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Abstra
t

In this paper, we introdu
ed a new �exible extension of the Generalized Half-

Normal lifetime model as well as a new log-lo
ation regression model based on

the proposed model. Some useful 
hara
terization results are presented and some

mathemati
al properties are derived. The maximum likelihood method is used

to estimate the model parameters by means of a graphi
al Monte Carlo simula-

tion study. We show that the new log-lo
ation regression lifetime model 
an be

very useful in analysing real data and provide more realisti
 �ts than other re-

gression models. Index plot of the modi�ed devian
e residual and Q-Q plot for

modi�ed devian
e residual are presented to illustrate that our new model is more

appropriate to HIV data set than other 
ompetitive models like log-odd log-logisti


generalized half-normal regression model and log-generalized half-normal regression

model. The sensitivity analysis is used via the index plot of generalized 
ook dis-

tan
e to dis
over the possible in�uential observations.
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1 Introdu
tion

The Generalized Half-Normal (GHN) density fun
tion (Cooray and Ananda

[1℄) with shape parameter λ > 0 and s
ale parameter θ > 0 is given by (for

x > 0)

g(x;λ, θ) =

√
2

π
(λ/x) (x/θ)λ exp

[
−1

2
(x/θ)2λ

]
.

The 
orresponding 
umulative distribution fun
tion (
df) depends on the

error fun
tion

G(x;λ, θ) =
{
2Φ
[
(x/θ)λ

]
− 1
}
= erf

[
(x/θ)λ /

√
2
]
, (1)

where

Φ (x) =
1

2

[
1 + erf

(
x/

√
2
)]
,

and

erf (x) =
2√
π

∫ x

0

exp(−t2)dt.

Its nth moment is given by (Cooray and Ananda, 2008) as

E(Xn) = Γ (n + λ/2λ) θn

√
2

n
λ

π
,

where Γ (.) is the gamma fun
tion. The Half-Normal (HN) distribution is a

sub-model when λ = 1.

The goal of this paper is to propose the �rst generalization of the general-

ized half-normal distribution using the BurrX-G (�BrX-G� for short) family

of distributions. For an arbitrary baseline 
df G(x), Yousof et al. [2℄ proposed
the probability density fun
tion (pdf) f(x) and the 
df F (x) of the BrX-G
family of distributions with an additional shape parameter δ > 0 de�ned (for

x ≥ 0) by

F (x; δ, ξ) =

(
1− exp

{
−
[
G(x; ξ)

G(x; ξ)

]2})δ

. (2)
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The BrX-G density fun
tion is

f(x; δ, ξ) =
2δg(x; ξ)G(x; ξ)

G(x; ξ)3

× exp

{
−
[
G(x; ξ)

G(x; ξ)

]2}(
1− exp

{
−
[
G(x; ξ)

G(x; ξ)

]2})δ−1

,

where δ > 0 is the shape parameter and ξ = ξk = ( ξ1, ξ2, ...) is a parameter

ve
tor. Based on the BrX-G family, we 
onstru
t a new GHN distribution and

provide a 
omprehensive des
ription of some of its mathemati
al properties.

We prove empiri
ally that the BrXGHN model provides better �ts than other


ompetitive models, ea
h one having the same number of parameters, by

means of two appli
ations to real data. We hope that the new distribution

will attra
t wider appli
ations in reliability, engineering and other areas of

resear
h. Inserting (1) into (2) we get

F (x; δ, λ, θ) =


1− exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2






δ

, x ≥ 0. (3)

The 
orresponding pdf 
an be expressed as

f(x; δ, λ, θ) =2δλθ−λ
√

2

π
xλ−1 exp

[
−1

2

(x
θ

)2λ]{
2Φ
[
(x/θ)λ

]
− 1
}

×
{
2− 2Φ

[
(x/θ)λ

]}−3

exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2



×

Ai︷ ︸︸ ︷
1− exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2






δ−1

, x > 0.

(4)

The justi�
ation for the pra
ti
ality of the BrXGHN lifetime model is

based on the fatigue 
ra
k growth under variable stress or 
y
li
 load. Also

we are motivated to introdu
e the BrXGHN lifetimemodel be
ause it exhibits

in
reasing as well as bathtub hazard rates as illustrated in Figure 2. It is
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shown in Subse
tion 3.1 that the BrXGHN lifetime model 
an be viewed as a

mixture of the two-parameter GHN distributions introdu
ed by Cooray and

Ananda (2008). It 
an be viewed as a suitable model for �tting the unimodal

data. The BrXGHN lifetime model outperforms several of the well-known

lifetime distributions with respe
t to two real data appli
ations as illustrated

in Se
tion 6. The new log-lo
ation regression model based on the BrXGHN

distribution provides better �ts than the log-odd log-logisti
 generalized half-

normal and log-generalized half-normal regression models for HIV data set.

Many extension of the GHN model 
an be 
ited as follows: the beta gen-

eralized half-Normal distribution with appli
ations to myelogenous leukemia

data by Pes
im et al. [3℄, Kumaraswamy generalized half-normal distribu-

tion for 
ensored data by Cordeiro et al. [4℄, a log-linear regression model

based on the beta generalized half-Normal distribution by Pes
im et al. [5℄,

the beta generalized half normal geometri
 distribution by Ramires et al.

[6℄. Merov
i et al. [7℄ de�ned and applied the exponentiated transmuted

generalized half-normal for a data set of the life of fatigue fra
ture of Kevlar

373/epoxy that are subje
t to 
onstant pressure at the 90% stress level until

all had failed.

The rest of the paper is organized as follows. Se
tion 2 deals with some

useful 
hara
terization results of the proposed model. In Se
tion 3, we de-

rived some of its mathemati
al properties. In Se
tion 4, the maximum likeli-

hood method is used to estimate the model parameters by means of a Monte

Carlo simulation study. A new log-lo
ation regression model as well as resid-

ual analysis are presented in Se
tion 5. Se
tion 6 is devoted to appli
ations to

real data sets to prove empiri
ally the importan
e of new the model. Finally,

some 
on
lusions and future work are given in Se
tion 7.

2 Chara
terizations

This se
tion deals with 
ertain 
hara
terizations of BrXGHN distribution.

These 
hara
terizations are in terms of: (i) the trun
ated moment involving

two fun
tions; (ii) a simple relationship between two trun
ated moments;

(iii) the hazard fun
tion and (iv) 
ertain fun
tion of the random variable.

One of the advantages of 
hara
terization (ii) is that the 
df is not required
to have a 
losed form. We present our 
hara
terizations (i)− (iv) in four

subse
tions.
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2.1 Chara
terizations based on trun
ated moment

involving two fun
tions

Our �rst 
hara
terization is based on the following Proposition.

