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Abstract

In this paper, we introduced a new flexible extension of the Generalized Half-
Normal lifetime model as well as a new log-location regression model based on
the proposed model. Some useful characterization results are presented and some
mathematical properties are derived. The maximum likelihood method is used
to estimate the model parameters by means of a graphical Monte Carlo simula-
tion study. We show that the new log-location regression lifetime model can be
very useful in analysing real data and provide more realistic fits than other re-
gression models. Index plot of the modified deviance residual and Q-Q plot for
modified deviance residual are presented to illustrate that our new model is more
appropriate to HIV data set than other competitive models like log-odd log-logistic
generalized half-normal regression model and log-generalized half-normal regression
model. The sensitivity analysis is used via the index plot of generalized cook dis-
tance to discover the possible influential observations.
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1 Introduction

The Generalized Half-Normal (GHN) density function (Cooray and Ananda
[1]) with shape parameter A > 0 and scale parameter 6 > 0 is given by (for
x> 0)

g(z; A, 0) = \/%(A/x) (2/6)" exp {—% (x/e)”] :

The corresponding cumulative distribution function (cdf) depends on the
error function

G(z: ), 0) = {2@ [(x/e)ﬂ - 1} —erf [(x/e)k/\/ﬂ , (1)
where

P (x) = % [1+erf <x/\/§>] ,

and

2 v 9
erf(z) = ﬁ/o exp(—t7)dt.

Its nth moment is given by (Cooray and Ananda, 2008) as

E(X™) =T (n+ A\/2)\) 9"\/7,

where T (.) is the gamma function. The Half-Normal (HN) distribution is a
sub-model when A = 1.

The goal of this paper is to propose the first generalization of the general-
ized half-normal distribution using the BurrX-G (“BrX-G” for short) family
of distributions. For an arbitrary baseline cdf G(x), Yousof et al. [2] proposed
the probability density function (pdf) f(z) and the cdf F'(z) of the BrX-G
family of distributions with an additional shape parameter 6 > 0 defined (for

x > 0) by
F(z:6,§) = (1—exp{— {gg’g] }) : (2)

N
ﬁ‘w:
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The BrX-G density function is

G(z:6)]? a1\

x; x;

X exp —{— : ] 1 —exp —{_ ’ ] ,
G(z;€) G(x;€)

where 0 > 0 is the shape parameter and & = & = ( &1, &, ...) is a parameter

vector. Based on the BrX-G family, we construct a new GHN distribution and

provide a comprehensive description of some of its mathematical properties.

We prove empirically that the BrXGHN model provides better fits than other

competitive models, each one having the same number of parameters, by

means of two applications to real data. We hope that the new distribution

will attract wider applications in reliability, engineering and other areas of
research. Inserting (1) into (2) we get

20 [(x/@))‘} 1 ’
F(z;0,\,0)= |1 —exp | — N [(x/e))\] ,x > 0. (3)

The corresponding pdf can be expressed as

f(x;6,,0) =25A9‘A\/gxk‘1exp {—% (%)ﬂ {2@ [(x/@))‘} - 1}
2 [(x/6)] -1 i
2 20 [(x/e)A] n

X {2 ~ 2% [(x/e)ﬂ }_3 exp | —

A;
" 5—1
20 [(x/@))‘} 1
X |1—exp | — yx > 0.

220 [(x /M

The justification for the practicality of the BrXGHN lifetime model is
based on the fatigue crack growth under variable stress or cyclic load. Also
we are motivated to introduce the BrXGHN lifetime model because it exhibits
increasing as well as bathtub hazard rates as illustrated in Figure 2. It is
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shown in Subsection 3.1 that the BrXGHN lifetime model can be viewed as a
mixture of the two-parameter GHN distributions introduced by Cooray and
Ananda (2008). It can be viewed as a suitable model for fitting the unimodal
data. The BrXGHN lifetime model outperforms several of the well-known
lifetime distributions with respect to two real data applications as illustrated
in Section 6. The new log-location regression model based on the BrXGHN
distribution provides better fits than the log-odd log-logistic generalized half-
normal and log-generalized half-normal regression models for HIV data set.

Many extension of the GHN model can be cited as follows: the beta gen-
eralized half-Normal distribution with applications to myelogenous leukemia
data by Pescim et al. [3], Kumaraswamy generalized half-normal distribu-
tion for censored data by Cordeiro et al. [4], a log-linear regression model
based on the beta generalized half-Normal distribution by Pescim et al. [5],
the beta generalized half normal geometric distribution by Ramires et al.
[6]. Merovci et al. |[7] defined and applied the exponentiated transmuted
generalized half-normal for a data set of the life of fatigue fracture of Kevlar
373/epoxy that are subject to constant pressure at the 90% stress level until
all had failed.

