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Abstra
t

We 
onsider a nonlo
al problem with dynami
 boundary 
onditions for a loaded

linear paraboli
 equation. For this problem we prove the unique solvability in

Sobolev's spa
es and the maximum prin
iple under some natural 
onditions. We

suggest the numeri
al straight-lines method for the �nding of the solution of the

problem. The 
onvergen
e of the straight-lines method to the exa
t solution is also

proved.
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1 Introdu
tion

Let N ≥ 1 be an integer, T > 0. Let Ω be a bounded domain in R
N
with

smooth boundary Γ ≡ ∂Ω . Denote D ≡ D ≡ Ω× [0, T ], ΓT ≡ Γ× [0, T ]. In
the domainD we 
onsider the following initial - boundary value problem with

dynami
 boundary 
onditions for the unknown fun
tion u(x, t), ((x, t) ∈ D)
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∂u

∂t
=

N∑

i,j=1

∂

∂xi
(kij(x, t)

∂u

∂xj
)−b(x, t)u(x, t)+B[u]+f(x, t), (x, t) ∈ D, (1)

∂u(x, t)

∂t
+ α(x, t)u(x, t) + β(x, t)u ◦ e = µ(x, t), (x, t) ∈ ΓT , (2)

u(x, 0) = ϕ(x), x ∈ Ω. (3)

Here kij = kij(x, t), b = b(x, t), f(x, t) , α = α(x, t), β = β(x, t), µ(x, t), ϕ(x)
are given fun
tions and we suppose the ellipti
ity 
ondition with some ν > 0

νξ2 ≤

N∑

i,j=1

kijξiξj ≤ ν−1ξ2, ξ ∈ RN , (4)

b(x, t) ≥ ν > 0, α(x, t) + β(x, t) ≥ ν > 0, β(x, t) ≤ 0. (5)

The term B[u] in equation (1) represents a given bounded generally non-

lo
al linear operator in the spa
e of 
ontinuous fun
tions C(D) with the

properties (B0 denotes the norm of B : C(D) → C(D))

|B[u]|
(0)

D
≤ B0|u|

(0)

D
, and B[u](x, t) ≥ 0 in D if u(x, t) ≥ 0 in D, (6)

and for any positive 
onstant a > 0

−b(x, t)a +B[a](x, t) < 0 in D, (7)

where b(x, t) is the 
oe�
ient from (1) and |u|
(0)

D
is the norm of u in C(D)

|u|
(0)

D
≡ max

(x,t)∈D
|u(x, t)|.

Note that due to linearity (7) is equivalent to

−b(x, t) +B[1](x, t) ≤ −ν < 0 in D. (8)

Finally, u ◦ e in boundary 
ondition (2) means the 
omposition of the

unknown fun
tion u(x, t) with some given di�eomorphism e(x) of the surfa
e
Γ onto itself, that is
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u ◦ e ≡ u(e(x), t), e(x) : Γ → Γ. (9)

It is worth noting that the linear operator B[u] may be a nonlo
al operator,

for example,

B[u] =

∫

D

G(x, t; y, τ)u(y, τ)dydτ, G(x, t; y, τ) ≥ 0 in D ×D

or, for example,

B[u] =

m∑

k=1

bk(x, t)u(x, tk), tk ∈ [0, T ], k = 1, m. (10)

Nonlo
al problems of the (1)- (3) type (sometimes in slightly di�erent

but similar forms) arise in di�erent mathemati
al models in various physi
al,

�nan
ial, biologi
al, so
ial and engineering appli
ations. Without pretending

on a more less 
omplete survey of su
h appli
ations we mention, for example,

the papers [1�26℄. In parti
ular, equation (1) is loaded due to the presen
e

of the nonlo
al term B[u] . Boundary 
ondition (2) 
ontains the highest

derivative ut and the nonlo
al term u ◦ e; therefore, it is dynami
al and

nonlo
al at the same time. Note that the term u ◦ e is an analogue of

the Bitsadze- Samarskii 
onditions (the Bitsadze-Samarskii 
onditions use

a di�eomorphism e of the boundary Γ onto some surfa
e S whi
h may not


oin
ide with Γ). It is worth noting that the investigations of problems with

dynami
 boundary 
onditions is an a
tive dire
tion in the present theory

of PDE in
luding numeri
al approa
hes to su
h problems. However, the

author is not aware of results regarding 
orre
tness of problems of the (1)-

(3) type where a loaded equation has nonlo
al dynami
 boundary 
onditions

or of respe
tive numeri
al approa
hes. The numeri
al solutions of problems

for loaded paraboli
 equations are 
overed in, for example, the papers [1�

3, 5, 6, 16, 20, 25℄. In parti
ular, the paper [5℄ also dis
usses the appli
ation

of the straight-line method to a di�erent problem with a loaded paraboli


equation. However, we 
onsider the 
ase of dynami
 boundary 
onditions

and prove the 
onvergen
e of the straight-lines method.

