.052 in FFBN, whereas 61.96% and 0.13 error rate 

achieved by GLM method. But the ECS-DBN 

achieved 100% in Pred. 25% and achieved very low 

error rate as 0.043 in MSE. Compared to the existing 

hybrid method [SVM+GLM], the ECS-DBN method 

achieved very low RMSE value. The GLM achieved 

more RMSE value nearly 0.35, but the proposed 

method achieved 0.19 RMSE value with low error 

rate. The overall experimental results stated that the 

proposed method achieved better performance than 

existing methods such as ENN+ FFBP and 

SVM+GLM in terms of MMRE, Pred. 25% and 

RMSE. 

 
Table 2. Comparison analysis of ECS-DBN with existing 

methods 

Authors Techniq

ues 

MM

RE 

Pred. 

(25%

) 

RMS

E 

MSE 

O. 

Malgond

e, et al, 

[13] 

EL - - 15.3 3.91

1 

S. 

Bilgaiya

n, et al., 

[18] 

ENN 14.8

0 

94.86 - 0.05

6 

FFBP 13.4

9 

95.23 - 0.05

2 

P. 

Pospiesz

ny, et al., 

[19] 

SVM 13 76.91 0.27 0.07 

GLM 18 61.96 0.35 0.13 

Proposed ECS-

DBN 

12.5

0 

100 0.19 0.04

35 
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5. Conclusion 

This paper developed an ECS-DBN model for EP 

in ASD projects. The ECS-DBN model is relatively 

small and simple and all the input data are easily 

elicited, so that the impact on agility is minimal. The 

model predicts task effort, and it independently used 

agile methods that are suitable in the early project 

phase for EP. The model is validated using a database 

of 160 tasks from real agile projects. The prediction 

accuracy is measured by the percentage of correct 

predictions among the all predictions. The model 

results in very good accuracy, but having only one 

misclassified value. The method achieved 100% 

prediction in metrics of Pred. (m=25) with 25% 

tolerance. The MMRE values show that there are no 

occasional large estimation errors. All other 

statistical metrics used in this research support these 

results. In future work, the application can be 

extended to other deep learning methodologies with 

higher dimensional data for better performance. 
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