
Received: December 19, 2018 261

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.25

Effort Estimation in Agile Software Development using Evolutionary Cost-

Sensitive Deep Belief Network

Hosahalli Mahalingappa Premalatha1* Chimanahalli Venkateshavittalachar Srikrishna2

1People's Education Society University, India

2People's Education Society Institute of Technology, India
* Corresponding author’s Email: premalathaphd2017@gmail.com

Abstract: In today’s scenario, frequent requirement changes in software development are a notable issue in the

software field. Because of the frequent changes, fulfilling the user’s requirement is very difficult. As a solution to such

issues, Agile Software Development (ASD) has efficiently replaced the traditional methods of software development

in industries. Due to various aspects of ASD, it is extremely hard to follow, maintain and estimate the general item.

Hence, in order to tackle the Effort Estimation Problem (EEP) in ASD, various types of EEP have been identified in

existing methods. The Evolutionary Cost-Sensitive Deep Belief Network (ECS-DBN) model implemented in this

paper for effort prediction in any agile technique. The ECS-DBN method has no impact on agility because it uses

simple and small inputs. The proposed method used in planning stage of software development to support the project

managers in further development of agile software. The project managers characterize the structure of the ECS-DBN,

while the parameter estimation consequently gained from a dataset. This paper used different statistics like accuracy,

prediction at 𝑚 level to evaluate the accuracy of the model. The ECS-DBN method achieved nearly 99% accuracy

compared to the existing methods.

Keywords: Agile projects, Effort estimation, Evolutionary cost-sensitive deep belief network, Software development,

Planning stage.

1. Introduction

Nowadays, software is significantly used in many

applications like home appliances, nuclear-power-

plants, automobiles, telecommunications, medical

devices and so on [1]. The software testing process is

an important task in developing software to make it

free from bugs and defects and additionally, it

improves the quality of software. The software

quality estimation uses several factors such as

reliability, efficiency, software functionality,

testability and so on. In these quality factors, software

reliability is a more significant factor because it

checks how far software is consistent by tolerating

failures during the lifetime of software [2, 3]. The

definition of software reliability is the successful

running of the system with no error at a particular

time period. To make the system more efficient with

less error and less maintenance, there is a need of

predicting and estimating software reliability using

recent techniques and methodologies. Earlier

researches focused on to reduce complexities and the

failure rate in the system. It is a very challenging

process for existing methods to calculate the finite

cost in a large area with a population at the random

movement of many components. [4]. At present, the

software testing takes more time and cost and it

makes the SD process an expensive task. But, the cost

of testing decreases with the reduction of testing time

[5]. However, most of the software delivered without

enough testing, which is due to marketing pressures

and the aim to save testing time and cost, but

delivering a software without sufficient testing may

lead to loss of revenue [6, 7]. The software testing is

an essential technique to develop a bug-free software

and it is very helpful for software developers. Several

existing research works implemented to improve the

quality of the software.

Received: December 19, 2018 262

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.25

The process of determining the best predicted

effort required to develop a software project is termed

as software EE. This estimation can be divided into

three levels: First stage consists of size estimation,

the second stage involves EE and the third stage is

cost estimation, the EE is calculated in terms of PM

(Person-Months) [8-9]. ASD process is an iterative

and incremental approach, which improves the

overall product development routine by using

customer feedback and continuous evaluation of

documentation projects. Agile methodology plays a

bigger role in implementing communication goals

between customers in a planned manner. The main

issue of determining EE in agile methods is to focus

on the effort and degree of difficulties of teamwork

rather than an individual [10]. Some of the existing

work showed that while using ASD, development

team used story point approach [11] to calculate the

effort with the help of user story and project velocity

as inputs. The main task is to estimate the required

effort to reduce the technical complexity of the

project. Agile software has many advantages, as it is

iterative, modular, incremental, customer oriented,

and time-bound [12]. Therefore, the main objective

of this research is to implement a method that will

facilitate the assessment of the required effort. The

proposed ECS-DBN method helped overcome the

problems of traditional effort, cost prediction models

because the ECS-DBN method can able to run the

model with missing data, also reflect causal

relationships. The ECS-DBN is very flexible

compared to other existing methods, because the

method purely based on empirical data, expert

judgement or the combination of both. This proposed

method is suitable in the planning stage, even before

the development of software, and it helps project

managers in further ASD. It should not affect the

agility and it should be suitable for any agile method.

