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Abstract—Prognostics assesses and predicts future machine 
health, which includes detecting incipient failures and predicting 
remaining useful life. Several studies approached prognostics as 
a time series forecasting problem. The main goal of this study is 
to evaluate the performance of a set of methods in the prediction 
of future values from a dataset of time series collected from 
sensors installed on an industrial gas turbine. Methods tested 
include the use of ensembles of feedforward neural networks, 
ensembles of long short-term memory networks, exponential 
smoothing, and Auto Regressive Integrated Moving Average 
(ARIMA) models. Results show that the use of ARIMA models to 
forecast on the dataset is the best default method to apply, and is 
the only method that consistently beats a simple naïve no-change 
model. 

Keywords—prognostics, time series, forecasting, neural 
networks, ARIMA 

I. INTRODUCTION  

Condition Based Maintenance (CBM) is a maintenance 
policy that aims to take maintenance action before a failure 
happens. CBM times the maintenance action by assessing 
product condition, and predicting failure based on data 
gathered from the product. Even though the technologies and 
technical methods for CBM are still in their infancy, 
advancements in information technology have accelerated 
growth in CBM technology by providing network bandwidth, 
data collection and retrieval, data analysis, and decision 
support capabilities for large datasets of time series. 
Nowadays, process data, collected in the form of time series, is 
often compressed and archived for record keeping and only 
retrieved for emergency analysis after a fault has occurred. 
However, this data could be of tremendous advantage when 
combined with effective analytics and superior computing 
power capable of generating knowledge from the data [1], [2].  

Diagnostics and prognostics are two parts of CBM. 
Diagnostics is a reactive process. It takes place after a fault has 
already occurred and aims to determine the root cause of the 
failure. It cannot prevent machine downtime and the 
corresponding expenses. On the other hand, prognostics is a 
proactive process. It assesses and predicts future machine 
health, which includes detecting incipient failures and 
predicting remaining useful life [3]. When done properly, it can 
improve machine conditions and decrease the amount of down 
time for all equipments. 

There are three classes to the current approaches to 
prognostics: model based, data driven and hybrid [4]. 

• Model based approaches presume that it is 
possible to build a mathematical model from the 
understanding of the physical mechanisms 
involved in the failure modes of the machine that 
bases the model. These approaches have the 
advantage of providing the ability to incorporate 
physical understanding of the system. However, if 
the understanding of the system degradation is 
poor, it may be difficult to model the system 
behavior.  

• Data driven approaches use data gathered from 
sensors or by the machine operators to track 
features that indicate the degradation of the 
system. Data driven approaches can leverage 
computer intelligence techniques like neural 
networks and decision trees or statistical 
techniques like auto-regressive models.  

• Hybrid approaches combine model based and data 
driven approaches in an effort to leverage the 
advantages and diminish the disadvantages of both 
types of approaches. 

Historically, empirical evaluations have shown in several 
domains that statistically sophisticated or complex methods do 
not necessarily achieve more accurate forecasts for time series 
than simpler methods. However, recent evaluations have 
concluded that complex methods based on computational 
intelligence and neural networks have caught up, and that 
simple methods can no longer claim to outperform 
computational intelligence methods without a proper empirical 
evaluation [5]. 

Several studies on prognostics have dealt with it from a 
time series forecasting perspective. These studies apply diverse 
forecasting techniques, such as Auto Regressive Moving 
Average models, Recurrent and Feedforward Neural Networks, 
Support Vector Regression, Markov models and simple linear 
regression, to time series of different types of condition related 
parameters (e.g. machine vibration) in order to predict 
remaining useful life and next failure occurrence [6], [7], [8], 
[9], [10]. 

There are published works showing positive results from 
neural networks applied to time series forecasting in domains 
other than CBM. [11], [12]. These studies show that the 
application of time series forecasting methods based on neural 
networks, combined with huge amounts of historical data, may 
lead to better prognostics of industrial machines. Ultimately, 
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better prognostics may lead to reduced maintenance costs and 
increased production availability. 

Neural networks are subject to variance due to weight 
initialization and to the training algorithm (stochastic gradient 
descent). This means that even if using the same architecture 
and training set, different instances of the training procedure 
might yield different values for the network weights and, 
consequently, different output values for the same input. A way 
to deal with this variance is to employ an ensemble of 
networks.  

The basic idea behind an ensemble is to build a prediction 
model by combining a collection of simpler base models [13]. 
Silveira and Mauá [14] applied ensembles of Information 
Retrieval and Word Embedding algorithms to answer multiple-
choice questions. The ensemble showed better performance 
than previous approaches, both on accuracy and on standard 
deviation. Ensembles of classifiers also showed superior 
performance in distinguishing between Brazilian and European 
Portuguese, when compared with any of the individual 
classifiers in the ensembles [15].   

The main goal of this study is to evaluate the performance 
of a set of methods in the prediction of future values of 
monitored parameters in industrial machines. The methods are 
data driven and deal with prognostics from a time series 
forecasting perspective.  

This study is an empirical evaluation, executed by 
forecasting on a dataset collected from an industrial gas 
turbine. The dataset consists of a collection of time series. The 
study evaluates forecasts generated by neural networks with 
different architectures selected for each of the individual time 
series in the dataset. The study also evaluates forecasts 
generated by well-established forecasting techniques (ARIMA 
models and exponential smoothing). The naïve no-change 
model serves as a benchmark for all the considered forecasting 
methods. 

