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Sergiu Ciprian Catinas 

Applications of Rotational Stiffness in Numerical 
Methods for Reinforced Concrete Elements Subject 
to Horizontal Efforts                                                                              

A detailed investigation of the RC elements subject to horizontal forces 
and the effect of the rotational stiffness were conducted in this paper 
by using numerical methods. Since the early ‘1960 this technique be-
come used by engineers but only in the last decade, due to the devel-
opment of the computing machines the method was used on a large 
scale. The paper deals with a technique. The paper deals with a sum-
mary of recent techniques in manipulating the stiffness matrix of the 
constitutive materials in efficiently solving problems related to connec-
tion between horizontal forces and rotational stiffness. The paper pro-
pose some practical methods deducted from theoretical formulation of 
the stiffness matrix and propose new formulation of the stiffness matrix 
for this completely applicable to the new technique. At last the paper 
analyses a three level RC structure using a FEM based computer soft 
with the method proposed and delivers the results. 

Keywords: manipulating of the stiffness matrix; rotational stiffness; 
numerical methods; horizontal forces; link between rotational stiffness 
and horizontal forces 

 1. Introduction  

 The method described here is based on the theory initially developed by 
Hooke and then extended by Cauchy. This method implies a numerical method 
based on a set of equilibrium equations with respect to the kinematical admissible 
field conditions. Based on these equations is that needs to be solved is created this 
technique that takes in consideration the constitutive law of materials. The general 
form of strain-stress connection is expressed by Cauchy in a general form that in-
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volves 36 components that form the stiffness matrix to be consider in an numerical 
analyze. 
 However due to the symmetry that is in relation with the constitutive law of 
the most common materials only 21 of these constants are independent. More over 
for the reinforced concrete, a cohesive and frictional material with a complex be-
havior, the current practice admits some simplifying rules in order to reduce the 
number of the components for the stiffness matrix of the reinforced concrete ele-
ments. By applying this stiffness matrix for reinforced concrete elements in nu-
merical methods it is possible to reduce the number of the components to 9. By 
convention the elements are called Young's modulii E1, E2, E3, the 3 Poisson's ra-
tios ν23, ν31, ν12, and the 3    
 For modeling the tension stiffening energy there are several models proposed 
(e.g. liniar model proposed by Hilleborg [1]. or bilinear proposed by Roelfstra and 
Wittmann [2]) by the introduction of the fracture energy concept GF as introduced 
by Hillerborg as in figure 1. These models can bring accuracy to the calculus, espe-
cially in a long term analyses. The paper presents techniques to create RC ele-
ments that have better behaviour through dissipation of the energy by introducing 
rotational efforts. 
 The paper deals with the link between horizontal efforts and other efforts that 
are in the RC elements. The link becomes a source of inspiration on developing 
new types of RC elements. The new elements have a better performance when the 
horizontal force is applied. A new stiffness matrix is developed so that the ele-
ments can be analyzed. At last a theoretical 3 level RC structure with the new ele-
ments is created and compared.  

 
Figure 1. Schematic element section- friction energy 

 2. Research significance 

 The RC elements proposed in this paper are important in study over applied 
numerical methods in the overall knowledge repository. The research significance 
resides from the manipulation of a stiffness matrix according to the specific case 
involved. The paper deals with a triaxial effort and the manipulation of the stiffness 
matrix with respect to the linked among efforts. More over the paper creates a pat-
tern suitable for implementation into computer computation programs. The other 
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research significance aspects reside from the seismic protection system that can be 
created based on this technique and also leads to new areas of study. 

 3. Experimental investigation  

 For the purpose of showing the benefit of the technique proposed a theoreti-
cal RC structure was modeled using Abacus Cae. A 3 level structure was consid-
ered with 4 columns per floor. The beams considered have 4.5 meters and a cross 
section of 30x50 cm and the other beam is 5.6 meters long and a cross section. A 
system that allows rotation of the columns is implemented as seen in figure 2 
theoretical and in figure 3-practical.  