The purpose of the present paper is twofold. In the next se
tion 2 we �rst

prove the unique solvability of problem (1)-(3) in Sobolev spa
es W 2,1
q (D) by

the Fredholm theory and we prove a 
omparison prin
iple for the problem.
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It is worth noting that without 
onditions (5), (7) this Fredholm problem is

in
orre
t in general (the more in the spa
es of smooth fun
tions) and may


ause some inverse problems - see Remark 1. Main results of se
tion 2 are

presented in theorems 1- 4 below. Se
ond, in the last se
tion 3 we investigate

the appli
ation of the straight-lines method in solving the one-dimensional

setting of problem (1)-(3). Here we prove the 
onvergen
e of this method to

the exa
t solution and the main results are formulated in theorems 5-8.

In what follows we denote by the same symbols C or ν all absolute 
on-

stants or 
onstants depending only on �xed given data of the problem.

2 Corre
tness of problem (1)-(3) in spa
es W 2,1
q (D).

Let γ ∈ (0, 1) and let k be a nonnegative integer. We use the standard

anisotropi
 Hölder spa
es Ck+γ, k+γ
2 (D) of fun
tions u(x, t) in D with the

smoothness in the x-variables up to the order k+γ and with the smoothness

in the t-variable up to the order (k+γ)/2. And we use also the Hölder spa
es

Ck+γ(Ω) and Ck+γ, k+γ
2 (ΓT ) in Ω and on ΓT . Su
h spa
es are sometimes desig-

nated also as Hk+γ, k+γ
2 (D), Hk+γ(Ω), and Hk+γ, k+γ

2 (ΓT ) and their de�nitions


an be found in [27℄, for example. The norm in the spa
es Ck+γ, k+γ
2 (D) and

Ck+γ(Ω) are denoted by

|u|
(k+γ, k+γ

2
)

D
≡ ‖u‖

Ck+γ,
k+γ
2 (D)

, |u|
(k+γ)

Ω
≡ ‖u‖Ck+γ(Ω) .

For q ≥ N = 1 we use the standard anisotropi
 Sobolev spa
e W 2,1
q (D)

of fun
tions u(x, t) in D with the standard norm

‖u‖
(2,1)
q,D ≡ ‖u‖W 2,1

q (D) ≡



∫

D

(
|ut|

q +

N∑

i=1

|uxi
|q +

N∑

i,j=1

|uxixj
|q + |u|q

)
dxdt




1
q

.

About the data of problem (1)-(3) we assume the following. Let the

boundary Γ of the domain Ω be a surfa
e of the 
lass Ck+2+γ, k+2+γ
2

(see [27℄)

and let

f(x, t) ∈ Ck+γ, k+γ
2 (D), µ(x, t) ∈ Ck+2+γ, k+2+γ

2 (ΓT ),
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ϕ(x) ∈ Ck+2+γ(Ω), e(x) ∈ Ck+2+γ(Γ), (11)

ki,j(x, t) ∈ Ck+1+γ, k+1+γ
2 (D), b(x, t) ∈ Ck+γ, k+γ

2 (D),

α(x, t), β(x, t) ∈ Ck+2+γ, k+2+γ
2 (ΓT ). (12)

Before we turn to the 
omparison and existen
e - uniqueness theorems

we now dis
uss dynami
 boundary 
ondition (2).

Lemma 1. Let 
onditions (11), (12) be satis�ed. Then there exists the unique

fun
tion θ(x, t) ∈ Ck+2+γ, k+2+γ
2 (ΓT ) with

|θ|
(k+2+γ, k+2+γ

2
)

ΓT
≤ C

(
|µ|

(k+2+γ, k+2+γ
2

)

ΓT
+ |ϕ|

(k+2+γ)

Ω

)
, θ(x, 0) = ϕ(x)|Γ

(13)

and 
ondition (2) is equivalent to the Diri
hlet 
ondition

u(x, t)|ΓT
= θ(x, t). (14)

Proof. Integrate 
ondition (2) in t and write it in the form (x ∈ Γ)

u(x, t) =

(
−

∫ t

0

α(x, τ)u(x, τ)dτ −

∫ t

0

β(x, τ)u(e(x), τ)dτ

)

+

(∫ t

0

µ(x, τ)dτ + ϕ(x)

)
≡ A[u] + θ0.

(15)

Sin
e 
oe�
ients α and β are smooth and sin
e the 
hange of variables

x→ e(x) is also smooth we see that

|A[u]|
(k+2+γ, k+2+γ

2
)

ΓT
≤ CT |u|

(k+2+γ, k+2+γ
2

)

ΓT
. (16)

Analogously,

|θ0|
(k+2+γ, k+2+γ

2
)

ΓT
≤ T |µ|

(k+2+γ, k+2+γ
2

)

ΓT
+ |ϕ|

(k+2+γ)

Ω
. (17)

Let �rst T be so small that we have CT ≤ 1/2 in (16). Then the operator

A[u] is a 
ontra
tion on Ck+2+γ, k+2+γ
2 (ΓT ) and the equation u = A[u] + θ0
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from (15) has the unique solution θ(x, t) ∈ Ck+2+γ, k+2+γ
2 (ΓT ) whi
h is equal

to θ = (I − A)−1θ0. Besides, |θ|
(k+2+γ, k+2+γ

2
)