The prediction accuracy is determined by various

statistics in software estimation. The most commonly

used metrics are the Magnitude of Relative Error

(MRE), the Mean Magnitude of Relative Error

(MMRE), and the Prediction at Level 𝑚 (Pred. (m)).

This paper is composed as follows: the

investigation of existing models for software Effort

Prediction (EP) is described in Section 2, ECS-DBN

is explained in Section 3, the experimental results are

given in Section 4. The conclusions as well as the

outlines of future work are presented in Section 5.

2. Literature review

Considerable effort is missing in the domain of

EE for ASD and most of the researchers have used

traditional EE techniques for determining the

software effort that provides inaccurate results. This

section presented a brief valuation of some essential

contributions to the existing literatures.

O. Malgonde, and K. Chari, [13] explored a

critical aspect of agile development, i.e., EP, that cuts

across these tools and agile project teams. The work

developed a model for story-EP uses variables that

were readily available when a story was created. The

method used seven predictive algorithms to predict a

story’s effort and developed an Ensemble-based

Learning Method (EL) for predicting story effort. The

experimental result demonstrated the approach by

optimizing sprint planning for two projects from our

dataset using an optimization model. But the

experiments were limited to the dataset which has the

potential of impacting the generalizability of findings.

This is an inherent limitation; moreover, the method

provided limited conclusions on the superior

performance of the prediction methods and restrict

the inferences to EE in ASD projects.

P. Xiao, B. Liu, and S. Wang [14] developed an

improved feedback-based defect prediction strategy,

which combined the defect prediction with the

feedback control mechanism during the Software

Testing Process (STP) to address the problem of

ranking optimization. In addition, a novel approach

called feedback-based integrated prediction (FIP)

was proposed to improve the prediction accuracy,

where a global predictor and a local predictor were

employed to make an integrated prediction using the

weight to adjust the effects of predictors at different

test stages. The performance of FIP was investigated

on 10 public datasets by systematic experiments,

which stated that FIP had better robustness and

prediction efficiency when compared to traditional

DP. The experimental results showed that FIP had a

strong tolerance for defect misclassification,

although false positive can affect the prediction

performance of FIP

V. Nguyen, B. Boehm, and L. Huang [15]

investigated the use of moving windows to determine

relevant training data for COCOMO calibration. This

method presented a windowing calibration approach

and accessing the performance of EE models to

calibrate the COCOMO, windows and all data. This

study provided empirical evidence to support the use

of small windows of completed projects to calibrate

models when COCOMO-like data was available.

Additionally, when the change in SD over time was

rapid, the use of windows was more justifiable for

improving estimation accuracy. If the windows large

in size, then this method produced worse estimations.

Z. W. Zhang, X. Y. Jing, and T. J. Wang [16]

implemented a novel Non-Negative Sparse Graph

based Label Propagation approach (NSGLP) for

Received: December 19, 2018 263

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.25

semi-supervised learning in software defect

prediction. The NSGLP improved the generalization

capability by using few labeled data and abundant

unlabeled data. The class-balance labeled training

dataset was constructed by NSGLP method and learn

a sparse graph for characteristics of defect data by

Laplacian score sampling and sparse representation.

The NSGLP method used the constructed graph to

predict the labels of the unlabeled software modules

through label propagation approach. The NSGLP

method provided better performance compared to

existing semi-supervised software prediction task on

ten NASA datasets. But, the proposed method leads

poor performance in defect prediction due to

insufficient labeled data.

M. Boopathi, R. Sujatha, C. S. Kumar, and S.

Narasimman [17] proposed a hybrid technique,

namely Markov chain and Artificial Bee Colony

(ABC) optimization methods were used to achieve

the software code coverage. A number of paths were

generated using Linear-Code-Sequence-And-Jump

(LCSAJ) coverage. The LCSAJ was employed to

decrease the number of independent paths as related

to the paths generated by original path testing. The

qualities of test cases enhanced in each iteration of

ABC optimization and determined the sequences of

complete LCSAJ independent paths in a software

code. The calculation of test tolerability and

reliability of different kind of critical software is

difficult to through ABC optimization with mutation

testing.