 
Figure 2.  El. with Mx,My,Ty- undeformed 1-b El. with Mx,My,Ty-deformed 

 

Figure 3. Column solution to allow rotation b Column solution to allow rotation 

 The RC structure is subject to horizontal efforts similar with a seismic force. 
The results are compared with the same structure but with no rotational move-
ments of the columns allowed. The comparative results underline the benefit of the 
system. The rotational pins have an eccentricity of 3 cm of the center of the cross 
section along axis X and Y and the columns are 4.0 meters and a cross section of 
30 cm by 30 cm. To mention that a system that allows rotation of the cross section 
of the columns can be created in a different manner. 
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 4. Materials 

 The materials used in Abaqus simulation are ordinary materials used in RC 
structures For columns is used concrete described as elastic material with a 
modulus of elasticity of 210 and a density of 2000 As for the metal used the 
modulus of elasticity is 210…and a density of 3000. For the purpose of the re-
search it is considered that no reinforcement bars are introduced, as Neil did [3]. 
As for description of contact surfaces that interact is considered 2 types: with or 
without penalty. 

 5. Items of investigation 

 A theoretical RC structure was analyzed using Abacus CAE, as in figure 4 and 
the focus of the analysis was for the total movement of the structure compared 
with the same structure using the same materials but with no rotational movement 
for the columns.  

 
Figure 4.a. Structure analyzed-column rotated      4.b.Structure analyzed 

 The fracture energy was analyzed to see the improvement brought by the in-
troduction of rotational movement in columns, using O’Hara [4]. The columns 
studied are 30 cm by 30 cm and the metal pin is 25cm long with a radius of 5 cm , 
made by plain steel with a modulus of elasticity of 210 Mpa. 

 6. Analytical investigation 

 Current practice involves a stiffness matrix developed in the last decade and 
implemented in computer based calculations programs that allows determining the 
state of stress and strain in a cross section. These techniques are based on a 
common stiffness matrix as expressed bellow and are suitable for analyses with 
complex properties like concrete with reinforced polypropylene fibbers or concrete 
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with fibber carbon and the results are satisfactory. The main equation is expressed 
in (1). 

}U{}F{}F{ eee ⋅= ,         (1) 
 Where the stiffness matrix is as in (2). However, the most common analyses 
for these numerical methods involve a stiffness matrix as see in (2). Please notice 
that this matrix involves the connections between strain and stress that are most 
interconnected. The connectivity among pure stress and pure rotation along axis X, 
if we consider the axis x as the longest axis is neglected. More over the rotational 
moment computation can be done only through finite element analyses to a vari-
ous cross section shape, but can be estimated for the most common cross section 
shapes. 
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 The note above leads to the idea of practical manners like simply observation 
that are easy to understand and implement. It is easy to notice the lack of connec-
tion among the rotational stress/strain, according to Rafueneau [5] and the rest of 
the strains/stresses involved. This lack of connectivity is due to the low level of 
influence of the rotational moment over the rest of the matrix, and also due to a 
rare frequency of this kind of effort in current civil practice. However the main idea 
resides from this notice and involves a transfer of the efforts among components 
of the stiffness matrix of the most common reinforced concrete elements. 
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 From the theoretical idea to practical idea is only one step. This step involves 
the RC element with a unique property of letting the element with a limited rota-
tional degree of freedom. For this purpose a stiffness matrix showing the connec-
tion between horizontal efforts and rotational efforts will be considered as in (3).  
The unknowns in (3) are factors iα . In order to find out the unknowns a system 

with one element as expressed in figure 1-a and 1-b is considered. By considering 
α1 as known and considering (4) , due to finite element approach and angles ex-
pressed in Radians.  