ΓT
≤ C|θ0|

(k+2+γ, k+2+γ
2

)

ΓT
and thus

the �rst relation in (13) follows from (17). The se
ond relation in (13) follows

by 
onstru
tion from (15). Now if with this θ 
ondition (14) is satis�ed by

some fun
tion u(x, t), then, by the 
onstru
tion of θ, u(x, t) satis�es (15).
Di�erentiating this relation in t, we arrive at (2). Thus the lemma is proved

for a su�
iently small T > 0.
Let now T > 0 be arbitrary. We 
an 
hoose su�
iently small 0 < T0 < T

so that CT0 ≤ 1/2 in (16) and 
onsider �rst the part ΓT0 of ΓT , ΓT0 ⊂ ΓT .

As it is shown, we 
an �nd the 
orresponding fun
tion θ(x, t) on the time

interval [0, T0]. Then we 
onsider the time interval [T0/2, 3T0/2] (of length
T0) and the 
orresponding surfa
e Γ × [T0/2, 3T0/2] ⊂ ΓT . Starting from

the initial value of time T0/2 we repeat our reasonings and obtain θ as the

solution of (15) (with T0/2 instead of 0) on the interval [T0/2, 3T0/2]. Moving

now up to the t-axis by steps of length T0/2, we obtain the desired fun
tion

θ(x, t) on whole interval [0, T ]. This proves the lemma.

We pro
eed with a maximum and a 
omparison prin
iples for the prob-

lems (1)-(3) or (1), (14), (3).

Theorem 1. Let 
onditions (4)-(7), (11), (12) be satis�ed. Let also

f(x, t) ≤ 0 in D, µ(x, t) ≤ 0 (or θ(x, t) ≤ 0) on ΓT , ϕ(x) ≤ 0 in Ω.
(18)

Let u(x, t) be a solution to (1)- (3) from the spa
e C(D) and it's derivatives

in x up to the se
ond order are 
ontinuous in the open domain D and the

derivative ut is 
ontinuous in the open domain D in
luding ΓT .

Then u(x, t) ≤ 0 in D.

Proof. The simple proof is based on standard for the maximum prin
iple

arguments by 
ontradi
tion. We 
onsider only boundary 
ondition (2) sin
e

the di�eren
e for simpler 
ondition (14) is evident.

Let there are points in D, where u(x, t) is positive. Sin
e u(x, t) ∈ C(D),
there exists (x0, t0) ∈ D, where u(x, t) attains it's positive maximum over

D. This 
an not happen at the bottom Ω × {0} of D be
ause of the last


ondition in (18). This is also not possible for points on ΓT sin
e at su
h

point must be ut(x0, t0) ≥ 0 and

∂u(x0, t0)

∂t
+ α(x0, t0)u(x0, t0) + β(x0, t0)u(e(x0), t0) ≥
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≥ [α(x0, t0) + β(x0, t0)] u(x0, t0) > 0,

sin
e u(x0, t0) ≥ u(e(x0), t0), β(x0, t0) ≤ 0, and [α(x0, t0) + β(x0, t0)] > 0.
But this 
ontradi
ts to the se
ond 
ondition in (18).

Analogously, let (x0, t0) be an inner point of D. Consider the right hand

side of equation (1) at this point. We have

N∑

i,j=1

∂

∂xi
(kij(x0, t0)

∂u

∂xj
)− b(x0, t0)u(x0, t0) +B[u](x0, t0) + f(x0, t0) =

=
N∑

i,j=1

kij(x0, t0)
∂2u(x0, t0)

∂xi∂xj
+

N∑

i,j=1

∂kij(x0, t0)

∂xi

∂u

∂xj
(x0, t0)+

+ {−b(x0, t0)u(x0, t0) +B[u(x0, t0)](x0, t0)}+B[u−u(x0, t0)](x0, t0)+f(x0, t0)

≡ I1 + I2 + I3 + I4 + I5. (19)

The term I1 ≤ 0 sin
e at the maximum point (x0, t0) the matrix of the se
ond

derivatives

{
∂2u(x0,t0)
∂xi∂xj

}
is negatively de�ned. The se
ond term I2 
ontains the

�rst derivatives and so it vanishes at the maximum point. The term I3 < 0 is
stri
tly negative be
ause of (7) with a = u(x0, t0). Sin
e u(x, t)−u(x0, t0) ≤ 0
and due to the se
ond 
ondition in (6) the term I4 ≤ 0 is nonpositive and also
I5 = f(x0, t0) ≤ 0. Thus, the right hand side of equation (1) at this point is

stri
tly negative. But on the other hand the left hand side of equation (1)

at this point must be nonnegative ut(x0, t0) ≥ 0. This 
ontradi
tion �nishes

the proof of the theorem.

As a 
orollary we have the following 
omparison theorem.