S. Bilgaiyan, S. Mishra, and M. Das [18] focused

on as hybrid Neural Network (NN) namely, Feed

Forward Back Propagation (FFBP) and Elman NN

(ENN) to solve the EEP. These hybrid method was

applied to a dataset that consists of 21 projects based

on ASD from 6 different software houses. The

limitation of the proposed method was not performed

well for other datasets from heterogeneous software

development methods.

P. Pospieszny, B. Czarnacka-Chrobot, and A.

Kobylinski [19] developed an ensemble three

machine learning such as Support Vector Machine

(SVM), NN and Generalized Linear Models (GLM).

These models were intended to serve as a decision

support tool for any organization developing and

implementing software systems regardless of the

industry sector where incorrect estimation may lead

to negative implications. But, the limitation was that

the method supported only small group industries,

whereas the method provided poor performance in

large scale industries for EEP.

The proposed ECS-DBN method is implemented

to overcome the above issues addressed by the

existing methods, and to estimate the effort costs

automatically to improve the performance of cost-

sensitive DBN.

3. Proposed method

Agile methods avoid the formalisms of traditional

specification and design techniques. The downside of

this is a lack of specification metrics for project

planning. At the same time, agile project managers

have to plan their projects as any other traditional

project manager for the EP. The main purpose of this

paper is to build a ECS-DBN which can help agile

project managers to predict project effort. The basic

steps of the proposed method are depicted in Fig. 1.

3.1 Cost-sensitive deep belief network

The main aim of cost-sensitive learning is to

reduce the overall cost of the training dataset. The

cost of misclassifying 𝑥 as class 𝑗 when 𝑥 actually

belongs to class 𝑖 , denotes the sample data as

𝑥, 𝐶𝑖,𝑗 ∈ [0, 1] for total number of classes 𝐾 . In

addition, 𝐶𝑖,𝑗 = 0, when 𝑖 = 𝑗, which indicates the

cost of correct classification is 0.

Given the misclassification costs 𝐶𝑖,𝑗 , a data

sample should be classified into the class that has the

minimum expected cost. Based on decision theory,

the decision rule minimizes the expectation cost of

𝑅(𝑖|𝑥) for classifying an input vector 𝑥 into class 𝑖
can be expressed as in Eq. (1):

 𝑅(𝑖|𝑥) = ∑ 𝑃(𝑗|𝑥)𝐶𝑖,𝑗
𝐾
𝑗=1,𝑗≠1 (1)

Where 𝑃 (𝑗|𝑥) is the posterior probability

estimation of classifying a data sample into class 𝑗.

Given the prior probability 𝑃 (𝑥𝑛) , the general

decision rule indicates which action to take for each

data sample 𝑥𝑛, thus the overall risk 𝑅 is described in

Eq. (2).

Figure. 1 Structure of the proposed ECS DBN method

Received: December 19, 2018 264

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.25

 𝑅 = ∑ ∑ 𝑅(𝑖|𝑥𝑛)𝑃(𝑥𝑛)𝐾
𝑖=1

𝑁
𝑛=1 (2)

 Based on Bayes hypothesis, a perfect

classifier will give a choice by computing the desire

risk of grouping a contribution to each class and

predicts the mark that achieves the minimum overall

expectation risk. The classification error penalties are

described by misclassification costs. In cost-sensitive

adapting, all misclassification costs are basically non-

negative. Mathematically, the probability that a

sample data 𝑥 ∈ 𝑆 belongs to a class𝑗, a value of a

stochastic variable 𝑦, can be expressed as in Eq. (3):

𝑃(𝑦 = 𝑗|𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑗(𝑏 + 𝑊𝑥) (3)

The misclassification edge esteems acquainted

with transforming posterior probabilities into class

labels to such that the misclassification costs are

limited. Introducing the misclassification limit

esteem 1 − 𝐶𝑖,𝑗 on the obtained posterior

probability 𝑃 (𝑦 = 𝑗|𝑥) , one can obtain the new

probability 𝑃𝜉 that are described in Eq. (4):

𝑃𝜉(𝑦 = 𝑗|𝑥) = 𝑃(𝑦 = 𝑗|𝑥). (1 − 𝐶𝑖,𝑗) (4)

Generally, the misclassification threshold values

for minority classes are larger than majority classes.

The hypothesized prediction 𝑓(𝑥) of the sample 𝑥 is

the member of the maximum probability among

classes, can be obtained by using the following Eq.