yjyj UL ⋅=θ                                                 (4) 
 By analyzing cases from figure 1-a and 1-b with one node of the element con-
sidered blocked and the other free we can create link formulas among iα  factors 

with the property of expressing all of the iα  factors with respect to 1α  as de-

scribed by (12).Case with node I encastre and node J allowed moving with all de-
gree of freedom and considering the force along axis Y as the only effort, the rota-
tional effort, as equals in value but of contrary sign. As for the first node all 
movements are considered 0 .By writing the equations from the stiffness matrix 
that is to calculate TI and then TJ: 
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 By considering the other effort it is easy to deduct the symmetry of the stiff-
ness matrix for all iα  factors. As for loads combined conveniently and considering 

the transition of efforts from one end to another we can deduct al iα  factors with 

respect to iα .Case with node J having moment Mz/y blocked and rotational mo-

ment  MXI blocked and node I allowed to move along all degrees of freedom and 
applying an effort TI. That means that the movements Rjθ and yjθ are 0.Therefore 

the equations can be written as follows in (7) and (8). 
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 Doing similar cases as above and consider the symmetry of the stiffness ma-
trix along diagonal of the stiffness matrix proposed with a connection between ef-
forts becomes as in (9) with all 1α  depending on iα . 

 Please note that a formulation as in (17) is suitable for the seismic protection 
system proposed only. A formulation as (9) is suitable for any system that involves 
the element to execute free rotations, according to Priestley [6]. Therefore the 
intend to be in a more of a general case, brings the formulation as in (9) with the 
desire of allow the design of the structure to change the stiffness properties of the 
element according to the needs that are vast and are related to the height of the 
structure, seismic zone, the shape of the RC structure and the architectural needs 
involved. That is the purpose of expressing all of the iα unknowns with respect to 

1α  with FEM methods with respect to loads, because loads and neutral axis can 

vary among columns, and the final cross section shape of the columns. 

e
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 As for 1α can be estimated as in (16) due to formulation of expression of rota-

tional moment expressed in (14). 

321R MMMM µµµ −−=                                   (14) 
Where M1,2,3 represents the moment induced from the three surfaces of contact 
among elements and µ  is the frictional coefficient from the friction force, consid-

ered equal for all 3 surfaces, according to Silwerbrand [7]. The 3 surfaces of con-
tact are considered in this case: bottom rectangular plate with the cross area of 
the pin excluded, exterior face of cylindrical pin with no top and bottom and the 
top of the metallic pin. Also the rotational moments can be expressed analytical as 
in (15). 

dxdy)R(dxdy)yx(dxdy)yx(M
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R ∫∫∫ −+−+= µτπσµσµ      (15) 

 Considered RM  as known due to FEM methods 1α  can be expressed as in 

(16). 

T

R
1 GI

LM=α                                                     (16) 

 Considering the stiffness matrix as expressed originally in (2) and considering 
the stiffness matrix expressed in (9) the final stiffness matrix for columns with the 
rotational degree of freedom becomes as seen in (17). 
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 Please note that a small reduction of the cross section area occurs and that 
can be expressed in the stiffness matrix by introducing a connection among rota-
tional effort and the first effort expressed in the stiffness matrix, according to Shi-
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geru [8]. However, due to small influence it can be introduced simply by changing 
the cross section area to a new cross section area considered the smallest when a 
rotation occurs with respect to originally cross section area and the eccentricity. 
For a square cross section shape this can be expressed as in (18). 

exaSS1 −=                                                  (18) 
 As for the RC beams, as in figure 5 the first important notice is that beams 
becomes more subject to wrapping as the rotation of the beam occurs due to the 
angle of the loads applied with respect to usual cross section. More over is hard to 
create a beam that has the capability of rotation due to challenges expressed fur-
ther more. Some challenges and observations of the theoretical analyses are due. 
First for the columns the wrapping effect is not considered due to the low influence 
of wrapping, but the effect or the reduction of the cross section has to be consid-
ered as a factor of safety, βS. This factor is introduced due to the movement of the 
cross sections of the end of the elements. βS is estimated as  

λββ ⋅= SNS                                                   (18) 
 A major challenge for transferring the efforts towards rotational effort is the 
modeling of the tension stiffening. The tension between the primary cracks can 
increase sensitively (up to 3 times) the stiffness of a structural concrete member 
and can be very important especially in Serviceability Limit States design, but ne-
glected for the Ultimate Limit States design. Never the less the modeling of the 
tension stiffening can bring great deal of accuracy to calculus, usually by dividing 
the crack width to the average crack spacing, usually 2/3 of the element 
height.The creep represents one of the challenges in transfer of the efforts. The 
creep is modeling is described by a procedure that provides good accuracy with 
fast results. 

