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Abstract

We consider a nonlocal problem with dynamic boundary conditions for a loaded
linear parabolic equation. For this problem we prove the unique solvability in
Sobolev’s spaces and the maximum principle under some natural conditions. We
suggest the numerical straight-lines method for the finding of the solution of the
problem. The convergence of the straight-lines method to the exact solution is also
proved.

Keywords: Nonlocal problem, loaded parabolic equation, dynamic boundary con-
dition, straight lines method, numerical solution, maximum principle, rate of con-
vergence.

1 Introduction

Let N > 1 be an integer, T > 0. Let © be a bounded domain in R" with
smooth boundary I' = 92 . Denote D =D =Q x [0,T], T+ =T x[0,T]. In
the domain D we consider the following initial - boundary value problem with
dynamic boundary conditions for the unknown function u(z,t), ((z,t) € D)
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ou

Ou — Z%(kzj(m,t)—)—b(x,t)u(x,t)—l—B[u]+f(x,t), (x,t) € D, (1)

% a.ij
Ju(x,t)
ot

+a(z, t)u(z,t) + Bz, t)uoe = p(x,t), (z,t) €'y, (2)

u(z,0) = p(z), =€ (3)

Here k;; = kij(x,t), b= b(x,t), f(x,t) , o = a(x,t), B = Bz, 1), u(x,t), p(z)
are given functions and we suppose the ellipticity condition with some v > 0

N
ve <Y ki&i& <vT'e% e RY, (4)
ij=1
b(z,t) >v >0, alz,t)+p(x,t)>v>0, P[z,t)<O0. (5)

The term B[u] in equation (1) represents a given bounded generally non-
local linear operator in the space of continuous functions C(D) with the
properties (By denotes the norm of B : C(D) — C(D))

1B[u]|Y < Bolu[', and Blu](z,t) > 0in D if u(z,t) > 0in D,  (6)

and for any positive constant a > 0

—b(x,t)a + Bla)(x,t) < 0in D, (7)
where b(x,t) is the coefficient from (1) and \u\(ﬁo) is the norm of u in C(D)
[uly) = max Ju(z,1)]
(z,t)eD

Note that due to linearity (7) is equivalent to

—b(x,t) + B[1](x,t) < —v < 0in D. (8)

Finally, u o e in boundary condition (2) means the composition of the
unknown function u(x,t) with some given diffeomorphism e(z) of the surface
I" onto itself, that is
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uoe=u(e(x),t), e(x):T —=T. 9)

It is worth noting that the linear operator Blu| may be a nonlocal operator,
for example,

Blu] = /G(x,t;y,T)u(y,T)dydT, G(z,t;y,7) >0in D x D
D
or, for example,

m

Blu] =Y bp(z,thu(z,t), t €[0,T],k=Tm. (10)
k=1

Nonlocal problems of the (1)- (3) type (sometimes in slightly different
but similar forms) arise in different mathematical models in various physical,
financial, biological, social and engineering applications. Without pretending
on a more less complete survey of such applications we mention, for example,
the papers [1-26|. In particular, equation (1) is loaded due to the presence
of the nonlocal term Blu] . Boundary condition (2) contains the highest
derivative u; and the nonlocal term w o e; therefore, it is dynamical and
nonlocal at the same time. Note that the term w o e is an analogue of
the Bitsadze- Samarskii conditions (the Bitsadze-Samarskii conditions use
a diffeomorphism e of the boundary I' onto some surface S which may not
coincide with I'). It is worth noting that the investigations of problems with
dynamic boundary conditions is an active direction in the present theory
of PDE including numerical approaches to such problems. However, the
author is not aware of results regarding correctness of problems of the (1)-
(3) type where a loaded equation has nonlocal dynamic boundary conditions
or of respective numerical approaches. The numerical solutions of problems
for loaded parabolic equations are covered in, for example, the papers [1-
3,5,6,16,20,25]. In particular, the paper [5] also discusses the application
of the straight-line method to a different problem with a loaded parabolic
equation. However, we consider the case of dynamic boundary conditions
and prove the convergence of the straight-lines method.