(5):

𝐹(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑗

𝑃𝜉(𝑦 = 𝑗|𝑥) (5)

The proposed cost-delicate learning technique

only concerns about the yield layer of a DBN. For

imbalanced order issues, the earlier probability

dispersion of various classes is basically imbalanced

or non-uniform. To reflect class imbalance, there is a

need to present the misclassification cost at the yield

layer to mirror the imbalanced class dispersions.

Moreover, conventional preparing calculations

generally assume uniform class dispersion with

equivalent misclassification costs, 𝑖. 𝑒. ∀𝑖, 𝑗 ∈ [1, 2,·
 · · , 𝐾], 𝑖𝑓 𝑖 = 𝑗; 𝐶𝑖,𝑗 = 0, 𝑖𝑓 𝑖 ≠ 𝑗; 𝐶𝑖,𝑗 = 1 ,

which isn't valid in some real-time applications. To

maintain a strategic distance from hand tuning of

misclassification costs, adaptive DE calculation is

executed in this paper.

Adaptive DE calculation is a basic successful and

proficient developmental calculation which could

acquire ideal arrangement by advancing and updating

a population of individuals during several

generations. It endeavors to adaptively self-update

the control parameters without the need of earlier

learning.

3.2 Evolutionary cost-sensitive deep belief

network

Evolutionary Algorithm (EA) is broadly utilized

for optimization calculation which is driven by the

natural advancement process. The EA calculation can

be intended to streamline the misclassification costs

that are unknown. In this paper, ECS-DBN is

proposed by combining cost-sensitive capacity into

its characterization with the misclassification costs

through adaptive differential advancement. The

initial step is to select the cost of misclassification

randomly, then train a DBN with the training dataset.

According to execution on preparing dataset,

appropriate misclassification costs are chosen to

generate the population of the next generation. In this

generation, crossover and mutation administrators

are utilized to enhance the new population for

misclassification costs. To reach the maximum

number of generations, Adaptive DE calculation

continuously iterates the next generation between

selection and mutation.

3.2.1. Chromosome encoding

Chromosome encoding is a major process in EA

that aims for effective representations for important

variables for better execution. In some applications,

misclassification costs in DBN are generally obscure.

Therefore, in proposed approach every chromosome

describes the misclassification costs for various

classes to obtain the appropriate expenses. The

misclassification costs for ECS-DBN choose the best

chromosome from the last developed method. The

chromosome encoding here straightforwardly

encodes the misclassification costs as qualities in the

chromosome with numerical type and esteem scope

of [0, 1].

3.2.2. Population initialization

The initial population received by means of

consistently random testing in feasible solution space

for every factor inside the predetermined scope of the

relating variable. The population hold conceivable

misclassification expenses and structures the unit of

development. The development of the

misclassification costs is an iterative process with the

population in each iteration cycle is called generation.

Received: December 19, 2018 265

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.25

3.2.3. Adaptive DE operators

After initialization, adaptive DE evolves the

population with a sequence of three evolutionary

operations, i.e. mutation, crossover, and selection,

generation by generation. Mutation is carried out with

DE mutation strategy to create mutation individuals

based on the current parent population. After

mutation, a binomial crossover operation is utilized

to generate the final offspring. In adaptive DE, each

individual has its associated crossover probability

instead of a fixed value. The selection operation

selects the best one from the parent individuals and

offspring individuals according to their

corresponding fitness values. In this way, the control

parameters are automatically updated with the

appropriate values without the need of prior

parameter setting knowledge in DE.

3.2.4. Fitness evaluation

Fitness evaluation enables us to pick the suitable

misclassification costs. In this proposed strategy,

every individual chromosome is introduced into

individual DBN as misclassification costs. At this

point, it creates suitable misclassification costs for

DBN by utilizing the preparation set. G-mean of

preparing set picked as the target work for the process

of optimization.

3.2.5. Termination condition

EA are designed to evolve the population

generation by generation and maintain the

convergence as well as diversity characteristics

within the population. A maximum number of

generations set to be a termination condition of the

algorithm. In this implementation, the solutions

converged when the best fitness value remains

unchanged over the past 30 generations. The

algorithm stops once it reaches the maximum number

of generations or meets the convergence condition.

3.3 ECS-DBN creation

The misclassification costs are used to form an

ECS-DBN, when the process of optimization ends

with best individual. The best individual is obtained

from the last generation. Initially, the intention was

to build a ECS-DBN model for sprint (iteration) EP.