The rest of the paper is organized as follows. Section 2 deals with some
useful characterization results of the proposed model. In Section 3, we de-
rived some of its mathematical properties. In Section 4, the maximum likeli-
hood method is used to estimate the model parameters by means of a Monte
Carlo simulation study. A new log-location regression model as well as resid-
ual analysis are presented in Section 5. Section 6 is devoted to applications to
real data sets to prove empirically the importance of new the model. Finally,
some conclusions and future work are given in Section 7.

2 Characterizations

This section deals with certain characterizations of BrXGHN distribution.
These characterizations are in terms of: (i) the truncated moment involving
two functions; (i7) a simple relationship between two truncated moments;
(7ii) the hazard function and (iv) certain function of the random variable.
One of the advantages of characterization (i7) is that the cdf is not required
to have a closed form. We present our characterizations (i) — (iv) in four
subsections.



87 Altun, Yousof, Hamedani

2.1 Characterizations based on truncated moment
involving two functions

Our first characterization is based on the following Proposition.

Proposition 1. Let X : Q2 — R be a continuous random variable with cdf
F . Let ¢( ) and ¢ (z) be two differentiable functions on R such that

foo [so(t dt oo. Then

Elp(X) | X za]=¢(r), zeR,

=1—ex T T
P =t1-eo(~ [ palime) e®
Proof. f E[Y(X) | X >x]=¢(z), x € R holds, then

implies

[ @ rwdi=a-Fa)e).
Differentiating both sides of the above equation and rearranging the terms,
we arrive at .
flo) ()

z € R.

= F(@) g -0

Integrating the last equation with respect tot from —oo to x , we have

C [l — F(2) :/gg A R

from which we obtain

e =t-en{- [ Oal

Remark 1. For 6 =1,v¢ (z) =2¢(x), ¢ (x) :exp{— ({%} >}

, x>0 and the fact that lim,_,o+ ¢ (x) = 1, we have
@[ (2/0)] -

F(x)=1—exp | — 2_2@[(35/9))‘} , x>0,

which is cdf (3) for 6 = 1.



Flexible extension of the generalized half-normal lifetime model 88

2.2 Characterizations based on a simple relationship
between two truncated moments

In this subsection we present characterizations of BrXGHN distribution in
terms of the ratio of two truncated moments. This characterization result
employs a theorem due to Glanzel [8], see Theorem 1 of Appendix A. Note
that the result holds also when the interval H is not closed. Moreover, as
mentioned above, it could also be applied when the cdf F' does not have a
closed form. As shown in Glanzel |9], this characterization is stable in the
sense of weak convergence.

Proposition 2. Let X : Q — (0,00) be a continuous random variable and

let
1-6

20 [(x/@))‘] 1
2 20 [(x/e)ﬂ

G (x)=|1l—exp|—

and
20 [(x/e)*} 1
220 [(x /9)A]

for x > 0. The random variable X has pdf (4) if and only if the function n
defined in Theorem 1 has the form

¢ (x) =exp | —

1 BE [@/9%]-1 »
1) =g e 22 [(x/@)’\} T

Proof. Let X be a random variable with pdf (4), then

20 [(x/e)*} 1
(1—F@)Elqg(X) | X>z]=exp | — , x>0,

2 20 [(x/@))‘]

and
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(I-F(2)Elg(X) | X >a]=
e [(x/@))‘] -
b 220 [(x/e)ﬂ

>0
2 Lo

and finally

n(@) q(r) — g (r) =
0 (@) 20 |(2/6)"] -

5 OXP | — <0, for xz>0.

2 2% [(x/@))‘}

Conversely, if n is given as above, then

n(z)q1(z)—gz2(z)

e [~ @/o)] x>0

Now, in view of Theorem 1, X has density (4).

§ (2) = DD — 93, [2a2

Corollary 1. Let X : Q — (0,00) be a continuous random variable and let
¢ (x) be as in Proposition 2 The pdf of X is (4) if and only if there exist
functions qo and n defined in Theorem 1 satisfying the differential equation

N G (0 ) S IR
20 \/;x {2 o [(m/‘g))\] }3 exp {—5 (x/6) ] x> 0.