The contribution of this paper is in the generation of 
knowledge directed specifically to the improvement of 
prognostics, when considered as a time series forecasting 
problem. To the best of the authors’ knowledge, there is a 
scarce amount of published evaluations of multiple forecasting 
methods on data from real machines. This knowledge is useful 
for the understanding of the best forecasting methods available 
for those who want to estimate the remaining useful life of 
industrial machines. 

The structure of the remainder of this study is as follows. 
Section II presents some related works in the areas of 
prognostics and predictive maintenance. Section III describes 
the dataset used in the study, the preprocessing applied to the 
dataset prior to any model building, and the neural networks 
used to generate forecasts. Section IV describes forecasting 
methods well established within the time series forecasting 
community. Section V covers the method and metric for 
forecast evaluation. Finally, Section VI presents the results and 
provides a conclusion for the study. 

II. RELATED WORK 

A. Prognostics as Time Series Forecasting 

Several studies approached prognostics as a time series 
forecasting problem. Pham et al. [6] used an Auto Regressive 

Moving Average (ARMA) model on baseline data. The 
authors used deviations from the ARMA model on future 
values as a degradation index. After the degradation index 
reaches a threshold, Pham et al. used Cox's PHM 
(Proportional Hazards Model) to create a survival probability 
curve as a function of time followed by Support Vector 
Regression (SVR) to predict remaining useful life.  

Heng et al. [7] used an artificial neural network with the 
most recent values of a condition index (bandpass vibration) 
as inputs. The ANN does not predict future values for the 
condition index, rather predicting probability of failure in 
fixed time intervals ahead of the last condition index measure. 
Heng et al. benchmarked the proposed model against two 
ANN models predicting reliability and an Elman Recurrent 
Neural Network (RNN) that approached prognosis as time 
series prediction. The authors considered RNNs as the most 
commonly used models in the prognostics literature, but 
reported superior results from their proposed model.  

Datong et al. [8] presented an on-line (incremental 
learning) SVR based strategy (MSPO-SVR) for prediction of 
industrial sensor data. The authors tested the strategy on the 
Tennessee Eastman benchmark dataset. Datong et al. compare 
the presented strategy against traditional on-line SVR. MSPO-
SVR showed superior performance based on MSE. 

Niu and Yang [9] used a neural network to fuse a set of 
features into a single value used for condition monitoring. 
After the condition index reaches a threshold value two non-
linear techniques, Dempster-Shafer regression and least-
squares support vector machines, predict the future behavior 
of the monitored index. A weighted average combines the 
predictions from both methods.  

Cho et al. [10] developed a hybrid approach to predict the 
next failure time of a centrifugal compressor using vibration 
data. Bellow a threshold value, the authors applied a Markov 
model to predict next failure time. Above the threshold value, 
they apply a mix of moving average filter and simple linear 
regression.  

The studies cited show the variety of forecasting 
techniques used in the field of prognostics. Many of the 
techniques from these studies are included in the current 
research. Some of these studies have limitations in the number 
of techniques evaluated, while some of them perform tests on 
benchmarks datasets, allowing comparisons with other studies. 
Table I provides an overview of the cited related work. 

B. Time Series Forecasting With Neural Networks 

 There are published works showing positive results from 
neural networks applied to time series forecasting in domains 
other than CBM. Khashei and Bijari [11] introduced an 
approach based on using an Auto Regressive Integrated 
Moving Average (ARIMA) model to extract features from a 
time series. The features serve as training input to a single 
hidden layer feedforward network. Ma et al. [12] used a Long 
Short-Term Memory (LSTM) neural network to predict traffic 
speed.  
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C. Big Data and Predictive Maintenance 

Yan et al. [16] discuss how industry 4.0 has aroused a new 
round of interest in advanced manufacturing and how 
advances in sensor technology, computer science and big data 
lead to a new industrial revolution. While discussing the 

Study Relevant Points 

Pham et al. [6] • Degradation index derived from sensor 
data 
• Reliability mixed with traditional time 
series forecasting 
• No comparison to other methods

Heng et al. [7] • Comparison between prognostics as 
reliability and as time series forecasting

Datong et al. [8] • Raw sensor data 
• Proposed methods compared only to a 
different SVR method 
• MSE as metric 

Niu and Yang [9] • Degradation index derived from 
data using NN 
• No comparison to other methods

Cho et al. [10] • Raw sensor data 
• No comparison to other methods
• MAPE as metric (non

 

also considering unstructured sensor data (images from a laser 
scanner). 

Wan et al. [17] state that one of the challenges faced by 
preventive maintenance in the context of industry 4.0 is the 
design of the algorithm for offline prediction and evaluation of 
service life, and that recent technology allows for real time 
alarms while still lacking in predictability. 
propose a cloud architecture that uses neural networks to 
predict machining tool remaining life (in fixed intervals). 

III.  DATA AND METHODS

The following subsections describe the dataset used in this 
research, the preprocessing applied to the data 
forecasting, and the forecasting methods
networks applied to the dataset. 

A. Data 

The data used in this study comes from 
data management system. The system stores data from multiple 
sensors installed through the offshore facility. The focus of the 
current research is on data collected from the sensors in one
the platform’s gas turbines, which is responsible for generating 
power for the platform.  