Proposition 1. Let X : Ω → R be a 
ontinuous random variable with 
df

F . Let ψ (x) and ϕ (x) be two di�erentiable fun
tions on R su
h that∫∞
−∞

ϕ′(t)
[ϕ(t)−ψ(t)]dt = ∞. Then

E [ψ (X) | X ≥ x] = ϕ (x) , x ∈ R,

implies

F (x) = 1− exp

{
−
∫ x

−∞

ϕ′ (t)

[ϕ (t)− ψ (t)]
dt

}
, x ∈ R.

Proof. If E [ψ (X) | X ≥ x] = ϕ (x) , x ∈ R holds, then

∫ ∞

x

ψ (u) f (u) du = (1− F (x))ϕ (x) .

Di�erentiating both sides of the above equation and rearranging the terms,

we arrive at

f (x)

1− F (x)
=

ϕ′ (x)

ϕ (x)− ψ (x)
, x ∈ R.

Integrating the last equation with respe
t to t from −∞ to x , we have

− ln [1− F (x)] =

∫ x

−∞

ϕ′ (t)

[ϕ (t)− ψ (t)]
dt,

from whi
h we obtain

F (x) = 1− exp

{
−
∫ x

−∞

ϕ′ (t)

[ϕ (t)− ψ (t)]
dt

}
.

Remark 1. For δ = 1 , ψ (x) = 2ϕ (x) , ϕ (x) = exp

{
−
({

2Φ[(x/θ)λ]−1

2−2Φ[(x/θ)λ]

}2
)}

, x > 0 and the fa
t that limx→0+ ϕ (x) = 1, we have

F (x) = 1− exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2

 , x ≥ 0,

whi
h is 
df (3) for δ = 1.
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2.2 Chara
terizations based on a simple relationship

between two trun
ated moments

In this subse
tion we present 
hara
terizations of BrXGHN distribution in

terms of the ratio of two trun
ated moments. This 
hara
terization result

employs a theorem due to Glanzel [8℄, see Theorem 1 of Appendix A. Note

that the result holds also when the interval H is not 
losed. Moreover, as

mentioned above, it 
ould also be applied when the 
df F does not have a


losed form. As shown in Glanzel [9℄, this 
hara
terization is stable in the

sense of weak 
onvergen
e.

Proposition 2. Let X : Ω → (0,∞) be a 
ontinuous random variable and

let

q1 (x) =


1− exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2






1−δ

and

q2 (x) = exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2



for x > 0. The random variable X has pdf (4) if and only if the fun
tion η
de�ned in Theorem 1 has the form

η (x) =
1

2
exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2

 , x > 0.

Proof. Let X be a random variable with pdf (4), then

(1− F (x))E [q1 (X) | X ≥ x] = exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2

 , x > 0,

and
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(1− F (x))E [q2 (X) | X ≥ x] =

1

2
exp


−2




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2

 x > 0,

and �nally

η (x) q1 (x)− q2 (x) =

− q1 (x)

2
exp


−




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2

 < 0, for x > 0.

Conversely, if η is given as above, then

s′ (x) = η′(x)q1(x)
η(x)q1(x)−q2(x) = 2λθ−λ

√
2
π
xλ−1

× {2Φ[(x/θ)λ]−1}
{2−2Φ[(x/θ)λ]}3 exp

[
−1

2
(x/θ)2λ

]
x > 0.

Now, in view of Theorem 1, X has density (4).

Corollary 1. Let X : Ω → (0,∞) be a 
ontinuous random variable and let

q1 (x) be as in Proposition 2 The pdf of X is (4) if and only if there exist

fun
tions q2 and η de�ned in Theorem 1 satisfying the di�erential equation

η′ (x) q1 (x)

η (x) q1 (x)− q2 (x)
=

2λθ−λ
√

2

π
xλ−1

{
2Φ
[
(x/θ)λ

]
− 1
}

{
2− 2Φ

[
(x/θ)λ

]}3 exp

[
−1

2
(x/θ)2λ

]
x > 0.

The general solution of the di�erential equation in Corollary 2.2 is
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η (x) = exp







2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2



×




−
∫
2λθ−λ

√
2
π
xλ−1 {2Φ[(x/θ)λ]−1}

{2−2Φ[(x/θ)λ]}3 exp
[
−1

2
(x/θ)2λ

]
×

exp

(
−
{

2Φ[(x/θ)λ]−1

2−2Φ[(x/θ)λ]

}2
)
(q1 (x))

−1 q2 (x) +D


 ,

where D is a 
onstant. Note that a set of fun
tions satisfying the above

di�erential equation is given in Proposition 2 with D = 0. However, it

should be also noted that there are other triplets (q1, q2, η) satisfying the


onditions of Theorem 1.

2.3 Chara
terization based on hazard fun
tion

It is known that the hazard fun
tion, hF , of a twi
e di�erentiable distribution
fun
tion, F , satis�es the �rst order di�erential equation

f ′(x)

f (x)
=
h′F (x)

hF (x)
− hF (x).

For many univariate 
ontinuous distributions, this is the only 
hara
teriza-

tion available in terms of the hazard fun
tion. The following 
hara
terization

establishes a non-trivial 
hara
terization of BrXGHN distribution for δ = 1.

Proposition 3. Let X : Ω → (0,∞) be a 
ontinuous random variable. The

pdf of X is (4), for δ = 1, if and only if its hazard fun
tion hF (x) satis�es
the di�erential equation

h′F (x) + λθ−λxλ−1hF (x) = 2λθ−λ
√

2
π
exp

[
−1

2
(x/θ)2λ

]

× d
dx

{
xλ−1{2Φ[(x/θ)λ]−1}
{2−2Φ[(x/θ)λ]}3

}
, x > 0.

Proof. If X has pdf (4), then 
learly the above di�erential equation holds.

Now, if this di�erential equation holds, then
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d

dx

{
hF (x) exp

[
1

2
(x/θ)2λ

]}
=

2λθ−λ
√

2

π

d

dx





xλ−1
{
2Φ
[
(x/θ)λ

]
− 1
}

{
2− 2Φ

[
(x/θ)λ

]}3




, x > 0,

from whi
h, we obtain

hF (x) =
2λθ−λ

√
2
π
xλ−1 exp

[
−1

2
(x/θ)2λ

]{
2Φ
[
(x/θ)λ

]
− 1
}

{
2− 2Φ

[
(x/θ)λ

]}3 , x > 0,

whi
h is the hazard fun
tion of BrXGHN distribution for δ = 1.

2.4 Chara
terizations Based on Conditional

Expe
tation

The following proposition has already appeared in [10℄, so we will just state

it here whi
h 
an be used to 
hara
terize the BrXGHN distribution for δ = 1.