Theorem 2. Let under the 
onditions of Theorem 1 ui(x, t) , i = 1, 2 be

solutions to problem (1)-(3) (or (1), (14), (3)) with data fi(x, t), µi(x, t)
(θi(x, t)), ϕi(x) , i = 1, 2 , 
orrespondingly. If

f1(x, t) ≤ f2(x, t), µ1(x, t) ≤ µ2(x, t) (θ1(x, t) ≤ θ2(x, t)), ϕ1(x) ≤ ϕ2(x),

then u1(x, t) ≤ u2(x, t).
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The proof dire
tly follows from the previous theorem if we note that the

di�eren
e u1(x, t) − u2(x, t) is a solution to linear problem (1)-(3) (or (1),

(14), (3)) with the 
orresponding data.

Now we give some estimate for the maximum modulus norm |u|
(0)

D
of a

solution.

Theorem 3. Under the 
onditions of Theorem 1

|u|
(0)

D
≤ C

(
|f |

(0)

D
+ |µ|

(0)
ΓT

+ |ϕ|
(0)

Ω

)
, (20)

for problem (1)-(3) or

|u|
(0)

D
≤ C

(
|f |

(0)

D
+ |θ|

(0)
ΓT

+ |ϕ|
(0)

Ω

)
(21)

for problem (1), (14), (3), where the 
onstants C do not depend on f , µ, θ,
ϕ.

Proof. We 
onsider only (20) sin
e (21) is 
ompletely analogous and more

simple.

Consider the fun
tion F (x, t) = K(R−x2), whereK = |f |
(0)

D
+|µ|

(0)
ΓT
+|ϕ|

(0)

Ω
and the 
onstant R > 0 is su�
iently large and will be 
hosen later. Note

that sin
e Ω is bounded there exists r > 0 with x2 ≤ r for (x, t) ∈ D and


onsequently F (x, t) ≥ K(R − r) > 0 if we 
hoose big R. Moreover, for any

ε ∈ (0, 1/2) we 
an 
hoose R = R(r) so large that

R− r ≥ (1− ε)R and so F (x, t) ≥ K(1− ε)R. (22)

Let u(x, t) be a solution to (1)-(3). Denote the di�eren
e v(x, t) =
u(x, t) − F (x, t). Sin
e problem (1)-(3) is linear, it is dire
tly veri�ed that

the fun
tion v(x, t) satis�es problem (1)- (3) with f̂ , µ̂, and ϕ̂ instead of f ,
µ, and ϕ, where

ϕ̂(x) = ϕ(x)−K(R− x2), (23)

µ̂(x, t) = µ(x, t)− [αF (x, t) + βF (e(x), t)] , (24)

f̂(x, t) =
N∑

i,j=1

∂

∂xi
(kij(x, t)

∂F

∂xj
)− b(x, t)F (x, t) +B[F ] + f(x, t). (25)
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For the fun
tion ϕ̂(x) we have

ϕ̂(x) ≤ ϕ(x)− |ϕ|
(0)

Ω
R/2 ≤ |ϕ|

(0)

Ω
(1−R/2) ≤ 0, (26)

if R = R(r) is su�
iently large. Considering µ̂(x, t) and taking into a

ount

(5), we see that

µ̂(x, t) ≤ µ(x, t)−K
[
α(R− x2) + β(R− e(x)2)

]
≤

≤ |µ|
(0)
ΓT

−K(α + β)R+ rK(|α|
(0)
ΓT

+ |β|
(0)
ΓT
) ≤

≤ |µ|
(0)
ΓT

{
1− νR + r(|α|

(0)
ΓT

+ |β|
(0)
ΓT
)
}
≤ 0 (27)

if R = R(r, α, β) is 
hosen su�
iently large.

Further, for the �rst term in f̂(x, t) we have

N∑

i,j=1

∂

∂xi
(kij(x, t)

∂F

∂xj
) = −2K

N∑

i,j=1

∂

∂xi
(kij(x, t) · xj) ≤ KC(kij)r.

Consequently, taking into a

ount (8),

f̂(x, t) ≤ KC(kij)r +K
{
−b(R − x2) +B[R − x2]

}
+ f =

= KC(kij)r +KR {−b(x, t) +B[1]}+ br − B[x2] + f ≤

≤ −K {vR− C(kij, b, B, r)}+f ≤ |f |
(0)

D
{1 + C(kij, b, B, r)− vR} ≤ 0 (28)

if R = R(kij, b, B, r) is 
hosen su�
iently large.

Thus, taking R = R(kij, b, B, α, β,Ω) su�
iently large, we obtain (26)-

(28). On the base of Theorem 1 we 
on
lude that v(x, t) = u(x, t)−F (x, t) ≤
0 in D, that is

u(x, t) ≤ F (x, t) ≤ C(kij, b, B, α, β,Ω)(|f |
(0)

D
+ |µ|

(0)
ΓT

+ |ϕ|
(0)

Ω
).

Considering now in absolutely the same way the fun
tion −u(x, t) instead
of u(x, t), we obtain for this fun
tion exa
tly the above inequality as well.

This means (20) and 
ompletes the proof of the theorem.