The general solution of the differential equation in Corollary 2.2 is



Flexible extension of the generalized half-normal lifetime model 90

20 [(x/@)’\] 1
2 20 [(x/e)ﬂ

— fQAH_A\/g:U)‘*% exp [—% (:1:/9)2)‘] X

exp <— () ) @@ w@+D |

where D is a constant. Note that a set of functions satisfying the above
differential equation is given in Proposition 2 with D = 0. However, it
should be also noted that there are other triplets (qi,q2,n) satisfying the
conditions of Theorem 1.

n(z) =exp

2.3 Characterization based on hazard function

It is known that the hazard function, A, of a twice differentiable distribution
function, F', satisfies the first order differential equation

f (@) _ pla)
f(x)  he(x)
For many univariate continuous distributions, this is the only characteriza-

tion available in terms of the hazard function. The following characterization
establishes a non-trivial characterization of BrXGHN distribution for § = 1.

- hF(.T)

Proposition 3. Let X : Q — (0,00) be a continuous random variable. The
pdf of X is (4), for 6 = 1, if and only if its hazard function hg (x) satisfies
the differential equation

Wy (z) + A0 22 the (1) = 2)\9_’\\/gexp [—% (:1:/9)2)‘]
x4 {IA_I{Qq)[(x/G)A]gl}} x> 0.

dz {2-20[(x/0)*]}

Proof. If X has pdf (4), then clearly the above differential equation holds.
Now, if this differential equation holds, then
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re@ew ||} -

g \/g % o {2@ [(x/e)ﬂ _ 1} o

{o—20[@pop]} |

from which, we obtain

e (1) — 2)\9—/\\/ng—1 exp [_% (:E/@)”] {2(1) |:(.T/9))\i| B 1}
F {2_2® [(x/O)A]}?)

which is the hazard function of BrXGHN distribution for § = 1.

, x>0,

2.4 Characterizations Based on Conditional
Expectation

The following proposition has already appeared in [10], so we will just state
it here which can be used to characterize the BrXGHN distribution for § = 1.

Proposition 4. Let X : Q — (a,b) be a continuous random variable
with cdf F . Let v (x) be a differentiable function on (a,b) with

lim, ,,+ ¢ (x) = 1. Then for v #1,
Ep(X) | X Za]=9¢(z), =z€(ab),

if and only if
() =(1—F@)7", z€(ab).

M2
Remark 2. For ¢ (z) = exp (—{%} >, § =1,y =13 and

(a,b) = (0,00), Proposition 4 provides a characterization of BrXGHN dis-
tribution. Of course there are other suitable functions than the one we men-
tioned above, which is chosen for simplicity.
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3 Mathematical and statistical properties

In this section we will provide some mathematical and statistical properties
of the BrXGHN distribution.

3.1 Linear representation

In this sub-section, we provide a very useful linear representation of the
BrXGHN model. If |z| < 1 and b > 0 is a real non-integer, the following
power series holds

(1—2)0""= Zw P (5)

Applying (5) to the term A; of (4), Equation (5) reduces to

flx) =2670" \/z o [ /0] {20 [@/0r] -1

{228 [(e/0)'] }3

(1) T(9) . o[/} -1} ©
X;me}{p G+ 92— 2 [(x/g)x] :

~
B;

Applying the power series to the term B;, Equation (6) becomes

f(z) :29\/% (2) (2/0)" exp {_1 (2 /Q)m}

Sy o Lelem -
i,5=0 AN Che ) {2 — 20 [ x/0) ’\] }2”3'

J/

X

-~

C;

Consider the series expansion

(1—2)"= iwzk 2l <1, b>0. (8)
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Applying the expansion in (8) to (7) for the term C;, Equation (7) becomes

R (U (i 1T ()T (2 + k4 3) [2) + K+ 2]
fa) =26 AT (5 — )T (25 +3) 25 + &k + 2]

i,§,k=0
2 N 1 9\ N 25+k+1
x \/;()\/x) (2/6) exp {—5 (x/0) Mzap [(x/e) ] - 1}
9(\0) Glairf)
This can be written as
f(z) = Z Qjk Tojanra(T; A, 0), (9)
§,k=0

where

Q= (_1)jr(5)r(2j +k+3) i(_l)i (i + 1)3’

T WIT (25 +3) (27 +k+2) &2 dlT (6 1)

and o ypia(z M, 0) = (25 +k+2)g(z; ), 0)G (x;X,0)7 ! is the pdf of
the exponentiated-GHN (Exp-GHN) distribution with the power parameter
2j + k + 2. Equation (9) reveals that the density of X can be expressed as
a linear mixture of exp-G densities. So, several mathematical properties of
the new family can be obtained from those of the Exp-GHN distribution.
Similarly, the cdf of the BrXGHN model can be expressed as a mixture of
Exp-GHN cdfs given by