Proposition 4. Let X : Ω → (a, b) be a 
ontinuous random variable

with cdf F . Let ψ (x) be a di�erentiable fun
tion on (a, b) with

limx→a+ ψ (x) = 1. Then for γ 6= 1,

E [ψ (X) | X ≥ x] = γψ (x) , x ∈ (a, b) ,

if and only if

ψ (x) = (1− F (x))
1

γ
−1 , x ∈ (a, b) .

Remark 2. For ψ (x) = exp

(
−
{

2Φ[(x/θ)λ]−1

2−2Φ[(x/θ)λ]

}2
)
, δ = 1 , γ = 1

2
and

(a, b) = (0,∞), Proposition 4 provides a 
hara
terization of BrXGHN dis-

tribution. Of 
ourse there are other suitable fun
tions than the one we men-

tioned above, whi
h is 
hosen for simpli
ity.
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3 Mathemati
al and statisti
al properties

In this se
tion we will provide some mathemati
al and statisti
al properties

of the BrXGHN distribution.

3.1 Linear representation

In this sub-se
tion, we provide a very useful linear representation of the

BrXGHN model. If |z| < 1 and b > 0 is a real non-integer, the following

power series holds

(1− z)b−1 =
∞∑

i=0

(−1)i Γ (b)

i! Γ (b− i)
zi. (5)

Applying (5) to the term Ai of (4), Equation (5) redu
es to

f(x) = 2δλθ−λ
√

2

π
xλ−1

exp
[
−1

2
(x/θ)2λ

]{
2Φ
[
(x/θ)λ

]
− 1
}

{
2− 2Φ

[
(x/θ)λ

]}3

×
∞∑

i=0

(−1)i Γ (δ)

i! Γ (δ − i)
exp


− (i+ 1)




2Φ
[
(x/θ)λ

]
− 1

2− 2Φ
[
(x/θ)λ

]





2



︸ ︷︷ ︸
Bi

.

(6)

Applying the power series to the term Bi, Equation (6) be
omes

f(x) = 2θ

√
2

π

(
λ

x

)
(x/θ)λ exp

[
−1

2
(x/θ)2λ

]

×
∞∑

i,j=0

(−1)i+j (i+ 1)j Γ (δ)

i! j!Γ (δ − i)

{
2Φ
[
(x/θ)λ

]
− 1
}2j+1

{
2− 2Φ

[
(x/θ)λ

]}2j+3

︸ ︷︷ ︸
Ci

.
(7)

Consider the series expansion

(1− z)−b =

∞∑

k=0

Γ (b+ k)

k!Γ (b)
zk, |z| < 1, b > 0. (8)
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Applying the expansion in (8) to (7) for the term Ci, Equation (7) be
omes

f(x) = 2δ
∞∑

i,j,k=0

(−1)i+j (i+ 1)j Γ (δ) Γ (2j + k + 3) [2j + k + 2]

i! j!k!Γ (δ − i) Γ (2j + 3) [2j + k + 2]

×
√

2

π
(λ/x) (x/θ)λ exp

[
−1

2
(x/θ)2λ

]

︸ ︷︷ ︸
g(x;λ,θ)

{
2Φ
[
(x/θ)λ

]
− 1
}2j+k+1

︸ ︷︷ ︸
G(x;λ,θ)

.

This 
an be written as

f(x) =

∞∑

j,k=0

Ωj,k π2j+k+2(x;λ, θ), (9)

where

Ωj,k = 2δ
(−1)j Γ (δ) Γ (2j + k + 3)

j!k!Γ (2j + 3) (2j + k + 2)

∞∑

i=0

(−1)i (i+ 1)j

i! Γ (δ − i)

and π2j+k+2(x;λ, θ) = (2j + k + 2) g (x;λ, θ)G (x;λ, θ)2j+k+1
is the pdf of

the exponentiated-GHN (Exp-GHN) distribution with the power parameter

2j + k + 2. Equation (9) reveals that the density of X 
an be expressed as

a linear mixture of exp-G densities. So, several mathemati
al properties of

the new family 
an be obtained from those of the Exp-GHN distribution.

Similarly, the 
df of the BrXGHN model 
an be expressed as a mixture of

Exp-GHN 
dfs given by

F (x) =

∞∑

j,k=0

Ωj,k Π2j+k+2 (x;λ, θ) ,

where Π2j+k+2(x;λ, θ) = G (x;λ, θ)2j+k+1
is the 
df of the Exp-GHN distri-

bution with the power parameter 2j + k + 2.

3.2 Moments and generating fun
tion

By setting u =
(
x
θ

)λ
and 
onsidering the error fun
tion as the 
df of the GHN

distribution, the n

th
moment of X 
an be obtained from equation (9) as

µ′
n = E (Xn) = θn

√
2

π

∞∑

j,k=0

Ωj,kI (n/λ, k) ,
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where

I (n/λ, k) =

∞∫

0

u
n
λ exp

(
−1

2
u2
)[

erf

(
u√
2

)]k
du.

Inserting the power series for the error fun
tion

erf (x) =
2√
π

∞∑

m=0

(−1)m (m!)−1 (2m+ 1)−1 x2m+1

in the last equation and 
omputing the integral, we have (for any real k+n/λ)
we get

E (Xn) = θn
√
2/π

∞∑

j,k=0

Ωj,kI (n/λ, k) ,

where

I (n/λ, k) =2−
1

2
+k+ n

2λ π− 1

2
k

∞∑

m1,...,mk=0

(−1)m1+...+mk Γ
(
m1 + ... +mk +

1
2
[1 + k + n/λ]

)

m1!
(
m1 +

1
2

)
m2!

(
m2 +

1
2

)
...mk!

(
mk +

1
2

) .

Moreover, for the very spe
ial 
ase when k+n/λ is even, the integral I (n/λ, k)

an be expressed in terms of the Lauri
ella fun
tion of type A (Exton [11℄;

Aarts [12℄) de�ned by

F
(n)
A (a; b1, ..., bn; c1, ..., cn; x1, ..., xn) =

∞∑

m1=0

...
∞∑

mn=0

xm1

1 ...xmn
n

m1!...mn!
×

(a)m1
+ ...+ (a)mn

+ (b)m1
+ ... + (b)mn

(c)m1
+ ... + (c)mn

,

where (a)k = a (a+ 1) ... (a + k − 1) is the as
ending fa
torial (with the 
on-

vention that (a)0 = 1 ). Numeri
al te
hni
s for the dire
t 
omputation of the

Lauri
ella fun
tion of type A are available, see Exton [11℄ and Mathemat-

i
a (Trott [13℄). Hen
e, E (Xn) 
an be expressed in terms of the Lauri
ella

fun
tions of type A

E (Xn) =

θn
√

2

π

∞∑

j,k=0

aj,kF
(k)
A

(
1

2
[2j + k + 2 + n/λ] ;

1

2
, ...,

1

2
;
3

2
, ...,

3

2
;−1, ...,−1

)
,
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where

aj,k = 2−
1

2
+k+ n

2λπ− 1

2
kΩj,k Γ

(
1

2
[2j + k + 2 + n/λ]

)
.