The dataset includes values collected from 32 senso
which measure pressure (P), vibration (V), temperature
rotation speed (R). Fig. 1 shows a schematic of the 
instrumentation’s position on the gas turbine.

The raw data also includes values logged
is not operating. These values deviate considerab
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discuss how industry 4.0 has aroused a new 
round of interest in advanced manufacturing and how 
advances in sensor technology, computer science and big data 
lead to a new industrial revolution. While discussing the 

challenges of integrating data from variou
sensor data but also environmental data and staff knowledge, 
the authors present a case study of machining tool degradation 
which, like the current research, uses only sensor data

TABLE I.  RELATED WORK ON PROGNOSTICS 

Forecasting Method 

Degradation index derived from sensor 

with traditional time 

No comparison to other methods 

Three Stage: ARMA → PHM 
→ SVR  

Comparison between prognostics as 
reliability and as time series forecasting 

Feedforward Neural Network, 
Elmann RNN 

• Proposed methods compared only to a 
 

MSPO-SVR 

• Degradation index derived from sensor 

• No comparison to other methods 

DSR, LS-SVM 

to other methods 
as metric (non normalized data) 

Two Stage: Markok Chain → 
Moving Average Filter + 
Linear Regression 

unstructured sensor data (images from a laser 

that one of the challenges faced by 
preventive maintenance in the context of industry 4.0 is the 
design of the algorithm for offline prediction and evaluation of 
service life, and that recent technology allows for real time 

edictability. The authors 
propose a cloud architecture that uses neural networks to 
predict machining tool remaining life (in fixed intervals).  

ETHODS 

The following subsections describe the dataset used in this 
to the data prior to any 

methods based on neural 

The data used in this study comes from an oil platform’s 
system. The system stores data from multiple 

d through the offshore facility. The focus of the 
current research is on data collected from the sensors in one of 

, which is responsible for generating 

collected from 32 sensors, 
, temperature (T) and 

Fig. 1 shows a schematic of the 
gas turbine.  

includes values logged when the turbine 
deviate considerably from the 

values observed when the machine 
study excludes those data points 
stoppages.  

The data management system does not log values for each 
sensor at a fixed sampling rate. Diffe

 Fig. 1 - Position of embedded sensors on the turbine under consideration.

data logging event for each sensor, resulting in asynchronous 
time series. In order to allow the research to proceed with the 
use of standard forecasting techniques for evenly spaced time 
series, preprocessing of the dataset aggregates the time series 
into evenly spaced data.  
 Daily bins divide the dataset. For each time series, the 
aggregated values equal the mean of any
during a 24 hours period (a daily bin)
any values collected in a 24 hours period
making it impossible to calculate an average value for that day, 
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challenges of integrating data from various sources, not only 
sensor data but also environmental data and staff knowledge, 

present a case study of machining tool degradation 
, like the current research, uses only sensor data, though  

Data 

 PHM Vibration data from methane 
compressor (same as [9]) 

Feedforward Neural Network, Irving Pulp and Paper 

Tennessee Eastman 

Vibration data from methane 
compressor (same as [6]) 

→ Vibration data from gas 
compressor 

the machine is operating. Hence, the 
data points which were collected during 

system does not log values for each 
sensor at a fixed sampling rate. Different reasons may trigger a 

  
Position of embedded sensors on the turbine under consideration. 

logging event for each sensor, resulting in asynchronous 
In order to allow the research to proceed with the 

techniques for evenly spaced time 
series, preprocessing of the dataset aggregates the time series 

Daily bins divide the dataset. For each time series, the 
ted values equal the mean of any values collected 

g a 24 hours period (a daily bin). In the event there are not 
collected in a 24 hours period for one of the series, 

making it impossible to calculate an average value for that day, 
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this day with no data uses a value linearly interpolated from the 
adjacent days. Working with daily values is a research design 
choice. Daily values are useful for monitoring long term 
degradation mechanics of a machine. The research could easily 
be redone with different intervals, leading to different results. 
 In order to guarantee secrecy of the real operating 
parameters, normalization of the dataset using a standard scaler 
occurs. The resulting series have mean zero, standard deviation 
one and are dimensionless. Regardless of real value hiding, 
input normalization is a common preprocessing step for neural 
networks. The resulting dataset contains 1461 daily values for 
each of the 32 sensors.  

We perform a preliminary analysis of the study’s dataset. 
The first step in the analysis is the augmented Dickey-Fuller 
test with the objective of assessing trend stationarity. The 
second step is Levene’s test with the objective of assessing 
homoscedasticity (stationarity on variance). The final test used 
in the preliminary analysis is the Anderson-Darling test for 
normality. These tests allow for the analysis of some relevant 
characteristics of the time series. The test results are shown in 
section IV. 

The study splits the dataset in two. The first 90% of the 
data serves as the training dataset for all of the forecasting 
methods. The final 10% of the data is the test set, used in order 
to evaluate the accuracy of the models in proper out-of-
training-sample data. There are no changes to model 
parameters in the evaluation phase. All forecasting methods 
output one-step ahead forecasts. 

The choice of the 10% size for the test set is due to the 
nature of the current research’s data. With cross sectional data 
(data collected at a single point in time, like images of dogs or 
a collection of forms filled by a group of people), the data have 
no obvious ordering and the test set selection is random in the 
available data. That makes the test set and the training set 
similarly distributed, even for bigger sizes of test sets. For time 
series, given that the data is collected sequentially over time, 
there is an obvious ordering to the data, and the test set comes 
from the most recent observations. If the test set is too big, 
there can be significant differences in patterns between the 
training set and the test set.   