F(z) =Y Qi Mojppan (3 0,0),
5,k=0
where Il pia(x; A, 0) = G (; A,9)2j+k+1 is the cdf of the Exp-GHN distri-
bution with the power parameter 25 4+ k + 2.
3.2 Moments and generating function

By setting u = (%)’\ and considering the error function as the cdf of the GHN

distribution, the n'* moment of X can be obtained from equation (9) as

/ n n 2 -
= B =0 25000 ),

J,k=0
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where

Foni = [t (—4ie) fors (25)]

Inserting the power series for the error function
erf (x Z “L2m 4 1) 2

in the last equation and computing the integral, we have (for any real k+n/\)
we get

2 ud (/).

7,k=0

i (—1)m1+'“+mk F (m1 + ot mp+ i [L+k+n/))

Moreover, for the very special case when k+n/\ is even, the integral I (n/A, k)
can be expressed in terms of the Lauricella function of type A (Exton [11];
Aarts [12]) defined by

FY (@b i i By B) =

A (a)ml +..+(a),, + (b)m + ot (0)n,
Z Z ml . ( m

! [ T o (9 ’

where (a), = a(a+1)...(a +k — 1) is the ascending factorial (with the con-
vention that (a), =1 ). Numerical technics for the direct computation of the
Lauricella function of type A are available, see Exton [11] and Mathemat-
ica (Trott [13]). Hence, E (X™) can be expressed in terms of the Lauricella
functions of type A

mi1=0 mn=0

E (X") =

1 13 3

]kO
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where

1 n 1 1
o= rtk+ R Lk L
a5 = 272 2A 2 QJJ{F <2

The central moments (p,) and cumulants (k,) of X are determined using

E (X" as )
=Y (Z) (=1)* @ 1

[2j+k+2+n/)\]>.

and

respectively, where k; = p}. The skewness 31 = K3/ ﬁg/ 2 and kurtosis By =
k4/K3 are obtained from the third and fourth standardized cumulants.The
moment generating function (mgf) of of X, say Mx (t) = E ("), is given

by Mx (t) = Z t" (n))~" E (X™) . The characteristic function (cf) of X, ¢ (t)

=E (%), and the cumulant generating function (cgf) of X, K (t) = log ¢ (t)
can be obtained from the well known relationships, where i = /—1.

3.3 Probability weighted moments

The probability weighted moment (PWM)s are expectations of certain func-
tions of a random variable and they can be defined for any random variable
whose ordinary moments exist. The PWM method can generally be used

for estimating parameters of a distribution whose inverse form cannot be
expressed explicitly. The (s,7)th PWM of X following the BrXGHN model,
say ps,r, is formally defined by

por = E{X* F(X)'} = / TR () da

Using equations (3) and (4) we can write

o0
2= ajsmoikie (T),

J,k=0
where
260(-1YT (2 +k+3) S(r+1)—1
R 1 .
Gk = T (25 1 3) ( 2]+k+222: Gt i
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Then, the (s,7)th PWM of X can be expressed as

be]kF(k( 2j+k+2+5/A];

l\3|f—‘
DN —
DO W
DO W
|

—_
|

—_
N———

where

. 1
bij =2 3tEtSgakg T (5 [2j +k+2+ s/A]) .

3.4 Stress-strength model

Let X; and X, be two independent random variables with BrX-GHN(dy, &)
and BrX-GHN(dy, ) distributions, respectively. Then, the reliability is de-
fined by

R = / fi(2361,8) Fy (2309, ) da.
0

We can write

o0

o0
R = E Sj,k,w,m/ Tojtowtk+m+a (T) d,
0

j7k7w7m:O
where

S = 4510 i<—1>”h<z+1>ﬂ (h+ )" (7))
phoem TR e (2wt m £ 2) (2 + k 2w+ m o+ 4)

y Z —1)’" T (2§ + k+3)T (2w +m + 3)
'k'w'm'F (62 —h)T (27 +3)T (2w +3)

]kwm*

Thus, the reliability, R, can be expressed as

oo

R = § Sj kw,m-

7k, w,m=0
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3.5 Order statistics

Order statistics make their appearance in many areas of statistical theory
and practice. Let X1,...,X,, be a random sample from the BrXGHN distri-
butions and let X7.,, ..., X,., be the corresponding order statistics. The pdf
of 1th order statistic, X;.,, can be written as

fn (@) = Blin—i+ DY (-1 (”fi)fmw'*“(x), (10)