The purpose of the present paper is twofold. In the next section 2 we first
prove the unique solvability of problem (1)-(3) in Sobolev spaces W>'(D) by
the Fredholm theory and we prove a comparison principle for the problem.
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It is worth noting that without conditions (5), (7) this Fredholm problem is
incorrect in general (the more in the spaces of smooth functions) and may
cause some inverse problems - see Remark 1. Main results of section 2 are
presented in theorems 1- 4 below. Second, in the last section 3 we investigate
the application of the straight-lines method in solving the one-dimensional
setting of problem (1)-(3). Here we prove the convergence of this method to
the exact solution and the main results are formulated in theorems 5-8.

In what follows we denote by the same symbols C or v all absolute con-
stants or constants depending only on fixed given data of the problem.

2 Correctness of problem (1)-(3) in spaces W2'(D).

Let v € (0,1) and let k£ be a nonnegative integer. We use the standard
anisotropic Holder spaces C’kﬂ’%(ﬁ) of functions u(x,t) in D with the
smoothness in the z-variables up to the order £+~ and with the smoothness
in the t-variable up | to the order (k++)/2. And we use also the Holder spaces
C*(Q) and Chr (FT) in Q and on I'r. Such spaces are sometimes desig-
nated also as H*+7"5 *(D), H**(Q), and HH 5 *(I'r) and thelr deﬁnltlons

can be found in [27], for example. The norm in the spaces olanle *(D) and
C*(Q) are denoted by

’ ’(k‘f'% )

k —
=l o gz gy Nulg™” = Nl

For ¢ > N =1 we use the standard anisotropic Sobolev space qul(D)
of functions w(z,t) in D with the standard norm

N N q
2,1)
) = lulwzoo = | [ (\ut\q+2|uw+2|umj|q+\u\q> dadt| .

b i=1 i,j=1

About the data of problem (1)-(3) we assume the following. Let the

boundary I of the domain  be a surface of the class Ck+2+7=57 (see [27])
and let

kt2ty

f(z,t) € kit (D), p(x,t) e CHHr (),
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o(x) € C**(Q), e(z) € CF(D), (11)

Etldy —

kij(z,t) € CF ST (D), ba,t) € O (D),

k424~

alz,t), Bz, t) € CF2H—2(Ty). (12)

Before we turn to the comparison and existence - uniqueness theorems
we now discuss dynamic boundary condition (2).

Lemma 1. Let conditions (11), (12) be satisfied. Then there exists the unique

E+2+~y

function 0(x,t) € C*22=5—(I'z) with

(kt2+,24547) (kt2+,24547) k42
o2 so(ww D o820 (. 0) = oa)r

(13)
and condition (2) is equivalent to the Dirichlet condition
(e, )y = 0z, 1) (14
Proof. Integrate condition (2) in ¢ and write it in the form (z € T
t t
u(z,t) = <—/ alz, T)u(z, 7)dr — / Bz, T)u(e(a:),T)dT>
0 0 (15)

- < /Ot p(z, T)dr + @(I)) = Alu] + bo.

Since coefficients « and 3 are smooth and since the change of variables
x — e(x) is also smooth we see that

kt2+ kt24y
Afu] ST < o T (16)
Analogously,
(k+2+, 2247 (k24,2247 k24
Oolp, 2 < Tl 4 S (17)

Let first 7" be so small that we have CT" < 1/2in (16). Then the operator
Alu] is a contraction on C*+ s (I'r) and the equation v = Afu] + 6
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from (15) has the unique solution 6(z,t) € CH”%%(

(k24,2541 (k24,5454

to 6 = (I — A)~'0,. Besides, |6]\" "< 1l *) and thus
the first relation in (13) follows from (17). The second relation in (13) follows
by construction from (15). Now if with this 6 condition (14) is satisfied by
some function u(x,t), then, by the construction of 6, u(x,t) satisfies (15).
Differentiating this relation in ¢, we arrive at (2). Thus the lemma is proved
for a sufficiently small 7" > 0.

Let now T > 0 be arbitrary. We can choose sufficiently small 0 < 7T < T’
so that C'Ty < 1/2 in (16) and consider first the part I'y of I'p, I'yy C Iy
As it is shown, we can find the corresponding function 6(z,t) on the time
interval [0,75]. Then we consider the time interval [Ty/2,37,/2] (of length
Ty) and the corresponding surface I' x [Ty/2,3T,/2] C T'r. Starting from
the initial value of time T/2 we repeat our reasonings and obtain 6 as the
solution of (15) (with T;/2 instead of 0) on the interval [T/2, 3T, /2]. Moving
now up to the t-axis by steps of length T, /2, we obtain the desired function
O(z,t) on whole interval [0, 7. This proves the lemma. O

I'r) which is equal

We proceed with a maximum and a comparison principles for the prob-
lems (1)-(3) or (1), (14), (3).