It would not be feasible to follow a more sophisticated 
version of training/test sets split, like time series cross 
validation [18], due to the increase required in the number of 
instances of the neural network training problem (146 times 
increase for the one-step ahead forecast scenario). Hence, the 
authors use a 10% size for the test set as a tradeoff between 
computational resources and better forecasts.  

B. Feedforward Neural Networks 

Neural network is a term that encompass a large class of 
models and learning methods. Neural networks are nonlinear 
statistical models that model the outputs as nonlinear functions 
of linear combinations of the inputs. One builds a neural 
network by connecting simple computing cells called neurons 
or processing units. This study uses neural networks 
implemented in Python using the Keras library [19]. 

There are three basic elements to a neuron’s model. First, a 
set of connecting links to other neurons, each characterized by 
a weight of its own. Second, an adder, often called a 
propagation function, used to sum all the input signals to the 

neuron. The third element is the activation function. The 
activation function limits the output of the neuron and is 
responsible for the nonlinearities in the network. Equations (1) 
and (2) give the output ��  of a neuron � that uses weighted 
sum as its adder. Haykin [20] gives further details on the 
mathematics of neural networks. 

�� =�	
�

	
�
	��	�	 + ��	#�1�  

Where: 
��	: Weight of the connection between neuron j and neuron �; 
�	: Output of neuron �; 
��: The bias of neuron �. 

�� = �����#�2�  

Where: 
��: Activation potential of neuron �; 
�: Is the activation function. 

One type of neural network used is this study is 
Feedforward Neural Networks (FNN), in which there are no 
loops. The layers are ordered and a network layer only uses as 
input the output from the previous layer. This study creates an 
independent FNN for each time series in the dataset, which 
uses as input only lagged values from the time series it 
forecasts. This means this study does not considers possible 
information in the interaction between series. 

It is necessary to define the architectures of the FNNs 
before proceeding with the final training. All FNNs used in this 
study use the same procedure for architecture selection. The 
architecture selection procedure starts with a split of the 
training set: 2/3 for training and 1/3 for validation.  

At this point, it is beneficial to make a clear distinction 
between the validation set and the test set. The validation set is 
a subdivision of the training set. The use of a validation set is 
an approach to the selection of hyperparameters of a machine-
learning algorithm. Hyperparameters that control model 
capacity (like number of units in the hidden layer) should not 
be learned on the training set. Otherwise, the hyperparameters 
would always choose maximum model capacity, resulting in 
overfitting. This is the importance of using a validation set for 
hyperparameter selection [21]. In the case of a neural network, 
these hyperparameters are the network parameters that the 
backpropagation algorithm cannot learn: number of layers, 
number of units in each layer, form of activation function, 
between others.  

This study considers several architectures with different 
numbers of units in the hidden layer and different numbers of 
lagged values as inputs. This study only considers architectures 
with a single hidden layer. The procedure continues with 
training of the different architectures on the reduced training 
set for a maximum of 1000 epochs with early stopping if the 
validation loss (Mean Squared Error (MSE), as in (3)) does not 
improve after 10 consecutive epochs. The final FNNs, trained 
on the entire training set, use the architectures that presented 
the smallest average validation loss after 10 training runs. All 
FNNs use hyperbolic tangent as the activation function of the 
units in the hidden layer. 
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��� = 	∑ ���� − ������
�
� #�3�  

Where: 
���: Forecasted value for � at time !; 
��: Actual value for � at time !; 
�: Number of forecasted points. 

After selection of the architectures for each time series, the 
forecasts created for the test set use a collection of 8 FNNs that 
have the same previously selected architecture. Averaging 
combines the outputs from the individual FNNs. The authors 
expect this procedure will reduce variance in the results. The 
size 8 for the network collections is a design choice by the 
authors. According to the central limit theorem, variance would 
be further reduced by increasing the number of networks in the 
collection [22]. However, since this research does not deal with 
confidence intervals, we elect to use 8 networks in an effort to 
achieve a representative result, while keeping computational 
costs low. 

C. Long Short Term Memory Units 

A Recurrent Neural Network (RNN) is a neural network 
that allows feedback loops. The state of an RNN, which 
consists of the activation values of the hidden units, depends on 
the past values of the state. The presence of feedback loops 
helps RNNs in processing sequential data, like time series. 
RNNs are susceptible to the problem of gradient instability. 
The longer the network runs, the more unstable are the 
gradients on inputs further back in time. 

Long Short Term Memory (LSTM) units, are a special type 
of processing unit used to build the hidden layers in a LSTM 
neural network. LSTM units address the problem of gradient 
instability by creating paths through time that have derivatives 
that will neither vanish nor explode [21]. The LSTM units have 
an adaptive forget gate designed to reset a unit’s state when its 
contents are no longer relevant. The forget gate controls the 
weight of the state self-loop and, in that way, how much of the 
information in the state is preserved or discarded between time 
steps. Gers et al. [23] give further detail on LSTM units. 

All LSTM networks tested use only a single time lagged 
value as input, given that unrolling the computational graph 
shows that the output of a recurrent network is actually a 
function of the entire time series and that the LSTM units 
should have the capability to accumulate all relevant past 
information in their states. This study creates an independent 
LSTM network for each series in the dataset. The only input of 
each independent LTSM is the value at ! − 1 of the time series 
it forecasts. 