The 
entral moments (µn) and 
umulants (κn) of X are determined using

E (Xn) as

µn =
n∑

k=0

(
n

k

)
(−1)k µ′k

1 µ′
n−k

and

κn = µ′
n −

n−1∑

k=1

(
n− 1

k − 1

)
κk µ

′
n−k,

respe
tively, where κ1 = µ′
1. The skewness β1 = κ3/κ

3/2
2 and kurtosis β2 =

κ4/κ
2
2 are obtained from the third and fourth standardized 
umulants.The

moment generating fun
tion (mgf) of of X, say MX (t) = E
(
etX
)
, is given

by MX (t) =
∞∑
n=0

tn (n!)−1E (Xn) . The 
hara
teristi
 fun
tion (
f) of X , φ (t)

= E
(
eit X

)
, and the 
umulant generating fun
tion (
gf) ofX ,K (t) = log φ (t)


an be obtained from the well known relationships, where i =
√
−1.

3.3 Probability weighted moments

The probability weighted moment (PWM)s are expe
tations of 
ertain fun
-

tions of a random variable and they 
an be de�ned for any random variable

whose ordinary moments exist. The PWM method 
an generally be used

for estimating parameters of a distribution whose inverse form 
annot be

expressed expli
itly. The (s, r)th PWM of X following the BrXGHN model,

say ρs,r, is formally de�ned by

ρs,r = E {Xs F (X)r} =

∫ ∞

−∞
xs F (x)r f (x) dx.

Using equations (3) and (4) we 
an write

f (x) F (x)r =
∞∑

j,k=0

aj,kπ2j+k+2 (x) ,

where

aj,k =
2δ (−1)j Γ (2j + k + 3)

j!k!Γ (2j + 3) (2j + k + 2)

∞∑

i=0

(−1)i (i+ 1)j
(
δ (r + 1)− 1

i

)
.
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Then, the (s, r)th PWM of X 
an be expressed as

ρs,r = θs
√

2

π

∞∑

j,k=0

bj,kF
(k)
A

(
1

2
[2j + k + 2 + s/λ] ;

1

2
, ...,

1

2
;
3

2
, ...,

3

2
;−1, ...,−1

)
.

where

bj,k = 2−
1

2
+k+ n

2λπ− 1

2
kaj,k Γ

(
1

2
[2j + k + 2 + s/λ]

)
.

3.4 Stress-strength model

Let X1 and X2 be two independent random variables with BrX-GHN(δ1, ξ)
and BrX-GHN(δ2, ξ) distributions, respe
tively. Then, the reliability is de-

�ned by

R =

∫ ∞

0

f1 (x; δ1, ξ)F2 (x; δ2, ξ) dx.

We 
an write

R =
∞∑

j,k,w,m=0

sj,k,w,m

∫ ∞

0

π2j+2w+k+m+4 (x) dx,

where

sj,k,w,m = 4δ1δ2

∞∑

i,h=0

(−1)i+h (i+ 1)j (h + 1)w
(
δ1−1
i

)(
δ2−1
h

)

(2w +m+ 2) (2j + k + 2w +m+ 4)

×
∞∑

j,k,w,m=0

(−1)j+w Γ (2j + k + 3) Γ (2w +m+ 3)

j!k!w!m!Γ (δ2 − h) Γ (2j + 3)Γ (2w + 3)
.

Thus, the reliability, R, 
an be expressed as

R =
∞∑

j,k,w,m=0

sj,k,w,m.
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3.5 Order statisti
s

Order statisti
s make their appearan
e in many areas of statisti
al theory

and pra
ti
e. Let X1, . . . , Xn be a random sample from the BrXGHN distri-

butions and let X1:n, . . . , Xn:n be the 
orresponding order statisti
s. The pdf

of ith order statisti
, Xi:n, 
an be written as

fi:n (x) = [B (i, n− i+ 1)]−1
n−i∑

j=0

(−1)j
(
n− i

j

)
f (x) F j+i−1 (x) , (10)

where B(·, ·) is the beta fun
tion. Using (3), (4) and (10) we have

f (x) F (x)j+i−1 =

∞∑

w,k=0

tw,kπ2w+k+2 (x) ,

where

tw,k =
2δ (−1)w Γ (2w + k + 3)

w!k!Γ (2w + 3) (2w + k + 2)

∞∑

m=0

(−1)m (m+ 1)w
(
δ (j + i)− 1

m

)
.

The pdf of Xi:n 
an be expressed as

fi:n (x) =

∞∑

w,k=0

n−i∑

j=0

(−1)j [B (i, n− i+ 1)]−1

(
n− i

j

)
tw,kπ2w+k+2 (x) .

Then, the density fun
tion of the BrX-GHN order statisti
s is a mixture of

exp-G densities. Based on the last equation, we note that the properties of

Xi:n follow from those properties of Y2w+k+2. For example, the moments of

Xi:n 
an be expressed as

E (Xq
i:n) =

∞∑

w,k=0

n−i∑

j=0

(−1)j
(
n− i

j

)
[B (i, n− i+ 1)]−1 tw,kE

(
Y q
2w+k+2

)
.

E (Xq
i:n) =

θq
√

2

π

∞∑

w,k=0

cj,kF
(k)
A

(
1

2
[2w + k + 2 + q/λ] ;

1

2
, ...,

1

2
;
3

2
, ...,

3

2
;−1, ...,−1

)
,

where

cj,k = 2−
1

2
+k+ n

2λ π− 1

2
k

×
n−i∑

j=0

(−1)j
(
n− i

j

)
[B (i, n− i+ 1)]−1 tw,kΓ

(
1

2
[2w + k + 2 + q/λ]

)
.
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4 Estimation

4.1 Maximum likelihood estimation

Several approa
hes for parameter estimation were proposed in the literature

but the maximum likelihood method is the most 
ommonly employed. So,

we 
onsider the estimation of the unknown parameters of this family from


omplete samples only by maximum likelihood. Let x1, . . . , xn be a ran-

dom sample from the BrX-GHN model with parameters δ, λ and θ. Let

Θ =(δ, λ, θ)⊺ be the p× 3 parameter ve
tor. The log-likelihood fun
tion is

ℓ = ℓ(Θ) = n log 2 + n log δ + n log

√
2

π
+ n log λ+ nλ log θ +

n∑

i=1

log xλ−1
i

−1

2

n∑

i=1

(xi/θ)
2λ +

n∑

i=1

log (τi − 1)− 3

n∑

i=1

log (2− τi)

−
n∑

i=1

s2i + (δ − 1)

n∑

i=1

log
[
1− exp

(
−s2i

)]
,

where si =
τi−1
2−τi and τi = 2Φ

[
(xi/θ)