Formulate now the existen
e - uniqueness theorem.
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Theorem 4. Let 
onditions (4), (11), (12), (6), (8) be satis�ed. Let in

addition the operator B[u] satisfy

|B[u]|
(k+γ, k+γ

2
)

D
≤ C|u|

(k+γ, k+γ
2

)

D
, k ≥ 0, (29)

Then problem (1)-(3) has the unique solution u(x, t) ∈W 2,1
q (D)∩Cγ,γ/2(D)

and

‖u‖
(2,1)
q,D + |u|

(γ, γ
2
)

D
≤ C

(
|f |

(γ, γ
2
)

D
+ |µ|

(2+γ, 2+γ
2

)

ΓT
+ |ϕ|

(2+γ)

Ω

)
, (30)

where the 
onstant C does not depend on f , µ, ϕ. Moreover, for any subdo-

main D′
of domain D with D′ ⊂ D the solution u(x, t) belongs to the 
lass

Ck+2+γ,(k+2+γ)/2(D′) and

|u|
(k+2+γ, k+2+γ

2
)

D′ ≤ CD′

(
|f |

(k+γ, k+γ
2

)

D
+ |µ|

(k+2+γ, k+2+γ
2

)

ΓT
+ |ϕ|

(k+2+γ)

Ω

)
, (31)

where the 
onstant CD′
does not depend on f , µ, ϕ.

Remark 1. Although all the data of the problem are smooth, the solution of

the problem is not generally smooth in whole 
losed 
ylinder D. The reason

is that we 
an not insure ne
essary 
ompatibility 
onditions at Γ× {t = 0}.
Su
h 
onditions of the �rst order, for example, look like (we substitute ut
from the equation in the boundary 
onditions at t = 0)

N∑

i,j=1

∂

∂xi
(kij(x, 0)

∂ϕ

∂xj
)− b(x, 0)ϕ(x) +B[u](x, 0) + f(x, 0)+

+α(x, 0)ϕ(x) + β(x, 0)ϕ ◦ e = µ(x, 0).

This 
ondition dire
tly follows from the requirement of smoothness of the

solution up to Γ× {t = 0} . But it 
ontains nonlo
al operator B[u] and the

last 
an not be dire
tly 
al
ulated from the data. Thus, su
h 
ondition may

play a role of an additional 
ondition on the unknown solution. Generally,

su
h requirements may lead to some statements of inverse problems for (1)-

(3), see, for example, [2, 5, 20℄. We do not 
onsider this issue in the present

paper.
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Proof. First of all, due to Lemma 1 we 
an repla
e 
ondition (2) by Diri
hlet


ondition (14). Further, making the 
hange of the unknown fun
tion, u→ v,
u(x, t) = v(x, t) + ϕ(x) , we 
an redu
e the general situation to the 
ase

ϕ(x) ≡ 0. After su
h 
hange of the unknown the righthand side f in (1)

and θ in (14) are also 
hanged but their properties in (11) are preserved.

Moreover, due to the se
ond relation in (13), new boundary 
ondition θ(x, t)
will satisfy θ(x, 0) ≡ 0. Now we 
an extend the fun
tion θ(x, t) from ΓT to

the whole domain D (the way of su
h extension is des
ribed in, for example,

[27℄) up to the fun
tion Θ(x, t) of the 
lass Ck+2+γ,(k+2+γ)/2(D). If we make

one more 
hange of the unknown fun
tion, u→ v, u(x, t) = v(x, t) +Θ(x, t),
we redu
e the original problem to problem (1), (14), (3) with ϕ(x) ≡ 0 and

θ(x, t) ≡ 0.
We 
hoose q > N + 1 so big that a

ording to the Sovolev embedding

W 2,1
q (D) ⊂ W 1,1

q (D) ⊂ Cγ,γ/2(D) that is for a fun
tion u ∈ W 2,1
q (D) we have

|u|
(γ,γ/2)

D
≤ C ‖u‖

(2,1)
q,D . (32)

Denote further by W̃ 2,1
q (D) the proper subspa
e of W 2,1

q (D) whi
h 
onsists

of fun
tions that vanish at ΓT and at {t = 0} that is satisfy zero 
onditions

(14) and (3). We are going to apply the well known Fredholm theory for

operator equations so we 
onsider on W̃ 2,1
q (D) the equation

Lu− Bu = f, f ∈ Lq(D), u ∈ W̃ 2,1
q (D), (33)

where

Lu ≡
∂u

∂t
−

N∑

i,j=1

∂

∂xi
(kij(x, t)

∂u

∂xj
) + b(x, t)u(x, t), Bu ≡ B[u]. (34)

Note that the operator B[u] : W̃ 2,1
q (D) → Lq(D) is well de�ned. Really, from

\ (6) and (32) it follows that for u ∈ W̃ 2,1
q (D)

‖B[u]‖q,D ≤ |D|1/q|B[u]|
(0)

DT
≤ CB0|u|

(0)