It is necessary to define the number of LSTM units in the 
hidden layer before proceeding with the final training. All 
LSTM networks used in this study use the procedure that 
follows for selection of the number of units in the hidden layer, 
which is similar to the procedure used for the feedforward 
architecture described in the previous section.  

The procedure starts with a split of the training set: 2/3 for 
training and 1/3 for validation. This study considers several 
architectures with different number of units in the hidden 
layers. The procedure continues with training of the networks 
on the reduced training set for a maximum of 1000 epochs with 
early stopping if the validation loss (MSE) does not improve 

after 10 consecutive epochs. The reason to use a validation set 
for LSTM network size selection is the same as stated on past 
section on FNN networks. The final LSTM networks, trained 
on the entire training set, uses the number of hidden units that 
presented the smallest average validation loss after 10 training 
runs.  

After selection of the architectures for each time series, the 
forecasts created for the test set use a collection of 8 LSTM 
networks that have the same previously selected architecture. 
Averaging combines the outputs from the individual LSTM 
networks. The authors expect this procedure will reduce 
variance in the results. The same comment from last section on 
the size of the network collections applies. 

IV. WELL ESTABLISHED FORECASTING METHODS 

The following subsections describe well-established 
methods developed by practicing forecasters. This section also 
describes the naïve no-change forecast, which is the simplest of 
all forecasting methods. The naïve forecast is the minimum a 
forecasting method must be able to improve upon. 

A. Exponential Smoothing 

Exponential smoothing is a forecasting approach that uses 
all historical values as predictors, giving more weight to more 
recent values, as in (4) for Simple Exponential Smoothing 
(SES). The equation shows that the forecast for time ! + 1 is a 
weighted average between the most recent observation �� and 
the forecast for time !. Recursively substituting ��� yields (5). 

���"� = 	α�� 	+ 	 �1 − α������#�4�  

Where: 
���"�: Forecasted value for �	at time ! + 1; 
��: Actual value for � at time !; 
%: Smoothing parameter. 

���"� = %�� + %�1 − %���&� + %�1 − %����&� +⋯#�5�  

As long as 0 < % < 1 , the weight given to each 
observation decreases exponentially as each observation comes 
from further in the past, hence the name exponential 
smoothing.  

SES is a suitable forecasting method for data without trend 
or seasonal patterns. SES has a flat forecast function, meaning 
the forecast for all subsequent time steps take the same value 
[18]. There are several exponential smoothing methods other 
than SES. It is possible for the ES method to allow for trend 
and/or seasonal components. Hyndman et al. [24] identify a 
total of fifteen exponential smoothing methods, with five 
possibilities for the trend component (None, Additive, Additive 
damped, Multiplicative and Multiplicative damped) and three 
possibilities for the seasonal component (None, Additive and 
Multiplicative). 

This study follows Hyndman et al. [24] state space 
approach for ETS (Error, Trend, Seasonality) model selection. 
An ETS model is a statistical model that underlies an ES 
method. Each individual time series on the dataset has an ETS 
model selected for itself. The R function ets() applies 
Hyndman’s approach automatically. It is the computational 
tool used for ES method selection and parameter estimation. 
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B. Auto Regressive Integrated Moving Average

Auto Regressive Integrated Moving Average (
models combine Auto Regressive (AR) models, Moving 
Average (MA) models and differencing. Differencing is a way 
to make time series stationary by computing the differences 
between consecutive observations. The addition of 
differencing allows for non-stationary (on trend) data. An 
ARIMA (p,d,q) model combines an AR model of order p, a 
MA model of order q and d order differencing.

The study uses the R function auto.arima() for model 
selection and parameter estimation. It conducts a search over 
possible models and selects the best one based on the lowest 
Akaike Information Criterion (AIC). Hyndman and 
Khandakar [25] provide details on the function
implementation. 

C. Naïve Forecast 

A naïve model is a model that presumes things will remain 
the same as they have in the past. For time series data, the 
naïve (no change) model simply forecasts the next observation 
to be equal as the latest observation. The naïve model serves as 
a benchmark model for other models. If a model cannot 
produce better forecasts than a simple alternative like naïv
change, it is of no use [26]. 

V. FORECASTING AND FORECAST E

Forecast accuracy assessment occurs after model training. 
The metric used for this model evaluation phase is the same 
used in model training: MSE, as in (3)
assessment uses the test set consisting of the last 10% of the 
full dataset. 

The model evaluation phase tests model accuracy not only 
on one-step ahead forecasts, but also on multistep ahead 
forecasts. Forecasting windows tested are 1, 2, 5,
days ahead. 

For ARIMA models and ETS (with additive errors), 
parameter estimation uses maximum likelihood, which results 
in similar parameter estimates to minimizing the sum of 
squared errors for these models. The error is the difference 
between the fitted (forecasted) value and the actual value at a 
given time t. The forecasting equations for ARIMA and ETS 
models for a given time + + ,, where + 
value in the time series, depend on the forecasted values for 
time steps between + and + + ,. This means the forecasting 
equations for ARIMA and ETS are inherently recursive and a 
single model can be used to predict a forecasting window of 
arbitrary size [18]. 