Theorem 1. Let conditions (4)-(7), (11), (12) be satisfied. Let also

flz,t) <0in D, p(x,t) <0 (orf(x,t) <0)onlr, ¢(x)<0in.
(18)
Let u(x,t) be a solution to (1)- (3) from the space C(D) and it’s derivatives
in x up to the second order are continuous in the open domain D and the
derivative uy s continuous in the open domain D including I'r.

Then u(z,t) <0 in D.

Proof. The simple proof is based on standard for the maximum principle
arguments by contradiction. We consider only boundary condition (2) since
the difference for simpler condition (14) is evident.

Let there are points in D, where u(x,t) is positive. Since u(xz,t) € C(D),
there exists (z¢,to) € D, where u(z,t) attains it’s positive maximum over
D. This can not happen at the bottom Q x {0} of D because of the last
condition in (18). This is also not possible for points on I'r since at such
point must be w;(zg,%) > 0 and

8u(a:0, to)

at + Oé(l'(), to)u(xo, t()) + B(Io, to)u(e(l'o), to) Z
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> [a(zo, to) + B(xo, to)] u(xo, to) > 0,

since u(wg, to) > ule(xo),to), B(xo,t0) < 0, and [a(xg,to) + (0, to)] > O.
But this contradicts to the second condition in (18).

Analogously, let (z¢,ty) be an inner point of D. Consider the right hand
side of equation (1) at this point. We have

Z%(kﬁij(mo,to)%) — b(zo, to)u(wo, to) + Blu)(zo, to) + f(z0,t0) =

=1 "" J

—(1‘0, t0)+

. i\[:k(x " )82U($0,t0) N 8kij(x0,t0) ou
N A 50 8@33:] hy 33:2 8373-

+ {—=b(z0, to)u(zo, to) + Blu(zo, to)](x0, to) } +Blu—u(xg, to)]|(zo, to)+ f (z0o, to)

E[1+[2+13+I4+[5. (19)

The term /; < 0 since at the maximum point (zg, ty) the matrix of the second

82u(xo,t())

derivatives { SO } is negatively defined. The second term I, contains the
10Tj

first derivatives and so it vanishes at the maximum point. The term I3 < 0 is
strictly negative because of (7) with a = u(zo, t). Since u(z,t)—u(xg,ty) <0
and due to the second condition in (6) the term I, < 0 is nonpositive and also
I5s = f(x,to) < 0. Thus, the right hand side of equation (1) at this point is
strictly negative. But on the other hand the left hand side of equation (1)
at this point must be nonnegative u;(xg,%o) > 0. This contradiction finishes
the proof of the theorem. O

As a corollary we have the following comparison theorem.

Theorem 2. Let under the conditions of Theorem 1 w;(x,t) , i = 1,2 be
solutions to problem (1)-(3) (or (1), (14), (3)) with data fi(z,t), pi(z,t)
(0i(x,t)), pi(z) ,i=1,2, correspondingly. If

fl(xvt) < f2(x7t)7 :U'l(xvt) < MQ(x7t) (01(I7t) < 02(I7t))7 @l(x) < 902(x)7

then uy(z,t) < ug(x,t).
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The proof directly follows from the previous theorem if we note that the
difference wuy(z,t) — us(x,t) is a solution to linear problem (1)-(3) (or (1),
(14), (3)) with the corresponding data.

. . : 0
Now we give some estimate for the maximum modulus norm \u\%) of a
solution.

Theorem 3. Under the conditions of Theorem 1

[wl < C (115 + 1l + 1019) (20)
for problem (1)-(3) or

0 0 0 0
Wl < ¢ (171 +101% + L)) (21)

for problem (1), (14), (3), where the constants C' do not depend on f, p, 0,
p.
Proof. We consider only (20) since (21) is completely analogous and more
simple.