D
≤ C ‖u‖

(2,1)
q,D ,

where |D| is the measure of D and ‖B[u]‖q,D denote the norm of B[u] in the

spa
e Lq(D). It is evident that equation (33) is exa
tly rewritten equation

(1) with the operator λB[u] instead of B[u] and the 
ondition u ∈ W̃ 2,1
q (D)

guarantees the ne
essary boundary and initial 
onditions.
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Re
all now that the embedding Cγ,γ/2(DT ) ⊂⊂ Lq(D) is 
ompa
t and on

the base of (32) and (29) we 
on
lude that the operator B[u] : W̃ 2,1
q (D) →

Cγ,γ/2(D) → Lq(D) is a 
ompa
t operator. Besides, the operator L is an

invertible operator as an operator L : W̃ 2,1
q (D) → Lq(D). This follows di-

re
tly from Theorem 9.1 in [27℄, where it is proved that for any f ∈ Lq(D)

the equation Lu = f has the unique solution u(x, t) ∈ W̃ 2,1
q (D) and

‖u‖
(2,1)
q,D ≤ C ‖f‖q,D . (35)

These two fa
ts mean that equation (33) is a Fredholm equation and it's

solvability and invertibility of the operator L−B are equivalent to the unique

solvability for f ≡ 0 of equation (33). Let us show that (33) has the zero

solution only for f ≡ 0.
Let some u ∈ W̃ 2,1

q (D) satisfy equation (33) with f ≡ 0. Write this

assumption as

Lu = B[u].

Sin
e in this 
ase u,B[u] ∈ Cγ,γ/2(D), we 
on
lude on the base of well known

lo
al estimates for paraboli
 equations (see [27℄) that the solution u is in

fa
t smooth inside D. Thus, the solution u satis�es all the 
onditions of

the 
omparison theorems 1-3. Applying now to equation (33) with f = 0
Theorem 3, we see that the solution u ≡ 0. This means that equation (33)

has the unique solution u ∈ W̃ 2,1
q (D) for any f ∈ Lq(D) and estimate (30) is

valid. Estimate (31) now follows from lo
al estimates for paraboli
 equations

(see [27℄) be
ause all the data of the problem are smooth. This 
ompletes

the proof of the theorem.

3 Appli
ation of straight-lines method

In this se
tion we investigate the appli
ation of straight-lines method for

�nding the solution of some parti
ular one-dimensional statement of problem

(1)-(3).

3.1 Problem statement and appli
ation of

straight-lines method

Let us formulate this one-dimensional problem.
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Let l, T > 0, m is a positive integer. It is required to �nd the 
ontinuous

in the 
losed domain D = {0 ≤ x ≤ l, 0 ≤ t ≤ T} fun
tion u(x, t) a

ording
to the 
onditions

∂u

∂t
=

∂

∂x
(k(x, t)

∂u

∂x
)− bu(x, t) +

m∑

k=1

bku(x, tk) + f(x, t), (x, t) ∈ D, (36)

∂u(0, t)

∂t
+ α1u(0, t) + β1u(l, t) = µ1(t), 0 ≤ t ≤ T, (37)

∂u(0, t)

∂t
+ α2u(0, t) + β2u(l, t) = µ2(t), 0 ≤ t ≤ T, (38)

u(x, 0) = ϕ(x), 0 ≤ x ≤ l. (39)

Here k(x, t) > 0, f(x, t), µ1(t), µ2(t), ϕ(x) are given 
ontinuous fun
tions,

k(x, t) is 
ontinuously di�erentiable with respe
t to x, b, bk, k = 1, 2, . . . , m,

α1, β1, α2, β2 are given 
onstants, t1, t2, . . . , tm ∈ (0, T ] are given �xed

points. To apply the straight-lines method we make the problem dis
rete

in x. Divide the interval [0, l] into N identi
al parts by the points xn = nh,
n = 0, 1, . . . , N , Nh = l, and 
onsider equation (36) on straight lines x = xn,
n = 1, . . . , N − 1. We asso
iate to problem (36)-(39) the following problem

for unknown fun
tions yn(t), n = 0, 1, . . . , N ,

dyn(t)

dt
=

1

h

[
k(xn+1, t) + k(xn, t)

2

yn+1(t)− yn(t)

h

−
k(xn, t) + k(xn−1, t)

2

yn(t)− yn−1(t)

h

]

+ byn(t) +

m∑

k=1

bkyn(tk) + fn(t),

n = 1, . . . , N − 1, 0 < t ≤ T,

(40)

dy0(t)

dt
+ α1y0(t) + β1yN(t) = µ1(t), 0 ≤ t ≤ T, (41)

dyN(t)

dt
+ α2y0(t) + β2yN(t) = µ2(t), 0 ≤ t ≤ T, (42)
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yn(0) = ϕ(xn), n = 0, 1, . . . , N. (43)

Here by yn(t) we denote the approximate value of the solution u(x, t) to

problem (36)-(39) on the straight line x = xn, fn(t) = f(xn, t). We show

below that problem (40)- (43) approximates original problem (36)-(39) to

within O(h2) provided that the solution of (36)-(39) u(x, t) and the 
oe�-


ient k(x, t) have in the domain D = {0 < x < l, 0 < t ≤ T} bounded partial

derivatives in the variable x up to fourth and third orders respe
tively. To

solve problem (40)-(43) it is �rst ne
essary to solve the problem

dy0(t)

dt
+ α1y0(t) + β1yN(t) = µ1(t), 0 ≤ t ≤ T, (44)

dyN(t)

dt
+ α2y0(t) + β2yN(t) = µ2(t), 0 ≤ t ≤ T, (45)

y0(0) = ϕ(0), yN(0) = ϕ(l). (46)