For models based on neural networks (LSTM NN and 
FNN), the forecasting strategy depends on the architecture of 
the network. One possibility is to map a k step ahead forecast 
to a network with k units in its output layer, as in the 
architectures discussed in [27]. Other approach is to create a 
network with a single unit in the output layer, and to apply this 
network recursively, the forecast for time !
for the model to forecast the values at time 
until all required forecasts are computed. This is the approach 
used in the Neural Network Auto Regression described in [18]. 
In this research, we elect to use the second approach since it is 
more similar to the way forecasting in ARIMA and ETS works 
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Auto Regressive Integrated Moving Average Models 

Auto Regressive Integrated Moving Average (ARIMA) 
models combine Auto Regressive (AR) models, Moving 
Average (MA) models and differencing. Differencing is a way 
to make time series stationary by computing the differences 
between consecutive observations. The addition of 

stationary (on trend) data. An 
ARIMA (p,d,q) model combines an AR model of order p, a 

encing.  
The study uses the R function auto.arima() for model 

selection and parameter estimation. It conducts a search over 
models and selects the best one based on the lowest 

(AIC). Hyndman and 
] provide details on the function’s 

A naïve model is a model that presumes things will remain 
have in the past. For time series data, the 

naïve (no change) model simply forecasts the next observation 
to be equal as the latest observation. The naïve model serves as 
a benchmark model for other models. If a model cannot 

simple alternative like naïve no-

EVALUATION  

Forecast accuracy assessment occurs after model training. 
The metric used for this model evaluation phase is the same 

, as in (3). The accuracy 
assessment uses the test set consisting of the last 10% of the 

he model evaluation phase tests model accuracy not only 
step ahead forecasts, but also on multistep ahead 

forecasts. Forecasting windows tested are 1, 2, 5, 7, 10 and 14 

For ARIMA models and ETS (with additive errors), 
parameter estimation uses maximum likelihood, which results 
in similar parameter estimates to minimizing the sum of 
squared errors for these models. The error is the difference 

een the fitted (forecasted) value and the actual value at a 
The forecasting equations for ARIMA and ETS 

 is the last observed 
value in the time series, depend on the forecasted values for 

. This means the forecasting 
equations for ARIMA and ETS are inherently recursive and a 
single model can be used to predict a forecasting window of 

For models based on neural networks (LSTM NN and 
rategy depends on the architecture of 

the network. One possibility is to map a k step ahead forecast 
to a network with k units in its output layer, as in the 

approach is to create a 
utput layer, and to apply this 

! + 1 serves as input 
for the model to forecast the values at time ! + 2 and so on, 
until all required forecasts are computed. This is the approach 

ession described in [18]. 
In this research, we elect to use the second approach since it is 
more similar to the way forecasting in ARIMA and ETS works 

and, more importantly, this approach means a single network 
can be used to forecast in windows of any siz

Retraining the neural networks after the observation of 
every new sample in the test set would require significant 
computational resources. In order to avoid the computational 
costs, there are no updates to network weights during the 
model evaluation stage. In order to test 
methods in the same conditions, there are also no changes to 
the parameters of the ARIMA and ETS models, even though 
the computational costs would be significant smaller for these 
methods. 

The presented MSE are the average for all of the time 
series. The results do not show what the best method for each 
individual univariate time series would be. They show
method would deliver the best results, on average, for a 
random univariate time series drawn from 
turn consists of a diverse collection of time series collected 
from the same industrial turbine.

VI.  RESULTS 

A. Preliminary Analysis of the Time Series

Table II bellow shows the results (p
augmented Dickey-Fuller test 
stationarity) for the 32 time series in the dataset. Table II
shows the p-values for Levene’s test (alternative hypothesis of 
heteroscedasticity) and Table I
Anderson-Darling test. As these tables show, with a 5% 
significance level, it is possible to say that all of the 32 time 
series in the dataset are trend stationary, heteroscedastic and 
not normally distributed. 

B. ARIMA Model Selection 

ARIMA models assume that the da
However, as per the last subsection, the dataset shows 
heteroscedastic behavior. One option is this situation is to 
ignore the violation of the assumption of homoscedasticity. 
Another option is to apply a transformation to the data. We
consider both options.  For each individual time series, we fit 
on the training data models with and without a Box
transform and select the model with the lowest AIC. 

TABLE II.  P-VALUES FROM THE AUGMENED DICKEY
EACH OF THE TIME SERIES I

TABLE III.  P-VALUES FROM LEVENE
SERIES IN THE DATASE
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and, more importantly, this approach means a single network 
can be used to forecast in windows of any size.  

Retraining the neural networks after the observation of 
every new sample in the test set would require significant 
computational resources. In order to avoid the computational 
costs, there are no updates to network weights during the 

In order to test the different forecasting 
methods in the same conditions, there are also no changes to 
the parameters of the ARIMA and ETS models, even though 
the computational costs would be significant smaller for these 

are the average for all of the time 
series. The results do not show what the best method for each 

variate time series would be. They show which 
method would deliver the best results, on average, for a 
random univariate time series drawn from the dataset, which in 
turn consists of a diverse collection of time series collected 
from the same industrial turbine. 