J
7=0
where B(-,-) is the beta function. Using (3), (4) and (10) we have

f(x) F H t= Z tw kTowrkt2 (X)

w,k=0

where
o0

20 (—1)"T 2w+ k+ 3) d(j+i4)—1
= 1 .
bk Wkl (2w + 3) 2w + k + 2) Z "+ 1) < m

m:O

The pdf of X;.,, can be expressed as

fin (@)= > Z n—i+ 1) (”j_ i)tw,mwm (z).

w,k=0 j=0

Then, the density function of the BrX-GHN order statistics is a mixture of
exp-G densities. Based on the last equation, we note that the properties of
X, follow from those properties of Yo, 1r12. For example, the moments of
X;., can be expressed as

ZZ '<n_’)[13(z',n—z+1)] turE (Y2 0)

w,k=0 j=0

E(X2) =

2 — ) 1 13 3
Fy [2 2 — = =y ey =1, —1
\/;chk ( w+k+ +Q/)‘] 19 g gy PEEES) )a

w,k=0
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4 Estimation

4.1 Maximum likelihood estimation

Several approaches for parameter estimation were proposed in the literature
but the maximum likelihood method is the most commonly employed. So,
we consider the estimation of the unknown parameters of this family from
complete samples only by maximum likelihood. Let zy,...,x, be a ran-
dom sample from the BrX-GHN model with parameters 6, A\ and 6. Let
© =(0, A,0)T be the p x 3 parameter vector. The log-likelihood function is

2 n
(= E(@):n10g2+nlog5—|—nlog\/i—i-nlog/\%—n)\loge—i-g log !
T
i=1

—%Z (:/6) Zlog i—1)=3)  log(2 )

n

—Z s;+ (6 — 1)2 log [1—exp (—s7)],

where s; = Z=1 and 7, = 20 [(xz/é’))‘} . The components of the score vector,
_ 9t _ (9L o ANT
U(©) =35 = (55 ox o) axe
Us = n + z”: log [1 — exp (—32)} ,
0 I Z
where

n

n . 2)
Uy, = X++nlog9+Zlogxi—Zl(xi/«9) log (z;/0)

¢ S - 2
Z e D D D D

A) -2 2
+ (6 o 1) Z Zsigﬂ' (2 - Ti) €xXp (_Sz)

— 1 —exp(—s?)
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and

Uy = /\29 2A-1 ZT_1+322_T
23 e S e

— 1 — exp (—s?)

where

() = 2 exp [~ (a0/0)®| (21/6)" o (/0

and

C(G) _

0= exp | -3 (/0| @/0)* (3/0)

Setting the nonlinear system of equations Uy = 0 and U = 0 and solving
them simultaneously yields the MLE © = (6,£7)T. To solve these equations,

it is usually more convenient to use nonlinear optimization methods such as
the quasi-Newton algorithm to numerically maximize ¢.

4.2 Simulation study

In this section, we conduct a simulation study to evaluate the performance
of MLEs of BrX-GHN model. We generate 10,000 samples of size, n =50,
250 and 500 from BrXGHN model using the inverse transform method. The
evaluation of estimates was based on the averages of estimates (AEs) and
mean squared errors (MSEs). The empirical study was conducted with soft-
ware R.

The empirical results are given in Table 1. The values in Table 1 indi-
cate that the estimates are quite stable and, more importantly, are close to
the true values for these sample sizes. The simulation study shows that the
maximum likelihood method is appropriate for estimating the Br-XGHN pa-
rameters. In fact, the MSEs tend to be closer to zero when n increases. This
fact supports that the asymptotic normal distribution provides an adequate
approximation to the finite sample distribution of the MLEs.
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Tab. 1: Estimated AEs and MLEs for several parameter values of BrXGHN
distribution.

AE MSE
0 A 6 o A 0
(2,2,0.5) 50 3.01134 2.27575 0.49430 10.84800 2.33700 0.00017
250 2.07400 2.05300 0.49900 0.37500  0.11200 0.00002
500 2.02300 2.03400 0.49970 0.15400  0.05600 0.00001
(0.5,2,2) 50 0.55419 2.89561 1.97113 0.18602  5.36315 0.00526
250 0.50072 2.12757 1.99380 0.01453  0.23766  0.00089
500 0.50021 2.04821 1.99676 0.00268  0.04086 0.00019
(2,4,5) 50 3.01081 4.90053 4.97673 16.71033 32.58943 0.00439
250 2.10414 4.06892 4.99638 0.36515  0.44431 0.00040
500 2.03973 4.06787 4.99713 0.19537  0.24999  0.00022