λ
]
. The 
omponents of the s
ore ve
tor,

U (Θ) = ∂ℓ
∂Θ

=
(
∂ℓ
∂δ
, ∂ℓ
∂λ
, ∂ℓ
∂θ

)⊺
, are

Uδ =
n

δ
+

n∑

i=1

log
[
1− exp

(
−s2i

)]
,

where

Uλ =
n

λ
++n log θ +

n∑

i=1

log xi −
n∑

i=1

(xi/θ)
2λ log (xi/θ)

+
n∑

i=1

ζ
(λ)
τi

τi − 1
+ 3

n∑

i=1

ζ
(λ)
τi

2− τi
− 2

n∑

i=1

si
ζ
(λ)
τi

(2− τi)
2

+ (δ − 1)
n∑

i=1

2siζ
(λ)
τi (2− τi)

−2 exp (−s2i )
1− exp (−s2i )
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and

Uθ =
nλ

θ
− λ

n∑

i=1

θ−2λ−1 +

n∑

i=1

ζ
(θ)
q

τi − 1
+ 3

n∑

i=1

ζ
(θ)
q

2− τi

−2
n∑

i=1

si
ζ
(θ)
τi

(2− τi)
2 + (δ − 1)

n∑

i=1

2siζ
(θ)
τi (2− τi)

−2 exp (−s2i )
1− exp (−s2i )

,

where

ζ (λ)τi
=

2√
2π

exp

[
−1

2
(xi/θ)

2λ

]
(xi/θ)

λ log (xi/θ)

and

ζ (θ)τi
=

2√
2π

exp

[
−1

2
(xi/θ)

2λ

]
(xi/θ)

λ (λ/θ) .

Setting the nonlinear system of equations Uθ = 0 and Uξ = 0 and solving

them simultaneously yields the MLE Θ̂ = (θ̂, ξ̂⊺)⊺. To solve these equations,

it is usually more 
onvenient to use nonlinear optimization methods su
h as

the quasi-Newton algorithm to numeri
ally maximize ℓ.

4.2 Simulation study

In this se
tion, we 
ondu
t a simulation study to evaluate the performan
e

of MLEs of BrX-GHN model. We generate 10,000 samples of size, n =50,

250 and 500 from BrXGHN model using the inverse transform method. The

evaluation of estimates was based on the averages of estimates (AEs) and

mean squared errors (MSEs). The empiri
al study was 
ondu
ted with soft-

ware R.

The empiri
al results are given in Table 1. The values in Table 1 indi-


ate that the estimates are quite stable and, more importantly, are 
lose to

the true values for these sample sizes. The simulation study shows that the

maximum likelihood method is appropriate for estimating the BrXGHN pa-

rameters. In fa
t, the MSEs tend to be 
loser to zero when n in
reases. This

fa
t supports that the asymptoti
 normal distribution provides an adequate

approximation to the �nite sample distribution of the MLEs.
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Tab. 1: Estimated AEs and MLEs for several parameter values of BrXGHN

distribution.

Parameters

AE MSE

n δ λ θ δ λ θ
(2,2,0.5) 50 3.01134 2.27575 0.49430 10.84800 2.33700 0.00017

250 2.07400 2.05300 0.49900 0.37500 0.11200 0.00002

500 2.02300 2.03400 0.49970 0.15400 0.05600 0.00001

(0.5,2,2) 50 0.55419 2.89561 1.97113 0.18602 5.36315 0.00526

250 0.50072 2.12757 1.99380 0.01453 0.23766 0.00089

500 0.50021 2.04821 1.99676 0.00268 0.04086 0.00019

(2,4,5) 50 3.01081 4.90053 4.97673 16.71033 32.58943 0.00439

250 2.10414 4.06892 4.99638 0.36515 0.44431 0.00040

500 2.03973 4.06787 4.99713 0.19537 0.24999 0.00022

5 Log-BrXGHN regression model

Consider the BrXGHN distribution with three parameters given in (4). Hen
e-

forth, X denotes a random variable following the BrXGHN distribution (4)

and let Y = log(X). The density fun
tion of Y (for y ∈ ℜ) obtained by

repla
ing λ =
√
2

2σ
and θ = exp (µ) 
an be expressed as

f (y) =
2δ

σ
√

2π
exp

{

−
1

2
exp[( y−µ

σ )
√

2]+( y−µ
σ )

√

2

2

}[

2Φ

[

exp

[

( y−µ
σ )

√

2

2

]]

−1

]

(

2−2Φ

[

exp

[

( y−µ
σ )

√

2

2

]])

3

× exp

{
−
[ [

2Φ

[

exp

[

( y−µ
σ )

√

2

2

]]

−1

]

(

2−2Φ

[

exp

[

( y−µ
σ )

√

2

2

]])

]2}(
1− exp

{
−
[ [

2Φ

[

exp

[

( y−µ
σ )

√

2

2

]]

−1

]

(

2−2Φ

[

exp

[

( y−µ
σ )

√

2

2

]])

]2})δ−1

,

(11)

where µ ∈ ℜ is the lo
ation parameter, σ > 0 is the s
ale parameter and

δ > 0 is the shape parameter. We refer to equation (11) as the Log-BrXGHN

(LBrXGHN) pdf, say Y ∼ LBrXGHN(δ, σ, µ). The plots in Figure 3 show

shapes of density fun
tion (11) for sele
ted parameter values. They reveal

that this distribution is a good 
andidate to model left skewed and symmetri


lifetime data sets. The survival fun
tion 
orresponding to (11) is given by

S (y) = 1−


1− exp





−




[
2Φ
[
exp

[(
y−µ
σ

) √
2
2

]]
− 1
]

(
2− 2Φ

[
exp

[(
y−µ
σ

) √
2
2

]])



2







δ

, (12)
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and the hrf is simply h(y) = f(y)/S(y). The standardized random variable

Z = (Y − µ)/σ has density fun
tion

f (z) =
2δ√
2π

exp
{

1

2
exp[z

√
2]+(z)

√
2

2

}[

2Φ
[

exp
[

z
√

2

2

]]

−1
]

(

2−2Φ
[

exp
[

z
√

2

2

]])3

× exp

{
−
[ [

2Φ
[

exp
[

z
√
2

2

]]

−1
]

(

2−2Φ
[

exp
[

z
√

2

2

]])

]2}(
1− exp

{
−
[ [

2Φ
[

exp
[

z
√

2

2

]]

−1
]

(

2−2Φ
[

exp
[

z
√

2

2

]])

]2})δ−1 .