 AND DISCUSSION 

Preliminary Analysis of the Time Series 

w shows the results (p-values) for the 
Fuller test (alternative hypothesis of 

the 32 time series in the dataset. Table III 
values for Levene’s test (alternative hypothesis of 

heteroscedasticity) and Table IV shows the p-values for the 
Darling test. As these tables show, with a 5% 

significance level, it is possible to say that all of the 32 time 
end stationary, heteroscedastic and 

 

ARIMA models assume that the data is homoscedastic. 
However, as per the last subsection, the dataset shows 
heteroscedastic behavior. One option is this situation is to 
ignore the violation of the assumption of homoscedasticity. 
Another option is to apply a transformation to the data. We 
consider both options.  For each individual time series, we fit 
on the training data models with and without a Box-Cox 

select the model with the lowest AIC.  

THE AUGMENED DICKEY-FULLER TEST FOR 
OF THE TIME SERIES IN THE DATASET 

 

VALUES FROM LEVENE’S TEST FOR EACH OF THE TIME 
SERIES IN THE DATASET 
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TABLE IV.  P-VALUES FROM THE ANDERSON-DARLING TEST FOR
THE TIME SERIES IN THE DATASET

The auto.arima() function is capable of applying a Box
Cox transformation to the data. The 
parameter is automatic. The model fitting considers a 7 days 
seasonality period. Table V shows the results obtained on the 
test set by the ARIMA models selected with this procedure
(labeled ARIMA transform). Table V also shows the resul
obtained on the test set by ARIMA models that do not 
consider seasonality and that do not allow for
data transform (labeled simple ARIMA). 

TABLE V.  AVERAGE MEAN SQUARED ERRORS OBTAINED ON T
SET BY ARIMA  MODELS 

The results show that the use of simple ARIMA models 
delivers better results than considering seasonality and a 
a data transform to deal with the heteroscedasticity. Table V
shows for how many of the time series a method delivers the 
best results. For 19 time series both procedu
model. The Table shows the distribution of the remaining 13 
series between both ARIMA model selection procedure

TABLE VI.  FOR HOW MANY SERIES AN ARIMA
DELIVERS THE BEST RESULTS

As the tables show, not accounting for seaso
prior data transformation, which is not a good practice, does 
delivers better results on average and for a bigger number of 

Method

1 2 5

ARIMA Transform 0.17225 0.23766 0.37852 0.42262

Simple ARIMA 0.16538 0.22355 0.33863 0.37346

Days in Forecast Window

Method

1 2 5

ARIMA Transform 6 4 4

Simple ARIMA 7 9 9

Days in Forecast Window
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DARLING TEST FOR EACH OF 
HE DATASET 

 

function is capable of applying a Box-
 selection of the λ 

The model fitting considers a 7 days 
seasonality period. Table V shows the results obtained on the 
test set by the ARIMA models selected with this procedure 

. Table V also shows the results 
on the test set by ARIMA models that do not 

that do not allow for any previous 

ERRORS OBTAINED ON THE TEST 

 

of simple ARIMA models 
better results than considering seasonality and a using 

data transform to deal with the heteroscedasticity. Table VI 
series a method delivers the 

series both procedures select the same 
Table shows the distribution of the remaining 13 

between both ARIMA model selection procedures. 

ARIMA  SELECTION PROCEDURE 
SULTS. 

 

As the tables show, not accounting for seasonality and 
prior data transformation, which is not a good practice, does 
delivers better results on average and for a bigger number of 

time series. Hence, we elect to ignore the heteroscedasticity of 
the data and to consider the best possible ARIMA models 
the models without a data transform and that do not consider 
seasonality. Table VII shows the orders of the models selected 
for each of the time series. 

C. Neural Network Architecture Selection

 The prediction methods that use independent neural 
networks require selection of hyperparameters. 
discussed, the hyperparameters selection phase uses a split of 
the training set: 2/3 for training and 1/3 for validation. Table 
VIII shows the architectures considered for each independent 
FNN. The number of time lags on an FNN equates to the 
number of units on the input layer. 
networks tested use a single time lag as 
number of units in the hidden layer
Both FNNs and LSTM networks have a single unit on the 
output layer, representing the forecast for time 
shows the selected FNN architectures and Table 
selected LSTM architectures for each time series, base
average validation loss after 10 training runs.

TABLE VII.   ORDERS OF THE ARIMA
THE TIME SERIES

TABLE VIII.  ARCHITECTURES CONSIDE
NEURAL NETWORK

TABLE IX.  SELECTED FNN ARCHITECTURE

TABLE X.  SELECTED LSTM

7 10 14

0.42262 0.46479 0.50207

0.37346 0.40702 0.43645

Days in Forecast Window

7 10 14

5 6 6

8 7 7

Days in Forecast Window

Sensor Model

P1 ARIMA(0,1,3)

P2 ARIMA(1,1,3)

P3 ARIMA(5,1,4)

P4 ARIMA(1,1,1)

R1 ARIMA(2,1,1)

R2 ARIMA(1,1,1)

T1 ARIMA(1,1,2)

T10 ARIMA(3,1,3)

T11 ARIMA(2,1,1)

T12 ARIMA(2,1,1)

T13 ARIMA(2,1,1)

T14 ARIMA(2,1,1)

T2 ARIMA(1,0,1)

T3 ARIMA(1,1,2)

T4 ARIMA(2,1,1)

T5 ARIMA(0,1,4)