Parameters

5 Log-BrXGHN regression model

Consider the BrXGHN distribution with three parameters given in (4). Hence-
forth, X denotes a random variable following the BrXGHN distribution (4)
and let Y = log(X). The density function of Y (for y € R) obtained by

replacing \ = g and 0 = exp (u) can be expressed as

£y el Sheol(52) s (15) ) [ e[ (22) 1]
(;M:[exp““)ﬂ]) AP\
xexp{ —[([ngii[(y?::gi]]])] }<1_6Xp{ _[([2[ [{( & '2)12]]})] }> |

(1)
where p € R is the location parameter, o > 0 is the scale parameter and
d > 0 is the shape parameter. We refer to equation (11) as the Log-BrXGHN
(LBrXGHN) pdf, say Y ~ LBrXGHN(4, 0, ). The plots in Figure 3 show
shapes of density function (11) for selected parameter values. They reveal
that this distribution is a good candidate to model left skewed and symmetric
lifetime data sets. The survival function corresponding to (11) is given by

) 4

20 [ew |(54) )] 1]
(-2efenfez)2]])] )




101 Altun, Yousof, Hamedani

and the hrf is simply h(y) = f(y)/S(y). The standardized random variable
Z = (Y — p)/o has density function

| el sl ) pofoo-]]
1@ = exp[z )

)

5.1 Estimation

5.1.1 Maximum Likelihood Estimation

Based on the LBrXGHN density, we propose a linear location-scale regression
model linking the response variable y; and the explanatory variable vector
v] = (vi1,...,0;p) given by

y=viB+oz, i=1,...,n, (14)

where the random error z; has density function (13), 8 = (f1,...,5,)7, and
o > 0 and § > 0 are unknown parameters. The parameter p; = v!3 is the

location of y;. The location parameter vector g = (pu1, . . ., ft,)7 is represented
by a linear model p = V3, where V. = (vy,...,v,)T is a known model
matrix.

Consider a sample (y1,v1),..., (Yn, v,) of n independent observations,

where each random response is defined by y; = min{log(z;),log(c;)} where
x; and ¢; are lifetime and censoring times, respectively. We assume non-
informative censoring such that the observed lifetimes and censoring times
are independent. Let F' and C be the sets of individuals for which y; is
the log-lifetime or log-censoring, respectively. The log-likelihood function for
the vector of parameters 7 = (0,3,0,3")T from model (14) has the form
I(T) = L l(r) + ¥ 17(r), where (7) = log[f(y)], 47 (r) = log[S(y,)];
i€F ieC

f(y;) is the density (11) and S(y;) is the survival function (12) of Y;. The
total log-likelihood function for 7 is given by
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(1) =rlog (02627r> - %Zexp <zz\/§) + gZzi—l—ZIOg [u; — 1]

i€F ieF
- SZlog[Z — ]

_ ; B__ul] 2 + (1) ;log (1 — exp { - [;‘__ulr})

+ Zlog 1— (1 — exp { B Bulr})a
ico -

where u; = 2® [exp (2;v2/2)], 2z = (yi — p;)/o and r is the number of
uncensored observations (failures). The MLE 7T of the vector of unknown
parameters can be evaluated by maximizing the log-likelihood function (15).
The optim function of R software is used to estimate 7. Under the standard
regularity conditions, the asymptotic distribution of (7 — 7) is multivariate
normal N,2(0, K(7)™!), where K(7) is the expected information matrix.
The asymptotic covariance matrix K(7)~! of 7 can be approximated by the
inverse of the (p 4 2) x (p 4 2) observed information matrix —L(7), whose
elements are evaluated numerically. The approximate multivariate normal
distribution N,,5(0, —=L(7)~!) for 7 can be used, in the classical way, to
construct approximate confidence intervals for the parameters in 7.

5.2 Sensitivity analysis

A first tool to perform sensitivity analysis, as stated before, is by means
of global influence starting from case deletion. Case deletion is a popular
method to investigate the influence of taking out the i, case from the data
on the parameters estimates. This method compares the 7 with 7_; where
7_; is the estimated parameters when the i, case is dropped from the data.
If there is a big differences betweeb 7_; and 7, the dropped observation could
be considered as influential observation.

Here, generalized cook distance is used to detect the possible influential
observations. Generalized Cook distance (GD) is given by

GDi(r) = (F— 1) | —L ()] (- 7). (16)
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where —L (7) is the observed information matrix.

5.3 Residual analysis

Residual analysis has critical role in checking the adequacy of the fitted
model. In order to analyse departures from error assumption, two types of
residuals are considered: martingale and modified deviance residuals.