(13)

5.1 Estimation

5.1.1 Maximum Likelihood Estimation

Based on the LBrXGHN density, we propose a linear lo
ation-s
ale regression

model linking the response variable yi and the explanatory variable ve
tor

v
⊺

i = (vi1, . . . , vip) given by

yi = v
⊺

iβ + σzi, i = 1, . . . , n, (14)

where the random error zi has density fun
tion (13), β = (β1, . . . , βp)
⊺
, and

σ > 0 and δ > 0 are unknown parameters. The parameter µi = v
⊺

iβ is the

lo
ation of yi. The lo
ation parameter ve
tor µ = (µ1, . . . , µn)
⊺
is represented

by a linear model µ = Vβ, where V = (v1, . . . ,vn)
⊺
is a known model

matrix.

Consider a sample (y1,v1), . . . , (yn,vn) of n independent observations,

where ea
h random response is de�ned by yi = min{log(xi), log(ci)} where

xi and ci are lifetime and 
ensoring times, respe
tively. We assume non-

informative 
ensoring su
h that the observed lifetimes and 
ensoring times

are independent. Let F and C be the sets of individuals for whi
h yi is
the log-lifetime or log-
ensoring, respe
tively. The log-likelihood fun
tion for

the ve
tor of parameters τ = (θ, β, σ,β⊺)⊺ from model (14) has the form

l(τ ) =
∑
i∈F

li(τ ) +
∑
i∈C

l
(c)
i (τ ), where li(τ ) = log[f(yi)], l

(c)
i (τ ) = log[S(yi)],

f(yi) is the density (11) and S(yi) is the survival fun
tion (12) of Yi. The

total log-likelihood fun
tion for τ is given by
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ℓ ( τ ) =r log

(
2δ

σ
√
2π

)
− 1

2

∑

i∈F
exp

(
zi
√
2
)
+

√
2

2

∑

i∈F
zi +

∑

i∈F
log [ui − 1]

− 3
∑

i∈F
log [2− ui]

−
∑

i∈F

[
ui − 1

2− ui

]2
+ (δ − 1)

∑

i∈F
log

(
1− exp

{
−
[
ui − 1

2− ui

]2})

+
∑

i∈C
log


1−

(
1− exp

{
−
[
ui − 1

2− ui

]2})δ



(15)

where ui = 2Φ
[
exp

(
zi
√
2
/
2
)]
, zi = (yi − µi)/σ and r is the number of

un
ensored observations (failures). The MLE τ̂ of the ve
tor of unknown

parameters 
an be evaluated by maximizing the log-likelihood fun
tion (15).

The optim fun
tion of R software is used to estimate τ̂ . Under the standard

regularity 
onditions, the asymptoti
 distribution of (τ̂ − τ ) is multivariate
normal Np+2(0, K(τ )−1), where K(τ ) is the expe
ted information matrix.

The asymptoti
 
ovarian
e matrix K(τ )−1
of τ̂ 
an be approximated by the

inverse of the (p + 2) × (p + 2) observed information matrix −L̈(τ ), whose
elements are evaluated numeri
ally. The approximate multivariate normal

distribution Np+2(0,−L̈(τ )−1) for τ̂ 
an be used, in the 
lassi
al way, to


onstru
t approximate 
on�den
e intervals for the parameters in τ .

5.2 Sensitivity analysis

A �rst tool to perform sensitivity analysis, as stated before, is by means

of global in�uen
e starting from 
ase deletion. Case deletion is a popular

method to investigate the in�uen
e of taking out the ith 
ase from the data

on the parameters estimates. This method 
ompares the τ̂ with τ̂−i where
τ̂−i is the estimated parameters when the ith 
ase is dropped from the data.

If there is a big di�eren
es betweeb τ̂−i and τ̂ , the dropped observation 
ould

be 
onsidered as in�uential observation.

Here, generalized 
ook distan
e is used to dete
t the possible in�uential

observations. Generalized Cook distan
e (GD) is given by

GDi (τ ) = (τ̂−i − τ̂ )T
[
−L̈ (τ̂ )

]
(τ̂−i − τ̂ ) , (16)
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where −L̈ (τ̂ ) is the observed information matrix.

5.3 Residual analysis

Residual analysis has 
riti
al role in 
he
king the adequa
y of the �tted

model. In order to analyse departures from error assumption, two types of

residuals are 
onsidered: martingale and modi�ed devian
e residuals.

5.3.1 Martingale residual

The martingale residuals is de�ned in 
ounting pro
ess and takes values be-

tween +1 and−∞ (see, Fleming and Harrington[14℄ for details). The mar-

tingale residuals for LOLLBXII model is,

rMi
=





1 + log

{
1−

(
1− exp

{
−
[
ui−1
2−ui

]2})δ
}

ifi ∈ F,

log

{
1−

(
1− exp

{
−
[
ui−1
2−ui

]2})δ
}

ifi ∈ C,

(17)

where ui = 2Φ
[
exp

(
zi
√
2
/
2
)]

and zi = (yi − µi)/σ.

5.3.2 Modi�ed devian
e residual

The main drawba
k of martingale residual is that when the �tted model is


orre
t, it is not symmetri
ally distributed about zero. To over
ome this

problem, modi�ed devian
e residual was proposed by Therneau et al. [15℄.

The modi�ed devian
e residual is given by

rDi
=

{
sign (rMi

) { −2 [rMi
+ log (1− rMi

)]}1/2, ifi ∈ F

sign (rMi
) { −2rMi

}1/2, ifi ∈ C,
(18)

where r̂Mi
is the martingale residual.

6 Appli
ations

In this se
tion, we provide two appli
ations to real data sets to illustrate the

�exibility of the BrxGHN distribution and BrxGHN regression model. The

statisti
al software R is used for all numeri
al 
omputations. The following
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goodness-of-�t measures are used to 
ompare �tted models: Cramer von

Mises (W*), Anderson Darling (A*), estimated −ℓ and Akaike Information

Criteria (AIC). In general, the smaller the values of these statisti
s, the better

the �t to the data.

We 
ompare the BrxGHN distribution with another extension of GHN

distribution introdu
ed by Cordeiro et al. [10℄, named odd log-logisti
 gen-

eralized half-normal (OLLGHN) distribution. The 
df of OLLGHN distribu-

tion is given by

FOLLGHN (x;α, λ, θ) =

{
2Φ
[(

x
θ

)λ]− 1
}α

{
2Φ
[(

x
θ

)λ]− 1
}α

+
{
2− 2Φ

[(
x
θ

)λ]}α , (19)

where α > 0 is additional shape parameter. Note that when α = 1, OLLGHN
distribution redu
es to GHN distribution.

6.1 Univariate data modeling

The �rst data set refers to a lifetime taken from Gross and Clark [16℄. The

data are: 1.1,1.4,1.3,1.7,1.9,1.8,1.6,2.2,1.7,2.7,4.1,1.8,1.5,1.2,1.4,3,1.7,2.3,1.6,

Table 2 shows the estimated parameters and their standard errors, −ℓ and
AIC values. Based on the �gures in Table 2, BrxGHN distribution provides

better �ts than OLL-GHN distribution for used data set. Figure 4(a) displays

the histogram with �tted pdfs and Figure 4(b) displays the �tted hrf and P-

P plot of BrXGHN distribution. These �gures reveal that BrXGHN model

provides superior �ts to used data set.