Consider the function F(z,t) = K(R—12?), where K = ]f\(ﬁo)—l—\u](r(z—i—\gp\(ﬁo)
and the constant R > 0 is sufficiently large and will be chosen later. Note
that since Q is bounded there exists r > 0 with z? < r for (z,t) € D and

consequently F(z,t) > K(R —r) > 0 if we choose big R. Moreover, for any
e € (0,1/2) we can choose R = R(r) so large that

R—1r>(1—-¢)R and so F(z,t) > K(1—¢)R. (22)

Let u(z,t) be a solution to (1)-(3). Denote the difference v(z,t) =

u(z,t) — F(x,t). Since problem (1)-(3) is linear, it is directly verified that

the function v(z,t) satisfies problem (1)- (3) with f, fi, and @ instead of f,
i, and ¢, where

Bw) = plw) — K(R— o), (23)
M(I7t) = M(x7t) - [OéF(ZL‘, t) + BF(e(x),t)] ) (24)
Flaut) = 305w )50) =W OF.0) + BIF) + f(a1). (29
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For the function @(x) we have

P(x) < p(z) — [Pl R/2 < |p|@1 ~ R/2) <0, (26)

if R = R(r) is sufficiently large. Considering fi(x,t) and taking into account
(5), we see that

le,1) < ple,t) = K [o(R—22) + B(R - efa)?)] <

0 0 0
< |pli) = K(a+ B)R+rK(jalf) +]8]()) <

< |ul® {1 = vR+ (1ol + 18I0 } <0 (27)

if R = R(r,a, ) is chosen sufficiently large.
Further, for the first term in f(z,t) we have

Za §£> - _QKZaxz ki@, t) - 1) < KC(kyy)r.

i,7=1 i,7=1

Consequently, taking into account (8),

fz,t) < KC(kyj)r + K {=b(R — 2*) + B[R — 2%} + f =
= KC(kij)r + KR{=b(z,t) + B[1]} + br — Blz*] + f <
< —K{vR — C(kij,b, B,r)}+f < [fI9 {1 + C(kij, b, B,r) — vR} < 0 (28)

if R = R(ki;,b, B,r) is chosen sufficiently large.

Thus, taking R = R(k;;,b, B, a, 3,) sufficiently large, we obtain (26)-
(28). On the base of Theorem 1 we conclude that v(z,t) = u(x,t)— F(x,t) <
0 in D, that is

u(z,t) < F(z,t) < Ok, b, B, o, B, Q)| 19 + &) + 0] 9).

Considering now in absolutely the same way the function —u(z, t) instead
of u(x,t), we obtain for this function exactly the above inequality as well.
This means (20) and completes the proof of the theorem. O

Formulate now the existence - uniqueness theorem.
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Theorem 4. Let conditions (4), (11), (12), (6), (8) be satisfied. Let in
addition the operator Blu] satisfy

k+~

Then problem (1)-(3) has the unique solution u(x,t) € W2'(D)NC*/*(D)
and

: (62 (67 2+
%)+ 10l < 0 (1193 + ™+ 108), (30)

where the constant C' does not depend on f, u, . Moreover, for any subdo-

main D' of domain D with D' C D the solution u(x,t) belongs to the class
Ck+2+'y,(k+2+'y)/2(D/) and

(k+2+ (k+ (k424,242 +7) k+2
e e <|f| ) | e |so|§2++”), (31)

where the constant Cp: does not depend on f, u, p.

Remark 1. Although all the data of the problem are smooth, the solution of
the problem is not generally smooth in whole closed cylinder D. The reason
is that we can not insure necessary compatibility conditions at I' x {t = 0}.
Such conditions of the first order, for example, look like (we substitute u,
from the equation in the boundary conditions at t =0)

Zaxz @052 = b 0)ole) + Bl (2.0 + S0+

—f-Oé(.’L‘, O)QO(.T) + B(x7 0)90 ce= M(xv O)

This condition directly follows from the requirement of smoothness of the
solution up to I' x {t = 0} . But it contains nonlocal operator Blu] and the
last can not be directly calculated from the data. Thus, such condition may
play a role of an additional condition on the unknown solution. Generally,
such requirements may lead to some statements of inverse problems for (1)-
(3), see, for example, [2,5,20]. We do not consider this issue in the present

paper.
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Proof. First of all, due to Lemma 1 we can replace condition (2) by Dirichlet
condition (14). Further, making the change of the unknown function, u — v,
u(z,t) = v(z,t) + p(z) , we can reduce the general situation to the case
o(x) = 0. After such change of the unknown the righthand side f in (1)
and 0 in (14) are also changed but their properties in (11) are preserved.
Moreover, due to the second relation in (13), new boundary condition 6(z,t)
will satisfy 6(x,0) = 0. Now we can extend the function 0(x,t) from I'r to
the whole domain D (the way of such extension is described in, for example,
[27]) up to the function ©(x,t) of the class CFT2+7(*+2+9/2( D). If we make
one more change of the unknown function, u — v, u(z,t) = v(z,t) + O(x, t),
we reduce the original problem to problem (1), (14), (3) with ¢(z) = 0 and
O(z,t) = 0.