5.3.1 Martingale residual

The martingale residuals is defined in counting process and takes values be-
tween +1 and—oo (see, Fleming and Harrington|14| for details). The mar-
tingale residuals for LOLLBXII model is,

1+log{1 . (1 —exp{ [é“uf]i})a} ifi € F,
log{l— (1—exp{ —[é”ulir}) } ifi € C,

where u; = 2@ [exp (2:v2/2)] and z = (y; — ;) /0.

TMi—

(17)

5.3.2 Modified deviance residual

The main drawback of martingale residual is that when the fitted model is
correct, it is not symmetrically distributed about zero. To overcome this
problem, modified deviance residual was proposed by Therneau et al. [15].
The modified deviance residual is given by

sign (rar) { =2 [rag, + log (1 — rp )|}Y?, ifi € F
p, = . /2 .p.
sign (ra) { —2ra, )77, ifi € C|

where 7). is the martingale residual.

(18)

6 Applications

In this section, we provide two applications to real data sets to illustrate the
flexibility of the BrxGHN distribution and BrxGHN regression model. The
statistical software R is used for all numerical computations. The following
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goodness-of-fit measures are used to compare fitted models: Cramer von
Mises (W*), Anderson Darling (A*), estimated —¢ and Akaike Information
Criteria (AIC). In general, the smaller the values of these statistics, the better
the fit to the data.

We compare the BrxGHN distribution with another extension of GHN
distribution introduced by Cordeiro et al. [10], named odd log-logistic gen-
eralized half-normal (OLLGHN) distribution. The c¢df of OLLGHN distribu-
tion is given by

pol@ -y
2 [G)] 1) {220 (0]}

where o > 0 is additional shape parameter. Note that when o« = 1, OLLGHN
distribution reduces to GHN distribution.

Forraun (z; 0, M, 0) = {

6.1 Univariate data modeling

The first data set refers to a lifetime taken from Gross and Clark [16]. The
data are: 1.1,1.4,1.3,1.7,1.9,1.8,1.6,2.2,1.7,2.7,4.1,1.8,1.5,1.2,1.4,3,1.7,2.3,1.6,
Table 2 shows the estimated parameters and their standard errors, —¢ and
AIC values. Based on the figures in Table 2, BrxGHN distribution provides
better fits than OLL-GHN distribution for used data set. Figure 4(a) displays
the histogram with fitted pdfs and Figure 4(b) displays the fitted hrf and P-
P plot of BrXGHN distribution. These figures reveal that BrXGHN model
provides superior fits to used data set.

Tab. 2: MLEs and their SEs of the fitted models and goodness-of-fit statistics
for second data set

Models o 0 A 0 -/ AIC A* w*
BrXGHN 16188.74 0.0771 0.214 15.545 37.091 0.256 0.047
(33.442) (0.022)  (0.214)
OLL-GHN  34.380 0.099 92.226  16.574 39.148 0.400 0.071
(11.502) (0.027) (101.786)
GHN 1.955 2.302 22.452 48.905 1.391 0.242

(0.487)  (0.137)
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6.2 HIV data set

The performance of LBrXGHN regression model is compared with log-odd
log-logistic generalized half-normal (LOLLGHN) regression model, introduced
by Pescim et al. [17], and log-generalized half-normal (LGHN) regression
model. The survival functions of LOLLGHN and LGHN regression models

are given by, respectively,

Fe-ole[(2)2]])T (20)

The hypothetical dataset contains 100 observations on HIV+ subjects be-
longing to an Health Maintenance Organization(HMO). The HMO wants to
evaluate the survival time of these subjects. In this hypothetical data set,
subjects were enrolled from January 1, 1989 until December 31, 1991. Study
follow up then ended on December 31, 1995. This data set are reported in
Hosmer and Lemeshow [18] and also can be found in R package Bolstad2. We
adopt the LBrXGHN regression model to analyze this dataset. The variables
involved in the study are: y; - observed survival time (in months); cens; -
censoring indicator (0= alive at study end or lost to follow-up,1=death due
to AIDS or AIDS related factors), z;1(1 = yes, 0 = no) represents the history
of drug use and x;5 represents the ages of patients.

We consider the following regression model

Yi = Bo + Brwir + Baip + 02,
where y; has the LBrXGHN density, for : = 1,...,100.