Tab. 2: MLEs and their SEs of the �tted models and goodness-of-�t statisti
s

for se
ond data set

Models α δ λ θ −ℓ AIC A⋆ W ⋆

BrXGHN 16188.74 0.0771 0.214 15.545 37.091 0.256 0.047

(33.442) (0.022) (0.214)

OLL-GHN 34.380 0.099 92.226 16.574 39.148 0.400 0.071

(11.502) (0.027) (101.786)

GHN 1.955 2.302 22.452 48.905 1.391 0.242

(0.487) (0.137)
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6.2 HIV data set

The performan
e of LBrXGHN regression model is 
ompared with log-odd

log-logisti
 generalized half-normal (LOLLGHN) regression model, introdu
ed

by Pes
im et al. [17℄, and log-generalized half-normal (LGHN) regression

model. The survival fun
tions of LOLLGHN and LGHN regression models

are given by, respe
tively,

SLOLLGHN (y) =

(

2−Φ
[

exp
[

( y−µ
σ )

√
2

2

]])θ

[

2Φ
[

exp
[

( y−µ
σ )

√
2

2

]]

−1
]θ

+
(

2−Φ
[

exp
[

( y−µ
σ )

√
2

2

]])θ ,

SLGHN (y) = 2− 2Φ
[
exp

[(
y−µ
σ

) √
2
2

]]
.

(20)

The hypotheti
al dataset 
ontains 100 observations on HIV+ subje
ts be-

longing to an Health Maintenan
e Organization(HMO). The HMO wants to

evaluate the survival time of these subje
ts. In this hypotheti
al data set,

subje
ts were enrolled from January 1, 1989 until De
ember 31, 1991. Study

follow up then ended on De
ember 31, 1995. This data set are reported in

Hosmer and Lemeshow [18℄ and also 
an be found in R pa
kage Bolstad2. We

adopt the LBrXGHN regression model to analyze this dataset. The variables

involved in the study are: yi - observed survival time (in months); censi -

ensoring indi
ator (0= alive at study end or lost to follow-up,1=death due

to AIDS or AIDS related fa
tors), xi1(1 = yes, 0 = no) represents the history
of drug use and xi2 represents the ages of patients.

We 
onsider the following regression model

yi = β0 + β1xi1 + β2xi2 + σzi,

where yi has the LBrXGHN density, for i = 1, . . . , 100.

6.2.1 Maximum Likelihood Estimation

The MLE method is used to estimate unknown parameters of LBrxGHN,

LOLLGHN and LGHN regression models. Table 3 shows the MLEs of the

model parameters �tted regression models, estimated log-likelihood values

and AIC values. These results indi
ate that the LBrxGHN regression model

has the lowest values of these statisti
s, and so LBrxGHN model provides

better �tting than LOLLGHN and LGHN models for used data set. For the

�tted regression models, note that β0, β1 and β2 are marginally signi�
ant

at the 1% level.
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Tab. 3: MLEs of the parameters, their standard errors and p-values, the es-
timated −ℓ and AIC statisti
.

Models Parameters δ θ σ β0 β1 β2 −ℓ AIC

LGHN Estimates 0.757 6.347 -0.091 -1.126 130.590 269.180

Std. Errors 0.067 0.487 0.013 0.177

p values <0.001 <0.001 <0.001

LOLLGHN Estimates 2.448 1.691 6.686 -0.091 -0.965 128.228 266.455

Std. Errors 1.72504 1.1841 0.7582 0.01427 0.2097

p values <0.001 <0.001 <0.001

LBrXGHN Estimates 5.064 5.066 7.085 -0.089 -0.962 127.585 265.171

Std. Errors 3.988 1.981 0.612 0.015 0.211

p values <0.001 <0.001 <0.001

6.2.2 Sensitivity Analysis

Here, possible in�uential observations are analysed with measure des
ribed in

Se
tion 5.2. Figure 5 displays the results of generalized Cook distan
e,GDi (τ ).
Based on Figure 5, 
ases 41 and 48 
an be 
onsidered as possible in�uential

observations.

6.2.3 Residual Analysis

Figure 6 displays the index plot of the modi�ed devian
e residuals and its

Q-Q plot against to N(0, 1) quantiles. Based on Figure 6, we 
on
lude that

none of observed values appears as possible outliers. Therefore, the �tted

model is appropriate for these data set.

7 Con
lusion

In this study, we introdu
ed a new �exible extension of the Generalized Half-

Normal lifetime model as well as a new log-lo
ation regression model based

on the proposed model. Some useful 
hara
terization results are presented

and some mathemati
al properties are derived. The maximum likelihood

method is used to estimate the model parameters by means of a graphi
al

Monte Carlo simulation study. We show that the new log-lo
ation regression

lifetime model 
an be very useful in analysing real data and provide more

realisti
 �ts than other regression models. Index plot of the modi�ed de-

vian
e residual and Q-Q plot for modi�ed devian
e residual are presented to

illustrate that our new model is more appropriate to HIV data set than other
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ompetitive models like log-odd log-logisti
 generalized half-normal regres-

sion model and log-generalized half-normal regression model. The sensitivity

analysis is used via the index plot of generalized 
ook distan
e to dis
over

the possible in�uential observations.

Referen
es

[1℄ K. Cooray and M.M.A. Ananda. A generalization of the half-

normal distribution with appli
ations to lifetime data. Communi
a-

tion in Statisti
s - Theory and Methods, 37(9):1323�1337, 2008. doi:

10.1080/03610920701826088.

[2℄ H.M. Yousof, A.Z. A�fy, G.G. Hamedani, and G. Aryal. The burr x

generator of distributions for lifetime data. Journal of Statisti
al The-

ory and Appli
ations, 16(3):288�305, 2017. http://download.atlantis-

press.
om/php/download_paper.php?id=25883863.

[3℄ R.R. Pes
im, C.G.B. Demetrio, G.M. Cordeiro, E.M.M. Ortega, and

M.R. Urbano. The beta generalized half-normal distribution. Com-

putational Statisti
s and Data Analysis, 54(4):945�957, 2010. doi:

10.1016/j.
sda.2009.10.007.

[4℄ G.M. Cordeiro, R.R. Pes
im, and E.M.M. Ortega. The kumaraswamy

generalized halfnormal distribution for skewed positive data. Journal of

Data S
ien
e, 10:195�224, 2012. http://www.jds-online.
om/�les/JDS-

1010.pdf.