The model was planned to use the existing database

of software projects for model validation. These are

the projects of a micro software company, which used

agile methods for several years. The scrum master

has two datasets,

 The list of software entities with complexity

classification extracted from the project log

for each task [20].

 The list of knowledge and skills calculated

for each developer, including motivation and

experience, classified into 5 levels (from 1,

very low level, to 5, very high level), and

updated twice a year [21].

When planning new tasks, the project developers

and the project manager try to find the best solution

for both sides: developers’ ideas and project

productivity. When working on a task, the developers

record their working hours and the types of activities

(that takes only 1-2 minutes at the end of a workday).

So, they always know the real task and project status.

Consequently, the authors realized very early in the

process that it was convenient to build an ECS-DBN

model for task EP because it is easier to collect input

data which are less complex. It is easier for a project

manager to estimate a node value (e.g. whether the

complexity of a report is “low”, “medium” or “high”)

and easy to predict the iteration duration based on

each developer’s prediction effort.

4. Experimental result

The proposed ECS-DBN method has been

implemented in Java NetBeans 8.2 version, 32 bit

operating system and 8GB RAM. The data used in

this research originated from agile projects of a small

software company. In order to evaluate the efficiency

of the proposed system an evaluation metric is

employed. The MMRE and the Pred. (m) are the two

important metrics that are used in this research to

assess the accuracy of prediction in software

estimation. But, in this research, there is only one

prediction per one task used for predicting the

performance of ECS-DBN.

Therefore, other statistical measures are also used

to assess the accuracy of this model: Relative

Absolute Error (RAE), Accuracy, Mean Absolute

Error (MAE), Root Mean Squared Error (RMSE),

and Root Relative Squared Error (RRSE). These

measures are chosen due to their simplicity of use and

because of their application areas [22, 23].

4.1 Dataset description

The data collected from the small software

company for agile projects to estimate the effort task.

But, these data are not suitable for direct use in the

ECS-DBN model. That must be prepared, but it

requires more time to process the training data, so the

data are separated in three datasets. The first dataset

consists of 40 tasks, the second of 50 tasks, and the

Received: December 19, 2018 266

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.25

third of 70 tasks. Tasks are grouped chronologically

based on creation time. Grouping made neither by

size, nor by complexity, nor according to the

developer who performs the task, but it completely

based on the creation time. All the datasets include

the tasks of different duration and complexity,

created by different developers.

4.2 Performance evaluation

Numerical measures are the most commonly used

measures to evaluate and validate fault prediction

models. The detail of these measures is given below.

4.2.1. Mean magnitude of relative error (MMRE)

MMRE is the average of the MREs calculated

over all the reference tasks, which are given in the Eq.

(6).

𝑀𝑀𝑅𝐸 =
1

𝑛
∑ 𝑀𝑅𝐸𝑖

𝑛
𝑖=1 (6)

MRE represents the normalized measure of

deviations between the actual and the estimated

values that are depicted in Eq. (7):

𝑀𝑅𝐸 =
|𝑦𝑖−𝑓(𝑥𝑖)|

𝑦𝑖
 (7)

Where, 𝑥𝑖 is the predict value/actual value and 𝑦𝑖

is an observed value.

4.2.2. Prediction at level m

MMRE is the measure of standard deviation

(spread) of a variable 𝑥𝑖 , while Pred. (m) is the

measure of peak (kurtosis) of a variable 𝑥. MMRE

prefers models that predict estimates below the mean,

and it is also sensitive to outliers. A sensitivity to

outliers allows MMRE to detect the model

occasionally tends to be very inaccurate. Pred. (m)

measures the percentage of estimates that are within

𝑚 percent of the actual values. It is usually set to m =

25. Pred. @(25%) detects what percentage of

estimates is within a tolerance of 25%.

4.2.3. Accuracy

Accuracy is the percentage of the correctly

classified samples over the total number of samples.

The accuracy can range from 0% to 100%. The

general formula for accuracy can be given in Eq. (8),

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
 (8)

Where, TN is True Negative, TP is True Positive,

FN is False Negative and FP is False Negative.

4.2.4. Mean absolute error

MAE is the average of the absolute values of the

prediction errors, given by the Eq. (9):

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑓(𝑥𝑖 − 𝑦𝑖)|1

𝑛 (9)

Where 𝑛 is the number of predictions, 𝑓(𝑥𝑖) is a

predicted value. All the errors are weighted equally

due to linear score.