6.2.1 Maximum Likelihood Estimation

The MLE method is used to estimate unknown parameters of LBrxGHN,
LOLLGHN and LGHN regression models. Table 3 shows the MLEs of the
model parameters fitted regression models, estimated log-likelihood values
and AIC values. These results indicate that the LBrxGHN regression model
has the lowest values of these statistics, and so LBrxGHN model provides
better fitting than LOLLGHN and LGHN models for used data set. For the
fitted regression models, note that gy, 1 and [ are marginally significant
at the 1% level.
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Tab. 3: MLEs of the parameters, their standard errors and p-values, the es-
timated —¢ and AIC statistic.

Models Parameters § 0 o 5o 51 Ba —/ AIC
LGHN Estimates 0.757 6.347  -0.091  -1.126  130.590 269.180
Std. Errors 0.067 0.487  0.013 0.177
p values <0.001 <0.001 0.001
LOLLGHN Estimates 2.448 1.691 6.686  -0.091 -0.965 128.228 266.455
Std. Errors 1.72504 1.1841 0.7582 0.01427 0.2097
p values <0.001 <0.001 <0.001
LBrXGHN Estimates  5.064 5.066 7.085  -0.089 -0.962 127.585 265.171
Std. Errors 3.988 1.981 0.612 0.015 0.211
p values <0.001 <0.001 <0.001

6.2.2 Sensitivity Analysis

Here, possible influential observations are analysed with measure described in
Section 5.2. Figure 5 displays the results of generalized Cook distance,GD; (7).
Based on Figure 5, cases 41 and 48 can be considered as possible influential
observations.

6.2.3 Residual Analysis

Figure 6 displays the index plot of the modified deviance residuals and its
Q-Q plot against to N(0,1) quantiles. Based on Figure 6, we conclude that
none of observed values appears as possible outliers. Therefore, the fitted
model is appropriate for these data set.

7 Conclusion

In this study, we introduced a new flexible extension of the Generalized Half-
Normal lifetime model as well as a new log-location regression model based
on the proposed model. Some useful characterization results are presented
and some mathematical properties are derived. The maximum likelihood
method is used to estimate the model parameters by means of a graphical
Monte Carlo simulation study. We show that the new log-location regression
lifetime model can be very useful in analysing real data and provide more
realistic fits than other regression models. Index plot of the modified de-
viance residual and Q-Q plot for modified deviance residual are presented to
illustrate that our new model is more appropriate to HIV data set than other



107

Altun, Yousof, Hamedani

competitive models like log-odd log-logistic generalized half-normal regres-
sion model and log-generalized half-normal regression model. The sensitivity
analysis is used via the index plot of generalized cook distance to discover
the possible influential observations.
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Appendix A

Theorem 1. Let (2, F,P) be a given probability space and let H = [a,b]
be an interval for some d <b (a = —o0, b= 00 might as well be allowed) .
Let X : Q — H be a continuous random variable with the distribution
function F' and let q; and qo be two real functions defined on H such that

Efg(X) | X > 4] = Blg (X) | X > aln(2), =€k,

is defined with some real function n. Assume that q1,q, € C* (H), n € C*(H)
and F is twice continuously differentiable and strictly monotone function on
the set H. Finally, assume that the equation ng; = g2 has no real solution in
the interior of H. Then F' 1s uniquely determined by the functions q1,qs and
n , particularly

F(z) = /:BC" () exp (—s (u)) du ,
a n(w) g (v) — go (u)
where the function s is a solution of the differential equation s’ = 1

n91—q2
and C' s the normalization constant, such that fH dF" =1.

Appendix B

R code for parameter estimation of BrXGHN distribution.

library(AdequacyModel)

cdf=function(par,x)

{ gam=par[1]
lambda=par[2]
theta=par[3]
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y=x

G=2xpnorm((y/theta) ~lambda)-1

g=sqrt (2/pi)*(lambda/y) * (y/theta) ~ (lambda)
*xexp((-1/2) *(y/theta) ~(2*1lambda))

f=(1-exp(-(G/(1-G))~2)) ~gam
return(f)}

pdf=function(par,x)

{ gam=par[1]
lambda=par[2]
theta=par[3]

y=x
G=2xpnorm((y/theta)~lambda)-1

g=sqrt (2/pi)*(lambda/y)*(y/theta)~(lambda)
*exp ((-1/2) *(y/theta) ~(2*1lambda))

f=((2xgam*g*G) / (1-G) ~3) xexp (- (G/ (1-G))~2)
*(1-exp(-(G/(1-G))~2))~(gam-1)
return(f)}

fit=goodness.fit (pdf=pdf, cdf=cdf,
starts = c(gaml,lambdal,thetal), data = data,
method="N", domain=c(0,Inf))
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Fig. 1. The pdf plots of BrXGHN distribution for several parameter values.
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