This is a Cau
hy problem for a linear system of ordinary di�erential equations

with 
onstant 
oe�
ients with respe
t to y0(t), yN(t). It is always possible
to �nd the exa
t solution to this problem. Let this solution be found. Then

taking into a

ount the expressions of the found solution y0(t) and yN(t), we

an rewrite (40), (43) in the following matrix form

dy(t)

dt
+ P (t)y(t) +

m∑

k=1

bky(tk) = f(t), 0 < t ≤ T,

y(0) = ϕ0,

where the unknown is y(t) = {y1(t), . . . , yN−1(t)}. This is a nonlo
al problem
for a linear system of ordinary di�erential equation. It 
an be solved by the

method des
ribed in [28℄ and we refer the reader to this paper.

3.2 Maximum prin
iple and some theorems following

from this prin
iple

Consider �rst problem (40)-(43) and prove the following theorem for the

solution of this problem.

By analogy to (5)-(7) we suppose that in (36)-(39) and in (40)-(43)
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bk ≥ 0, k = 1, . . . , m, b+
m∑

k=1

bk < 0,

β1, α2 ≤ 0, α1 + β1 > 0, α2 + β2 > 0.

(47)

Theorem 5. (Maximum prin
iple)

Let fun
tions yn(t), n = 0, 1, . . . , N , satisfy problem (40)-(43) and 
ondi-

tions (47) are ful�lled. If in (40)-(43) fn(t) ≤ 0 (fn(t) ≥ 0), n = 1, . . . , N−1,
0 ≤ t ≤ T , µ1(t) ≤ 0, µ2(t) ≤ 0 (µ1(t) ≥ 0, µ2(t) ≥ 0), 0 ≤ t ≤ T , then the

solution yn(t), n = 0, 1, . . . , N , 
an not attain the greatest positive (the least

negative) value in the interval (0, T ].

Proof. We prove only the �rst part of the theorem for the greatest positive

value. The rest part is 
ompletely analogous. We use the reasonings by


ontradi
tion and is analogous to the proof of Theorem 1. Let there exists

a point t0 ∈ (0, T ] wherein the solution of (40)-(43) a

epts the greatest

positive value for n = n0

yn0(t0) = max
0<t≤T,0≤n≤N

yn(t) =M > 0.

Let 0 < n < N . Consider equation (40) for n = n0 at the point t = t0.
Sin
e for all 0 ≤ n ≤ N we have yn(t0) ≤ yn0(t0), we infer, taking into

a

ount (47),

fn0(t0) =
dyn(t)

dt

−
1

h

[
k(xn0+1, t0) + k(xn0 , t0)

2

yn0+1(t0)− yn0(t0)

h

−
k(xn0 , t0) + k(xn0−1, t0)

2

yn0(t0)− yn0−1(t0)

h

]

− byn0(t0)−
m∑

k=1

bkyn0(tk)

≥ −byn0(t0)−
m∑

k=1

bkyn0(tk)

≥ −

(
b+

m∑

k=1

bk

)
yn0(t0) > 0.
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This 
ontradi
ts the 
ondition fn0(t0) ≤ 0.

Let now n0 = 0. Then, under 
onditions (47), we have from (41)

µ1(t0) =
dy0(t0)

dt
+ α1y0(t0) + β1yN(t0) ≥ (α1 + β1)y0(t0) > 0

and this 
ontradi
ts the assumption µ1(t) ≤ 0.

The situation with n0 = N is 
ompletely analogous. This proves the

theorem.

From this theorem we obtain in the standard way the following assertion.

Theorem 6. Let 
onditions (47) are ful�lled. Let the right sides of equations

(40) and boundary 
onditions (41), (42) satisfy the 
onditions

fn(t) ≤ 0 (fn(t) ≥ 0), n = 1, . . . , N − 1, 0 ≤ t ≤ T,

µ1(t) ≤ 0, µ2(t) ≤ 0 (µ1(t) ≥ 0, µ2(t) ≥ 0), 0 ≤ t ≤ T.

If yn(0) ≥ 0 (yn(0) ≤ 0), n = 0, 1, . . . , N , then yn(t) ≥ 0 (yn(t) ≤ 0),
n = 0, 1, . . . , N, 0 ≤ t ≤ T .

Corollary 1. Let 
onditions (47) be ful�lled. Then the homogeneous problem


orresponding to problem (40)-(43) have only the trivial solution yn(t) = 0,
n = 0, 1, . . . , N .

