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Calculation of Control Circuits in Frequency Domain
using Scilab Environment

The paper presents the computing of control circuits in the frequency
domain, starting from the mathematical model of the frequency re-
sponse H(jw) obtained from the transfer function H(s) where the oper-
ational variable keeps just the image part. For PT1 and PT2 elements,
using Scilab, the geometrical place is illustrated and the frequency dia-
grams are determinate for different duping constants (PT2). The loga-
rithmic frequency diagrams (Bode), determine the amplitude and phase
reserve for a control circuits with three PT1 elements.
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1. Introduction

The geometric locus — hodograph — is a graphical representation of the fre-
quencies / pulsation response function H(jo). The values of the H(jo) function
represents the peaks of the vector in the domain 0 < ® < oo, in a complex plane.
With help of the Niquist criteria, the stability of the closed loop system can be veri-
fied starting from the open loop circuit system.

Using the Scilab program for determining the geometrical place and the Bode
diagrams, the polynomial form of the frequency response function is used. The
Bode diagram represents the amplitude, IgH(jow) and phase, in separate diagrams,
in function of Ig(w). The control circuit has to be tuned in such way, so that the
stability limit should not be achieved. It is necessary that referring to the stability
limit, a big enough reserve has to exist, so that in case of parameter modification
of the control circuit, instability is not allowed to appear. This is stated through the
amplitude margin A and phase reserve j ..
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2. Mathematical model, geometric locus and Bode diagrams
computed with Scilab

The mathematical model of the response frequency function is [5]:
. jw .
H(w)= W) Y i @
u(jw) |u
and the geometrical locus results representing the values of H(jw) for 0 < ® < oo.

Using Scilab environment, the transfer function will be expressed in polynomial
form:

m m-1
H(s)= b, sn +b. sml +..+Db -s+Db, @
a,-s +q,,-S " +..+aq -S+4q,

The real and imaginary part of the frequency response function is computed
and plotted in Scilab using the function nyquist (sl, [fmin, fmax][,step]), with the
arguments sl — continuous or discrete time SIMO linear dynamical system; fmin,
fmax - real scalars (frequency lower and upper bounds in Hz); step — if not given,
an adaptive discretization is used. [2], [7]

The Scilab files for representing the geometrical place for a PT1 and PT2 ele-
ment is based on the transfer functions [1]:

K
H PTl(S): 1+ ;—
1

Hop,(s)=
ere s°+2-D-w,Ss+W.
The relations (3) and (4) have following parameters: amplification factors Kp,,
Kp2, OWn pulsation o, and D — amortization factor [4].
Table 1 contains the Scilab script under which the Nyquist diagram, figure 1,
is computed for PT1 — and PT2 elements.
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Table 1. Scilab Script — file computing Nyquist diagram

Kpl=1; T1=4; // gain and time constant
Kp2=1; w0=0.5; D= // Parameter

s=Y0s;

numl1=Kp1l, // numerator
denl=s*T1+1; // denominator

tfl=numl/deni;

num2=Kp2*(w0™2);

den2=(s"2)+2*D*w0*s+w0”2;

tf2=num?2/den2;

// transfer polynominal
// numerator

// denominator
// transfer polynominal
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// create a Scilab-usable continous system
ansysl=syslin('c’,Kpl/(T1*s+1));
ansys2=syslin('c’,tf2);
t=linspace(-2,2,50);

nyguist(ansysl);

nyquist(ansys2);

Nyquist plot
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Figure 1. Nyquist diagram for PT1 and PT2 element

The next analyze, table 2, represents a PT2 element (4) for different
amortizations, D, in the domain 0.1 < D < 2, figure 2.

Table 2. Scilab Script —Bode answer for PT2 element at different D
//Bode - diagramm for PT2 element at different amortizations
§=%0s;

D=[0.1, : : , , 1, 2]; // Amortization values
for k=
num=1; // numerator
den=s"2+2*D(k)*s+1; // denominator
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tf(k)=syslin('c’,num/den);
end

clf();
bode([tf(1);tf(2);tf(3);tf(4); th(5); tf(6); tf(7)], 0.1, 10, ...
[ ; ; ; ; ; ; D
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Figure 2. Bode diagrams for a PT2 element, at different amortizations

The Bode diagrams are exemplified with an open loop control circuit with 3
PT; elements, where Hc — represents the controller transfer function and HP — the
process transfer function, having the transfer function [5]:

Ke - Kp

Hep(s)=Hc(s) He(s) st mstyst) ©

The simulation of the bode diagrams, figure 3, computing and displaying the

gain and phase margin, together with the associated crossover frequencies of li-

near system is computed in Scilab, table 3, through the ‘show_margins’ function,

represented by the calling sequence: show_margins (h,’bode”), were h — is a SISO
linear system in continuous time [3], [7].
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Table 3. Scilab Script — File computing Bode answer

Ks=2; T1=1; T2=0.1; T3=T2; KR=5; // Parameter

s=%s;

num=Ks*KR; // numerator
den=(1+s*T1)*(1+s*T2)+(1+s*T3); // denominator
tf=num/den; // transfer polynominal

// create a Scilab-usable continous system
ansys=syslin('c’,tf);
show_margins (ansys);
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Figure 3. Bode diagrams of an open loop with three PT1 elements, with the
marked gain and phase reserve

4. Conclusion

With those presented, the control circuits in frequency / pulsation domain can
be computed, using the availabilities offered by Scilab. Specific Scilab functions are
defined to determine the geometrical locus and Bode frequency diagrams.
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With their help the amplitude and phase reserve can be determinate and,
through this, the stability of the controlled systems [6].

The Scilab / Xcos modeling and simulation programming language offers an
effective practice instrument to compute the control circuits in frequency domain.
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