 
Figure 5. Element proposed for beam allowed to execute rotation 

 Creep is obtained by scaling the uniaxial stress-strain curve with the factor 
(1+φ), where φ is the creep coefficient. There is a slightly overestimation of the 
deformation that is involved by this procedure. Next a stiffness matrix for the 
beams with rotation capabilities is created. First a connection among rotational 
moment and wrapping moment is introduced by Rafueneau [3] in (18). 
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By introducing this matrix in the stiffness matrix obtain the stiffness matrix as (24). 
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(24) 

 The resolving of the unknown in (24), called βi is done in the same manner as 
considerer for the columns by considering one element with this stiffness matrix 
and one node of the element with some degree of freedom blocked and the other 
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end with degree of freedom permitted in a convenient manner and considering the 
connections among the efforts. 
 In the stiffness matrix the unknowns are βi. By solving the unknown through 
convenient cases with end conditions there is possible to express the unknown as 
related to β1. The final stiffness matrix for the beams becomes as seen in 27 
With a note that in a similar manner can be treated the moment along axis Z and 
βi are expressed with respect to β1 that is expressed as in (25) the stiffness matrix 
is as in (26). 
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with 

λ
ββ

sinh
1

2
−=                                           (27) 

λ
ψψββ

sinh
21L1

3
−+⋅−=                                    (28) 

λ
ψψββ

sinh
32L1

4
++⋅=                                     (29) 

λ
ψψββ

sinh
22L1

4
+−⋅=                                     (30) 

λ
ββ

sinh
1

6 =                                         (31) 



 163 

λ
ψψββ

sinh
21L1

7
+−⋅−=                                   (32) 

λ
ψψββ

sinh
32L1

8
+−⋅−=                                   (33) 

λ
ψψββ

sinh
41L1

9
+−⋅−=                                    (34) 

λ
ψψββ

sinh
21L1

10
−+⋅=                                    (35) 

 For RC columns the major codes of practice introduced after 2000 introduced 
reliable models. However confinement caused by the Poisson lateral effect acts 
only at high values loads as seen in figure 8. That implies that the technique is 
most valuable for Ultimate Limit State design, according to Hyunhoon [9]. In terms 
of energy it is easy to observe the extra potential energy in case of seismic moves 
that takes place, similar with the concept of obtaining plastic articulations in the 
event of the seism so well known by current engineering practice.  
 Due to this notes and observations the conclusion leads to the idea of imple-
menting this system to the columns first and observe the results. 

 7. Comparison of predictions and experimental results 

 As expressed in analytical investigation the idea of creating RC beams with 
capability of rotation is hard to implement. As for the columns the idea seems 
more suitable. So a system that allows columns to execute rotation is created as 
seen in fig 65 with a non variable eccentricity, first along axis X and then along 
axis Y. Please note that other systems can be created as well. As expected im-
provements are shown in the final movements of the third floor and also of the 
energy. 
 As for columns subject to horizontal impact that simulates a seismic move-
ment the results in terms of energy are expressed in table 1. Obviously the rota-
tion of columns along their longest axis involves a dissipation of energy through 
frictional force this dissipation of energy is benefice for the structure, but also 
brings a disadvantage due to reduction of cross section area. 
Therefore the solution brings limited benefits in reducing the total energy accumu-
lated in the structure. If considered a total energy assimilated in the structure ac-
cording to formula 36, then the total dissipation of energy is 35% in this case. 

 8. Experimental results and discussion 

 Due to the seismic force estimated as Choi [10] as in (36) it is easy to see the 
impact of the system applied to the columns of a RC structure. As expected the 
total energy is reduced with a percentage that can reach 35%.This would benefit 
the structure and make the structure more resistant to horizontal forces, especially 
the seismic impact. A seism impact was considered for the theoretical experiment 
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with tabular amplitude. Please note that this reduction of energy is seen in the re-
duction of energy at the level of the total strain energy as well. 