[5℄ R.R. Pes
im, E.M.M. Ortega, G.M. Cordeiro, C.G.B. Demetrio, and

G.G. Hamedani. The log-beta generalized half-normal regression model.

Journal of Statisti
al Theory and Appli
ations, 12:330�347, 2013. doi:

10.2991/jsta.2013.12.4.2.

[6℄ T.G. Ramires, E.M.M. Ortega, G.M. Cordeiro, and G.G. Hamedani. The

beta generalized half-normal geometri
 distribution. Studia S
ientiarum

Mathemati
arum Hungari
a, 50(4):523�554, 2013. doi: 10.1556/SS
-

Math.50.2013.4.1258.

[7℄ F. Merov
i, M. Alizadeh, H.M. Yousof, and Hamedani G.G. The expo-

nentiated transmuted-g family of distributions: theory and appli
ations.



Flexible extension of the generalized half-normal lifetime model 108

Communi
ations in Statisti
s-Theory and Method, 46(21):10800�10822,

2017. doi: 10.1080/03610926.2016.1248782.

[8℄ W. Glanzel. A 
hara
terization theorem based on trun
ated moments

and its appli
ation to some distribution families. In: Mathemati
al

Statisti
s and Probability Theory, Bauer P., Kone
ny F., Wertz W.

(eds). Springer, Dordre
ht, B:75�84, 1987. doi: 10.1007/978-94-009-

3965-3_8.

[9℄ W. Glanzel. Some 
onsequen
es of a 
hara
terization theorem based on

trun
ated moments. Statisti
s: A Journal of Theoreti
al and Applied

Statisti
s, 21(4):613�618, 1990. doi: 10.1080/02331889008802273.

[10℄ G.M. Cordeiro, M. Alizadeh, R.R. Pes
im, and E.M.M. Ortega. The

odd log-logisti
 generalized half-normal lifetime distribution: properties

and appli
ations. Communi
ation in Statisti
s- Theory and Methods,

46(9):4195�4214, 2016. doi: 10.1080/03610926.2015.1080841.

[11℄ H. Exton. Handbook of hypergeometri
 integrals: theory, appli
ations,

tables, 
omputer programs. Halsted Press, New York, 1978. ISBN 978-

0853121220.

[12℄ R.M Aarts. Lauri
ella fun
tions. From MathWorld - A

Wolfram Web Resour
e, 
reated by Eri
 W. Weisstein, 2000.

http://mathworld.wolfram.
om/Lauri
ellaFun
tions.html.

[13℄ M. Trott. The Mathemati
a Guidebook for Symboli
s. Springer-Verlag,

New York, 2006. ISBN 978-0-387-28815-4.

[14℄ T.R. Fleming and D.P. Harrington. Counting pro
ess and survival anal-

ysis. Series in Probability and Statisti
s. Wiley, New York, 2013. ISBN

978-0-471-76988-0.

[15℄ T.M. Therneau, P.M. Grambs
h, and T.R. Fleming. Appli
ations of

soft sets in ideal theory of b
k/b
i-algebras. Biometrika, 77(1):147�160,

1990. doi: 10.2307/2336057.

[16℄ A.J. Gross and V.A. Clark. Survival Distributions: Reliability Appli
a-

tions in the Biomedi
al S
ien
es. Wiley, 1975. ISBN 978-0471328179.



109 Altun, Yousof, Hamedani

[17℄ R.R. Pes
im, E.M. Ortega, G.M. Cordeiro, and M. Alizadeh. A new log-

lo
ation regression model: estimation, in�uen
e diagnosti
s and resid-

ual analysis. Journal of Applied Statisti
s, 44(2):233�252, 2017. doi:

10.1080/02664763.2016.1168368.

[18℄ D.W. Hosmer, S. Lemeshow, and S. May. Applied Survival Analysis:

Regression Modeling of Time-to-Event Data, 2 edition. Wiley, 1998.

ISBN 978-0-471-75499-2.

Appendix A

Theorem 1. Let (Ω,F ,P) be a given probability spa
e and let H = [a, b]
be an interval for some d < b (a = −∞, b = ∞ might as well be allowed) .
Let X : Ω → H be a 
ontinuous random variable with the distribution

fun
tion F and let q1 and q2 be two real fun
tions de�ned on H su
h that

E [q2 (X) | X ≥ x] = E [q1 (X) | X ≥ x] η (x) , x ∈ H,

is de�ned with some real fun
tion η. Assume that q1, q2 ∈ C1 (H), η ∈ C2 (H)
and F is twi
e 
ontinuously di�erentiable and stri
tly monotone fun
tion on

the set H. Finally, assume that the equation ηq1 = q2 has no real solution in

the interior of H. Then F is uniquely determined by the fun
tions q1, q2 and
η , parti
ularly

F (x) =

∫ x

a

C

∣∣∣∣
η′ (u)

η (u) q1 (u)− q2 (u)

∣∣∣∣ exp (−s (u)) du ,

where the fun
tion s is a solution of the di�erential equation s′ = η′ q1
ηq1−q2

and C is the normalization 
onstant, su
h that

∫
H
dF = 1.

Appendix B

R 
ode for parameter estimation of BrXGHN distribution.

library(Adequa
yModel)


df=fun
tion(par,x)

{ gam=par[1℄

lambda=par[2℄

theta=par[3℄
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y=x

G=2*pnorm((y/theta)^lambda)-1

g=sqrt(2/pi)*(lambda/y)*(y/theta)^(lambda)

*exp((-1/2)*(y/theta)^(2*lambda))

f=(1-exp(-(G/(1-G))^2))^gam

return(f)}

pdf=fun
tion(par,x)

{ gam=par[1℄

lambda=par[2℄

theta=par[3℄

y=x

G=2*pnorm((y/theta)^lambda)-1

g=sqrt(2/pi)*(lambda/y)*(y/theta)^(lambda)

*exp((-1/2)*(y/theta)^(2*lambda))

f=((2*gam*g*G)/(1-G)^3)*exp(-(G/(1-G))^2)

*(1-exp(-(G/(1-G))^2))^(gam-1)

return(f)}

fit=goodness.fit(pdf=pdf, 
df=
df,

starts = 
(gam1,lambda1,theta1), data = data,

method="N", domain=
(0,Inf))
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Fig. 1: The pdf plots of BrXGHN distribution for several parameter values.
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Fig. 2: The hrf plots of BrXGHN distribution for several parameter values.
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Fig. 3: Plots of the LBrXGHN density fun
tion for some parameter values.
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Fig. 4: (a) Fitted densities of �tted models and (b) �tted hrf and P-P plot

of the BrXGHN model for used data set.

Fig. 5: Index plot of generalized 
ook distan
e.
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Fig. 6: (a) Index plot of the modi�ed devian
e residual and (b) Q-Q plot for

modi�ed devian
e residual.