4.2.5. Root mean square error

RMSE is another measure of deviation between

the predicted 𝑓(𝑥𝑖) and the real value𝑦𝑖. RMSE is the

square root of MSE that predict the mean relative

error. The formula for RMSE is given in Eq. (10)

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑓(𝑥𝑖) − 𝑦𝑖)2𝑛

𝑖=1 (10)

Large errors are weighted more heavily because

the errors are averaged after they squared. The error

variance can be detected if RMSE and MAE are used

together. The variation is greater if the difference

between them is larger. If all the errors have the same

magnitude, MAE = RMSE, otherwise, RMSE >

MAE.

Both MAE and RMSE are useful for the

comparison of the prediction errors of different

models for a particular variable and not for the

comparison between variables. That shows errors in

the same unit and scale as the parameter itself, so they

are scale-dependent.

The method also includes measures that can be

used for the comparison of models those errors are

measured in different units. Such measures include in

Eqs. (11) and (12):

𝑅𝐴𝐸 =
∑ (|𝑓(𝑥𝑖−𝑦𝑖)|)𝑛

𝑖=1

∑ (�̅�𝑖−𝑦𝑖)𝑛
𝑖=1

 (11)

𝑅𝑅𝑆𝐸 = √
∑ (𝑓(𝑥𝑖−𝑦𝑖))

2𝑛
𝑖=1

∑ (�̅�𝑖−𝑦𝑖)2𝑛
𝑖=1

 (12)

Where �̅�𝑖 is the mean value of𝑦.

4.3 Parameter evaluation

The experiments were conducted to evaluate the

performance parameters such as MMRE, Pred. m,

accuracy, MAE, RMSE, RAE and RRSE. The

prediction accuracy for all the datasets is shown in

Table 1 that represents the performance of parameters

of proposed ECS-DBN.

Received: December 19, 2018 267

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.25

Table 1. Results of various parameters of proposed method

Number of tasks 40 (first) 50 (second) 70 (last) 90 (40+50) 160

Accuracy 92% 97% 97.86% 97% 99.487%

MAE 0.1056 0.0521 0.0520 0.0454 0.023

RMSE 0.190 0.1298 0.1121 0.111 0.054

MSE 0.0435 0.0360 0.033 0.033 0.0232

RAE 35.18% 24.20% 18.09% 17.25% 9.23%

RRSE 50.27% 40% 30.95% 32.31% 17.21%

Pred. (25)% 100% 100% 100% 100% 100%

Pred. (10)% 93% 100% 100% 100% 100%

MMRE 12.50 2.94 4.21 6.59 6.10

For a dataset of 160 instances, only the effort of

one task is wrongly classified. The true effort for the

last set of data will be 2.4% which is indicated by the

values of MAE. The error variance is relatively small

that is indicated by the small differences between

RMSE and MAE values. The Pred. (m) (i.e. 10 and

25%) and the MMRE metrics are also applied to this

dataset. Since the ECS-DBN model estimates effort

as a set of probability distributions of all possible

classes, a Conversion method is used to obtain the

estimated effort as a discrete value. The class

probabilities should be normalized, so that their sum

equals one. The estimated effort is then given by the

Eq. (13):

𝐸𝑓𝑓𝑜𝑟𝑡 = ∑ 𝜌𝑐𝑙𝑎𝑠𝑠𝑖𝜇𝑐𝑙𝑎𝑠𝑠𝑖
𝑛
𝑖=1 (13)

Where 𝜇𝑐𝑙𝑎𝑠𝑠𝑖 is the mean of class 𝑖, and 𝜌𝑐𝑙𝑎𝑠𝑠𝑖

is its respective class probability.

4.4 Comparative analysis

The proposed method ECS-DBN are compared

with existing methods such as hybrid FFBP and ENN

[18] and ensemble machine learning such as SVM,

and GLM [19]. S. Bilgaiyan, et al., [18] focused on

two types of ANN- FFBP and ENN to solve the EEP.

The FFBP-ENN method has high computation speed,

fixed computation time and fault tolerance with

respect to Elman network. The FFBN-ENN method

didn’t perform well in other datasets collected from

heterogeneous SD methods, which was considered as

a limitation of this method. The Table 2 describes the

comparison results of proposed with existing

methods in terms of MMRE, Pred. (25) and RMSE.