HEEEEE SDki +++=                                        (36)  

 With the significance that Kinetic Energy +Dumping Energy +Strain Energy 
+Hysteric Irrecoverable Energy equals Input Energy. 
 Please note that the system implemented to RC structure’s columns bring 
some disadvantage as well like connection among pins and the column and that 
can be solved through additional stirrups. Other note resides from the fact that this 
system that allows columns to execute rotations needs repairs after any seismic 

force. 
 

Time Case 1 Case 2 Case 3 Case 4 
0.01 0.21 0.08 0.08 0.08 

0.02 0.35 0.21 0.21 0.21 

0.03 0.84 0.42 0.42 0.42 

0.04 1.32 0.78 0.78 0.78 
0.05 2.6 1.18 1.18 1.18 

0.01 0 0 0 0 

0.02 0 0 2.2 2.6 
0.03 0 0 18.4 19.4 

0.04 0 0.9 40.4 45.6 

0.05 0 8.4 84.8 93.9 
0.01 0.21 0.08 0.08 0.08 

0.02 0.35 0.21 0.21 0.21 

0.03 0.84 0.42 0.42 0.42 
0.04 1.32 0.78 0.78 0.78 

0.05 2.6 1.18 1.18 1.18 
0.01 0.11 1.12 1.18 1.19 

0.02 0.22 3.5 3.4 3.3 

0.03 0.28 5.1 5.2 5.3 
0.04 0.34 7.2 7.4 7.6 

0.05 0.38 9.1 9.1 9.2 

0.01 0.21 0.05 0.08 0.08 
0.02 0.35 0.18 0.21 0.21 

0.03 0.84 0.42 0.42 0.42 

0.04 1.32 0.78 0.78 0.78 
0.05 2.6 1.18 1.18 1.18 

0.01 -0.39 -0.01 -0.04 -0.05 
0.02 -0.40 -0.19 -0.09 -0.11 

0.03 -0.54 -0.28 -0.14 -0.16 

0.04 -0.68 -0.06 -0.23 -0.27 
0.05 0 0 0 0 

0.01 0 109 109 109 

0.02 0 110 110 110 
0.03 0 110 110 110 

0.04 0 110 110 110 
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 Table 1 – Results of the Theoretical models analyzed. 
 *Case 1 is the structure build in a classic mode 
 *Case 2 is the structure with columns proposed and friction penalty 0,05 
 *Case 3 is a structure with columns proposed and a friction penalty 0.3  
 *Case 4 is the same structure with columns proposed and a friction penalty of 
0.3 plus an extra load of 0.2 0f the self weight. 

 Please note as well that the friction coefficient is not a major factor for the 
energy, but as seen in fig. 7 and in table 1 can influence the timing of the friction 
energy dissipated. 

 9. Further research  

 A solution for RC structure subject to strong seismic forces is desired through 
this study. Therefore a part of the solution can represent a system with columns 
allowed to execute rotational movements. This study considers a case of a theo-
retical structure only, but does not consider any general solutions in terms of any 
RC structure. An algorithm that is suitable for any RC structure can be developed 
based on this structural solution. This algorithm can be implemented in a computer 
based computational program and can lead to better protected RC structures to 
the seismic movement. 
 Moreover, the rotational movement of the beams and other RC elements can 
be studied and improved based on the changing of the stiffness matrix in a man-
ner that connects the rotational movement with other efforts. 

 9. Conclusions 

 Based on the results expressed in this paper and the theoretical study some 
conclusions can be drawn: 

1.Rotational movement on RC columns can be calculated and estimated by us-

ing an enriched stiffness matrix with satisfactory results; 

2.Using RC columns that allows rotational movement can bring an important 

benefit for the resistance of a RC structure to seismic efforts. 

3.The idea of allowing some elements to perform controlled rotational move-

ments can be a subject to study for other structural members. 
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