We choose ¢ > N + 1 so big that according to the Sovolev embedding
W2Y(D) c W}(D) c C"/2(D) that is for a function u € W2'(D) we have

/2 2,1
|97 < O )% (32)

Denote further by Wf’l(D) the proper subspace of W>»'(D) which consists
of functions that vanish at I'r and at {t = 0} that is satisfy zero conditions
(14) and (3). We are going to apply the well known Fredholm theory for
operator equations so we consider on Wf’l(D) the equation

Lu—Bu=f, fé&LyD), ueW2>Y(D), (33)
where
o = D du
Lu= yri Zgla—%(kw(x’ t)a—x]) + b(x, t)u(z,t), Bu= Blu]. (34)

Note that the operator Blu] : Wqﬂ(D) — Ly(D) is well defined. Really, from
\ (6) and (32) it follows that for u € /qu(D)

0 0 2.1
| Blulll,p < |D|1/q\B[u]|(5)T < CBolulY < O [|u]%),

where D] is the measure of D and || Blu]||, , denote the norm of B[u] in the
space Ly(D). It is evident that equation (33) is exactly rewritten equation
(1) with the operator AB[u] instead of B[u] and the condition u € Wf’l(D)
guarantees the necessary boundary and initial conditions.
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Recall now that the embedding C7"/2(Dy) CC L,(D) is compact and on
the base of (32) and (29) we conclude that the operator Blu] : Wj’l(D) —
C7/%(D) — L,(D) is a compact operator. Besides, the operator L is an
invertible operator as an operator L : Wf’l(D) — Ly(D). This follows di-
rectly from Theorem 9.1 in [27], where it is proved that for any f € L,(D)
the equation Lu = f has the unique solution u(x,t) € /V[V/(f’l(D) and

2,1
lull® < Clfll,p- (35)

These two facts mean that equation (33) is a Fredholm equation and it’s
solvability and invertibility of the operator L — B are equivalent to the unique
solvability for f = 0 of equation (33). Let us show that (33) has the zero
solution only for f = 0.
Let some u € W2'(D) satisfy equation (33) with f = 0. Write this
assumption as
Lu = Blul.

Since in this case u, B[u] € C"/2(D), we conclude on the base of well known
local estimates for parabolic equations (see [27|) that the solution w is in
fact smooth inside D. Thus, the solution u satisfies all the conditions of
the comparison theorems 1-3. Applying now to equation (33) with f = 0
Theorem 3, we see that the solution v = 0. This means that equation (33)
has the unique solution u € Wj’l(D) for any f € L,(D) and estimate (30) is
valid. Estimate (31) now follows from local estimates for parabolic equations
(see [27]) because all the data of the problem are smooth. This completes
the proof of the theorem. O

3 Application of straight-lines method

In this section we investigate the application of straight-lines method for
finding the solution of some particular one-dimensional statement of problem

(1)-(3).

3.1 Problem statement and application of
straight-lines method

Let us formulate this one-dimensional problem.
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Let [, > 0, m is a positive integer. It is required to find the continuous
in the closed domain D = {0 <2 <[,0 <t < T} function u(z,t) according
to the conditions

2_1: = é%(k(x,t)%) — bu(z,t) + ibku(a:,tk) + fx,t), (1) €D, (36)
a%%w+am@w+ﬁm@ﬂ=udm 0<t<T, (37)

‘9“(82’ D & ogu(0,8) + fou(l.t) = mo(t), 0<t<T, (38)

w(@,0) = p(z), 0<z<l (39)

Here k(x,t) > 0, f(x,t), p(t), pa(t), ¢(x) are given continuous functions,
k(x,t) is continuously differentiable with respect to z, b, by, k =1,2,...,m,
aq, P, ag, [ are given constants, tq,ts,...,t, € (0,T] are given fixed
points. To apply the straight-lines method we make the problem discrete
in z. Divide the interval [0,[] into N identical parts by the points z,, = nh,
n=20,1,..., N, Nh =1, and consider equation (36) on straight lines x = z,,,
n=1,...,N —1. We associate to problem (36)-(39) the following problem
for unknown functions y,(t), n =0,1,..., N,

dyn(t) l {k(xn-i-l? t) + k‘(%m t) yn-i-l(t) - yn(t)
dt h

- 2 h
k(‘xm t) + k(xn—la t) yn(t) B yn—l(t)
2 h (40)
+ byn(t) + Z bkyn(tk) + fn(t)a

k=1
n=1,....N—1, 0<t<T,

dyo(t)
dt
dyn(t)