P. Pospieszny, et al., [19] aimed to narrow the gap

between up-to-date research results and

implementations within organizations by proposing

effective and practical machine learning deployment.

This was achieved by smart data preparation and

applying ensemble averaging of three machine

learning algorithms (SVM, NN and GLM) on ISBSG

dataset. The limitation was the impact of software

sizing especially on EE. As an input variable, it has

the most significant impact on forecasting the

mentioned output parameter. The hybrid method

[ENN+FFBP] achieved nearly 14.90 MMRE and

13.49 MMRE, whereas the proposed ECS-DBN

achieved 12.50 MMRE by using evolutionary

algorithm. The performance measure like Pred. 25%

and MSE for existing methods achieved 95.23% and

0.052 in FFBN, whereas 61.96% and 0.13 error rate

achieved by GLM method. But the ECS-DBN

achieved 100% in Pred. 25% and achieved very low

error rate as 0.043 in MSE. Compared to the existing

hybrid method [SVM+GLM], the ECS-DBN method

achieved very low RMSE value. The GLM achieved

more RMSE value nearly 0.35, but the proposed

method achieved 0.19 RMSE value with low error

rate. The overall experimental results stated that the

proposed method achieved better performance than

existing methods such as ENN+ FFBP and

SVM+GLM in terms of MMRE, Pred. 25% and

RMSE.

Table 2. Comparison analysis of ECS-DBN with existing

methods

Authors Techniq

ues

MM

RE

Pred.

(25%

)

RMS

E

MSE

O.

Malgond

e, et al,

[13]

EL - - 15.3 3.91

1

S.

Bilgaiya

n, et al.,

[18]

ENN 14.8

0

94.86 - 0.05

6

FFBP 13.4

9

95.23 - 0.05

2

P.

Pospiesz

ny, et al.,

[19]

SVM 13 76.91 0.27 0.07

GLM 18 61.96 0.35 0.13

Proposed ECS-

DBN

12.5

0

100 0.19 0.04

35

Received: December 19, 2018 268

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.25

5. Conclusion

This paper developed an ECS-DBN model for EP

in ASD projects. The ECS-DBN model is relatively

small and simple and all the input data are easily

elicited, so that the impact on agility is minimal. The

model predicts task effort, and it independently used

agile methods that are suitable in the early project

phase for EP. The model is validated using a database

of 160 tasks from real agile projects. The prediction

accuracy is measured by the percentage of correct

predictions among the all predictions. The model

results in very good accuracy, but having only one

misclassified value. The method achieved 100%

prediction in metrics of Pred. (m=25) with 25%

tolerance. The MMRE values show that there are no

occasional large estimation errors. All other

statistical metrics used in this research support these

results. In future work, the application can be

extended to other deep learning methodologies with

higher dimensional data for better performance.

Acknowledgments

The authors would like to thank PES university for

allowing to do research and would like to thank Dr.

K N B Murthy, vice chancellor, PES university for

his encouragement to do research.

References

[1] Y. Shi, M. Li, S. Arndt, and C. Smidts, “Metric-

based software reliability prediction approach

and its application”, Empirical Software

Engineering, Vol.22, No.4, pp.1579-1633, 2017.

[2] S.K. Dubey and B. Jasra, “Reliability assessment

of component based software systems using

fuzzy and ANFIS techniques”, International

Journal of System Assurance Engineering and

Management, Vol.8, No.2, pp.1319-1326, 2017.

[3] T. Jie, Z. Yong, and W. Lina, “Neural Network

Based Software Reliability Prediction with the

Feed of Testing Process Knowledge”, In: Proc. of

International Conf. On Information Technology

and Software Engineering, Springer, Berlin,

Heidelberg, pp.19-27, 2013.

[4] C. Diwaker, P. Tomar, R. C. Poonia, and V.

Singh, “Prediction of Software Reliability using

Bio Inspired Soft Computing

Techniques”, Journal of Medical

Systems, Vol.42, No.5, pp.93, 2018.

[5] N. Khurana, R.S. Chhillar, and U. Chhillar, “A

Novel Technique for Generation and

Optimization of Test Cases Using Use Case,

Sequence”, Activity Diagram and Genetic

Algorithm. JSW, Vol.11, No.3, pp.242-250, 2016.