Theorem 7. Let yn(t), n = 0, 1, . . . , N , be a solution to problem (40)-(43)

and let ỹn(t), n = 0, 1, . . . , N , be a solution to the same problem but with

another 
orresponding data f̃n(t), n = 1, . . . , N − 1, µ̃1(t), µ̃2(t), ϕ̃(xn),
n = 0, 1, . . . , N , respe
tively. If

|fn(t)| ≤ f̃n(t), |µ1(t)| ≤ µ̃1(t), |µ2(t)| ≤ µ̃2(t), |ϕ(xn)| ≤ ϕ̃(xn),

then |yn(t)| ≤ ỹn(t), n = 0, 1, . . . , N , 0 ≤ t ≤ T .

For the proof of this theorem it is su�
ient to 
onsider fun
tions ỹn(t) +
yn(t) and ỹn(t)− yn(t) apply Theorem 5.
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3.3 Convergen
e of straight lines method

We now use the maximum prin
iple and in parti
ular the 
omparison theorem

to prove the 
onvergen
e of the solution of problem (40)-(43) to the solution

of problem (36)-(39). We assume that the exa
t solution u(x, t) has in D =
{0 < x < l, 0 < t ≤ T} bounded derivatives in x up to the fourth order and

the 
oe�
ient k(x, t) has in D bounded derivatives in x up to the third order

and we denote

K = sup
D

max{|k(x, t)|, |k′x(x, t)|, |k
′′
x(x, t)|, |k

′′′
x (x, t)|},

M = sup
D

max{|u′(x, t)|, |u′′x(x, t)|, |u
′′′
x (x, t)|, |u

IV
x (x, t)|},

(48)

Let u(xn, t) be the value of the exa
t solution of problem (36)-(39) on the

straight line x = xn and let yn(t), n = 0, 1, . . . , N , be the solution of problem

(40)-(43). Introdu
e the auxiliary fun
tion

zn(t) = yn(t)− u(xn, t), n = 0, 1, . . . , N, 0 ≤ t ≤ T.

For this fun
tion we get

dzn(t)

dt
=
1

h

[
k(xn+1, t) + k(xn, t)

2

zn+1(t)− zn(t)

h

−
k(xn, t) + k(xn−1, t)

2

zn(t)− zn−1(t)

h

]

+ bzn(t) +
m∑

k=1

bkzn(tk) + h2Rn(t),

n = 1, . . . , N − 1, 0 < t ≤ T,

(49)

dz0(t)

dt
+ α1z0(t) + β1zN(t) = 0, 0 < t ≤ T, (50)

dzN(t)

dt
+ α2z0(t) + β2zN(t) = 0, 0 < t ≤ T, (51)

zn(0) = 0, n = 0, . . . , N. (52)

It 
an be dire
tly veri�ed on the base of the Taylor formula that

|Rn(t)| ≤
2

3
KM,
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where K and M are from (48).

Denote for all n = 0, . . . , N the fun
tions

z̃n(t) = h2L
1− ebt

b1ebt1 + b2ebt2 + · · ·+ bmebtm − (b+ b1 + · · ·+ bm)
, 0 ≤ t ≤ T,

where L is a positive 
onstant and will be 
hosen later. Under 
onditions (47)

these fun
tions are nonnegative fun
tions. For them, we get after elementary


al
ulations

dz̃n(t)

dt
−

1

h

[
k(xn+1, t) + k(xn, t)

2

z̃n+1(t)− z̃n(t)

h

−
k(xn, t) + k(xn−1, t)

2

z̃n(t)− z̃n−1(t)

h

]

− bz̃n(t)−
m∑

k=1

bk z̃n(tk)

= h2L, n = 1, . . . , N − 1, 0 < t ≤ T.

(53)

On the other hand under 
onditions (47)

dz̃0(t)

dt
+ α1z̃0(t) + β1z̃N (t) ≥ 0, 0 < t ≤ T, (54)

dz̃N(t)

dt
+ α2z̃0(t) + β2z̃N (t) ≥ 0, 0 < t ≤ T,

z̃n(0) = 0, n = 0, . . . , N. (55)

Let L = 2
3
KM . Then, 
omparing problem (49)-(52) with problem (53)-(55),

we have from the 
omparison theorem

|zn(t)| ≤ z̃n(t), n = 0, . . . , N, 0 < t ≤ T

that is for all n = 0, . . . , N

max
n

|yn(t)− u(xn, t)| ≤

≤
h2L(1− ebt)

b1ebt1 + b2ebt2 + · · ·+ bmebtm − (b+ b1 + · · ·+ bm)

≤ Ch2, 0 < t ≤ T.

(56)

Thus the following theorem holds.
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Theorem 8. Let the 
oe�
ients of problem (36)-(39) satisfy 
onditions (47).

Then the solution of problem (40)-(43) 
onverges to the solution of problem

(36)-(39) and estimate (56) holds.

As a 
on
lusion we only mention again that problems of the (1)-(3) type

arise in di�erent mathemati
al models in various physi
al, �nan
ial, biolog-

i
al, so
ial and engineering appli
ations. Typi
ally, di�erent models on the

base of loaded equations arise in the situations when some data of the mod-

els are unavailable for measurements. Su
h data are usually fun
tions of the

unknown solution itself. We deal with su
h situations, for example, in the


ase of di�erent inverse problems and in the 
ase of free boundary problems

- see [1�26℄.
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