7 + Oégy()(t) -+ ﬁgyN(t) = HQ(t), 0 S t S T, (42)

+ Oélyo(t) + 513/]\7(15) = ,ul(t), 0<t< T, (41)
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yn(0) = p(z,), m=0,1,..., N. (43)

Here by y,(t) we denote the approximate value of the solution u(x,t) to
problem (36)-(39) on the straight line x = x,, f.(t) = f(z,,t). We show
below that problem (40)- (43) approximates original problem (36)-(39) to
within O(h?) provided that the solution of (36)-(39) u(z,t) and the coeffi-
cient k(z,t) have in the domain D = {0 < z < [,0 < t < T} bounded partial
derivatives in the variable x up to fourth and third orders respectively. To
solve problem (40)-(43) it is first necessary to solve the problem

dy;it) + aryo(t) + Biyn(t) = pa(t), 0<t<T, (44)
dyst(t) + agyo(t) + Bayn(t) = pa(t), 0<t<T, (45)

y0(0) = ©(0),  yn(0) = o(l). (46)

This is a Cauchy problem for a linear system of ordinary differential equations
with constant coefficients with respect to yo(t), yn(t). It is always possible
to find the exact solution to this problem. Let this solution be found. Then
taking into account the expressions of the found solution yo(t) and yy(t), we
can rewrite (40), (43) in the following matrix form

dz;—(tt) + P(t)y(t) + ; bey(te) = f(1), 0<t<T,
y(0) = o,

where the unknown is y(¢) = {y1(¢),...,yn_1(t)}. This is a nonlocal problem
for a linear system of ordinary differential equation. It can be solved by the
method described in [28] and we refer the reader to this paper.

3.2 Maximum principle and some theorems following
from this principle
Consider first problem (40)-(43) and prove the following theorem for the

solution of this problem.
By analogy to (5)-(7) we suppose that in (36)-(39) and in (40)-(43)
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(47)
Blaa2§07 a1+ﬁl>0, 042+62>0.

Theorem 5. (Mazimum principle)

Let functions y,(t),n =0,1,..., N, satisfy problem (40)-(43) and condi-
tions (47) are fulfilled. If in (40)-(43) f.(t) <0 (f.(t)>0),n=1,...,N—1,
0<t<T, u(t) <0, pa(t) <0 (u1(t) >0, pa(t) >0), 0 <t <T, then the
solution y,(t),n = 0,1,..., N, can not attain the greatest positive (the least
negative) value in the interval (0,T].

Proof. We prove only the first part of the theorem for the greatest positive
value. The rest part is completely analogous. We use the reasonings by
contradiction and is analogous to the proof of Theorem 1. Let there exists
a point ty € (0,7] wherein the solution of (40)-(43) accepts the greatest
positive value for n = ng

Yno(to) = | max _ ya(t) = M > 0.

Let 0 < n < N. Consider equation (40) for n = ny at the point t = .
Since for all 0 < n < N we have y,(ty) < yn,(to), we infer, taking into
account (47),

dyn (1)
no(lo) =
f 0( 0) dt
1 k(2ng11,t0) + K(Tng, to) Ynet1(to) — Yn,(to)
h 2 h
i k(xnm tO) + k(xnofla tO) Yno (tO) - ynofl(tO)
2 h

- byno (tO) - Z bkyno (tk>
k=1
Z _byno (tO) - Z bkyno (tk>
k=1

- (b + zm: bk) Yno (to) > 0.

k=1

v
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This contradicts the condition f,,(ty) < 0.

Let now ng = 0. Then, under conditions (47), we have from (41)

alto) = dy(zl(tt()) + aryo(to) + Bryn(to) > (a1 + Br)yo(to) > 0

and this contradicts the assumption g (t) < 0.
The situation with ny = N is completely analogous. This proves the
theorem. O

From this theorem we obtain in the standard way the following assertion.