[6] B.S. Ahmed, “Test case minimization approach

using fault detection and combinatorial

optimization techniques for configuration-aware

structural testing”, Engineering Science and

Technology, an International Journal, Vol.19,

No.2, pp.737-753, 2016.

[7] S.R. Sugave, S.H. Patil, and B.E. Reddy, “DDF:

Diversity Dragonfly Algorithm for cost-aware

test suite minimization approach for software

testing”, In: Proc. of International Conf. on

Intelligent Computing and Control Systems,

pp.701-707, 2017.

[8] F. Zare, H.K. Zare, and M.S. Fallahnezhad,

“Software effort estimation based on the optimal

Bayesian belief network”, Applied Soft

Computing, Vol.49, pp.968-980, 2016.

[9] K. Sagar and A. Saha, “A systematic review

of software usability studies”, International

Journal of Information Technology, pp.1-24,

2017.
[10] D. E. Strode, “A dependency taxonomy for agile

software development projects”, Information

Systems Frontiers, Vol.18, No.1, pp.23-46,

2016.

[11] A.T. Raslan and N.R. Darwish, “An Enhanced

Framework for Effort Estimation of Agile

Projects”, International Journal of Intelligent

Engineering and Systems, Vol.11, No.3, pp.

205-214, 2018.

[12] S. Bilgaiyan, S. Mishra, and M. Das, “A review

of software cost estimation in agile software

development using soft computing techniques”,

In: Proc. of 2nd International Conf. on

Computational Intelligence and Networks, 2016.

[13] O. Malgonde and K. Chari, “An ensemble-based

model for predicting agile software

development effort”, Empirical Software

Engineering, pp.1-39, 2018.

[14] P. Xiao, B. Liu, and S. Wang, “Feedback-based

integrated prediction: Defect prediction based

on feedback from software testing process”,

Journal of Systems and Software, Vol.143,

pp.159-171, 2018.

[15] V. Nguyen, B. Boehm, and L. Huang,

“Determining Relevant Training Data for Effort

Estimation Using Window-based COCOMO

Calibration”, Journal of Systems and Software,

Vol.147, pp.124-146, 2018.

[16] Z.W. Zhang, X.Y. Jing, and T.J. Wang, “Label

propagation based semi-supervised learning for

software defect prediction”, Automated

Software Engineering, Vol.24, No.1, pp.47-69,

2017.

Received: December 19, 2018 269

International Journal of Intelligent Engineering and Systems, Vol.12, No.2, 2019 DOI: 10.22266/ijies2019.0430.25

[17] M. Boopathi, R. Sujatha, C.S. Kumar, and S.

Narasimman, “Quantification of Software Code

Coverage Using Artificial Bee Colony

Optimization Based on Markov

Approach”, Arabian Journal for Science and

Engineering, Vol.42, No.8, pp.3503-3519, 2017.

[18] S. Bilgaiyan, S. Mishra, and M. Das, “Effort

estimation in agile software development using

experimental validation of neural network

models”, International Journal of Information

Technology, pp.1-5, 2018.

[19] P. Pospieszny, B. Czarnacka-Chrobot, and A.

Kobylinski, “An effective approach for software

project effort and duration estimation with

machine learning algorithms”, Journal of

Systems and Software, Vol.137, pp.184-196,

2018.

[20] S. Celar, L. Vickovic, and E. Mudnic,

“Evolutionary Measurement Estimation Method

for Micro, Small and Medium-Sized Enterprises

Based on Estimation Objects”, Advances in

Production Engineering & Management, Vol.7,

No.2, pp.81-92, 2012.

[21] S. Čelar, M. Turić, and L. Vicković, “Method

for personal capability assessment in agile teams

using personal points”, In: Proc. of 22nd

International Conf. On Telecommunications

Forum Telfor (TELFOR), pp.1134-1137, 2014.

[22] J. Hernández-Orallo, P. Flach, and C. Ferri, “A

unified view of performance metrics: translating

threshold choice into expected classification

loss”, Journal of Machine Learning Research,

Vol.13, pp.2813-2869, 2012.

[23] S. T. Kim, S. R. Hong, and C. O. Kim, “Product

attribute design using an agent-based simulation

of an artificial market”, International Journal of

Simulation Modelling, Vol.13, No.3, pp.288-

299, 2014.