Theorem 6. Let conditions (47) are fulfilled. Let the right sides of equations
(40) and boundary conditions (41), (42) satisfy the conditions

Corollary 1. Let conditions (47) be fulfilled. Then the homogeneous problem
corresponding to problem (40)-(43) have only the trivial solution y,(t) = 0,
n=0,1,...,N.

Theorem 7. Let y,(t), n =0,1,..., N, be a solution to problem (40)-(43)
and let y,(t), n = 0,1,..., N, be a solution to the same problem but with
another corresponding data ]?n(t), n=1...,N =1, ui(t), p2(t), o(z,),
n=20,1,..., N, respectively. If

FaO] < fal®)s T < (), pe®)] < flt),  lo(ra)l < Bla),
then |yn(t)] < yn(t), n=0,1,...,N,0<t<T.

For the proof of this theorem it is sufficient to consider functions ¥, (t) +
Yn(t) and y,(t) — y,(t) apply Theorem 5.
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3.3 Convergence of straight lines method

We now use the maximum principle and in particular the comparison theorem
to prove the convergence of the solution of problem (40)-(43) to the solution
of problem (36)-(39). We assume that the exact solution u(z,t) has in D =
{0 <z <1,0<t<T} bounded derivatives in x up to the fourth order and
the coefficient k(x,t) has in D bounded derivatives in x up to the third order
and we denote
K = supmax{|k(z, t)], [k (x, )], |k (2, )], [k (2, )]},
N (48)

M = sup max{|u'(z, 0)] [u;(z, )], [u (2, )], [ug" (2, )]},
D

Let u(z,,t) be the value of the exact solution of problem (36)-(39) on the
straight line x = x,, and let y,,(¢), n = 0, 1,..., N, be the solution of problem
(40)-(43). Introduce the auxiliary function

Zn(t) = yp(t) — u(zp,t), n=0,1,...,N,0<t<T.
For this function we get
dzn(t) _1[k(@pi1,t) + k(@n, 1) 2041 (t) — 2a(t)
2 h
k(xn,t) + k(zp_1,t) 2,(t) — 2,-1(t)
2 h (49)
+bza(t) + > brza(te) + W2 Ra(1),

k=1
n=1,... N—1, 0<t<T,

dt h

dz(t
ZdO—t() + 06120(t) + 512]\[@) =0, 0<t<L T, (50)
dzy(t
th( ) + OégZo(t) + 622]\[@) = O, 0<t< T, (51)
2,(0)=0, n=0,...,N. (52)
It can be directly verified on the base of the Taylor formula that
2

IR, (1) < gKM,
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where K and M are from (48).
Denote for all n = 0,..., N the functions

1_ebt
Z,(t) = hL ., 0<t<T,
(1) breb + byebt2 + - - 4 byebtm — (b + by + - - - + byy) -

where L is a positive constant and will be chosen later. Under conditions (47)
these functions are nonnegative functions. For them, we get after elementary

calculations
dz,(t) 1 [k(an, t) + k(Tn, t) Zng1(t) — Za(t)
dt h 2 h
b 1) + B, 1) F(t) — T ()
2 h (53)

— b2, (1) = ) bz (t)
k=1
=h*L, n=1,....N—-1, 0<t<T.

On the other hand under conditions (47)

dzo(t - -
Zgi ) +az(t) + fizn(t) >0, 0<t<T, (54)
dzy(t - -
th( ) + aZo(t) + Pozn(t) >0, 0<t<T,
(55)

Z,(0) =0, n=0,...,N.
Let L = 2K M. Then, comparing problem (49)-(52) with problem (53)-(55),
we have from the comparison theorem
lzo(t)] < Z,(t), n=0,...,N,0<t<T

that is for alln =0,..., N
max ’yn(t) o u(xn, t)’ <

2 bt
= byebtht 4+ byebte 4 4 byyebtm — (b+ by + -+ by)

<Ch*, 0<t<T.

Thus the following theorem holds.
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Theorem 8. Let the coefficients of problem (36)-(39) satisfy conditions (47).
Then the solution of problem (40)-(43) converges to the solution of problem
(36)-(39) and estimate (56) holds.

As a conclusion we only mention again that problems of the (1)-(3) type
arise in different mathematical models in various physical, financial, biolog-
ical, social and engineering applications. Typically, different models on the
base of loaded equations arise in the situations when some data of the mod-
els are unavailable for measurements. Such data are usually functions of the
unknown solution itself. We deal with such situations, for example, in the
case of different inverse problems and in the case of free boundary problems
- see [1-26].
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