Time Lags

Hidden Layer Units

Time Series P1 P2 P3 P4

Hidden Layer Units 3 8 10 10

Time Lags 1 4 1 1

Time Series T6 T7 T8 T9 V1

Hidden Layer Units 10 4 8 10

Time Lags 2 1 2 3
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time series. Hence, we elect to ignore the heteroscedasticity of 
the data and to consider the best possible ARIMA models as 
the models without a data transform and that do not consider 

shows the orders of the models selected 

Neural Network Architecture Selection 

The prediction methods that use independent neural 
networks require selection of hyperparameters. As previously 

he hyperparameters selection phase uses a split of 
the training set: 2/3 for training and 1/3 for validation. Table 

rchitectures considered for each independent 
The number of time lags on an FNN equates to the 

number of units on the input layer. The independent LSTM 
networks tested use a single time lag as input and test the same 
number of units in the hidden layer as the considered FNNs. 
Both FNNs and LSTM networks have a single unit on the 
output layer, representing the forecast for time ! + 1. Table IX 
shows the selected FNN architectures and Table X shows the 
selected LSTM architectures for each time series, based on the 
average validation loss after 10 training runs. 

ARIMA  MODELS SELECTED FOR EACH OF 
THE TIME SERIES 

 

RCHITECTURES CONSIDERED FOR EACH INDEPENDENT 
NEURAL NETWORK.  

 

ARCHITECTURES FOR EACH TIME SERIES.  

 

LSTM ARCHITECTURES FOR EACH TIME SERIES.  

Model Sensor Model

ARIMA(0,1,3) T6 ARIMA(1,1,1)

ARIMA(1,1,3) T7 ARIMA(1,1,1)

ARIMA(5,1,4) T8 ARIMA(1,1,1)

ARIMA(1,1,1) T9 ARIMA(3,1,1)

ARIMA(2,1,1) V1 ARIMA(1,1,2)

ARIMA(1,1,1) V10 ARIMA(1,1,2)

ARIMA(1,1,2) V11 ARIMA(0,1,2)

ARIMA(3,1,3) V12 ARIMA(2,1,2)

ARIMA(2,1,1) V2 ARIMA(1,1,2)

ARIMA(2,1,1) V3 ARIMA(1,1,0)

ARIMA(2,1,1) V4 ARIMA(2,1,0)

ARIMA(2,1,1) V5 ARIMA(2,1,1)

ARIMA(1,0,1) V6 ARIMA(3,1,0)

ARIMA(1,1,2) V7 ARIMA(1,1,2)

ARIMA(2,1,1) V8 ARIMA(1,1,2)

ARIMA(0,1,4) V9 ARIMA(1,1,3)

1, 2, 3, 4, 5

1, 2, 3, 4, 5, 8, 10, 15, 20

R1 R2 T1 T10 T11 T12 T13 T14 T2 T3 T4 T5

1 3 5 8 8 15 5 8 15 8 15 20

5 3 3 2 2 5 2 2 1 1 3 3

V1 V10 V11 V12 V2 V3 V4 V5 V6 V7 V8 V9

15 20 15 5 20 15 20 15 15 15 15 5

2 2 3 3 2 1 2 3 1 3 1 2
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D. Network Averaging Effect on Variance 

In order to evaluate the variance on the final models, and 
the effect of averaging on reducing this variance, 8 sets of 8 
networks each were created, both for the FNN and for the 
LSTM networks, all with the same architecture, as selected in 
the previous subsection. The boxplots in Fig. 3 thru Fig. 6 are 
for the test set errors, for the 1 and the 14 days forecasting 
windows, both for a single network (64 in total, composing the 
8 sets) and for the 8 sets of 8 networks. From the boxplots, it is 
visible that averaging reduces significantly the variance in the 
results. It should be noted that there are outliers in the boxplots 
for the ensembles (both LSTM NN and FNN) in the 1 day 
ahead window. This indicates that the size 8 for the ensembles, 
while clearly reducing the variance on the final results, is not 
enough to ensure that the results fall well within the middle of 
the distribution in small forecasting window. 

Table XI for the standard deviation of the test errors, both 
for the single networks and for the sets of 8 networks, shows 
further evidence on the effect of averaging. As expected, 
averaging does reduce the variance on the final result, while 
having no negative impact on the expected result, as seen by 
the limited effect on the median test error (Table XII). 
Averaging is especially important in the case of LSTM 
networks, where outliers are present on the boxplots for a 
single network in all forecasting windows. 

TABLE XI.  STANDARD DEVIATION OF THE TEST ERRORS. ALL 
FORECASTING WINDOWS.  

 

TABLE XII.  MEDIAN OF THE TEST ERRORS. ALL FORECASTING WINDOWS.  

 

E. Results on the Test Set 

Table XIII summarizes the results obtained by applying the 
proposed forecasting methods to the test set. For both the FNN 
and LSTM networks, the presented results are from a single 
collection of 8 networks with the same architecture. Averaging 
combines the outputs from the 8 networks. The selection of the 
collection between the 8 sets previously discussed is random. 

TABLE XIII.  MSE ON THE TEST SET FOR EACH OF THE FORECASTING 
METHODS.  

 

The collection of LSTM networks yields better results than 
the FNNs in all forecasting windows. This result is consistent 
with the literature that points that recurrent neural networks are 
the best neural networks to process sequential data. The 
collection of FNNs beats the naïve forecast in forecasting 
windows bigger than two days. For forecasting windows 
bigger than one day, the univariate LSTM is capable of 
delivering better results than the no-change naïve method. 

Exponential smoothing applied to each time series only 
produces worse forecasts than the naïve method in the one-step 
ahead forecast scenario. However, for bigger forecasting 
windows, the results delivered by the method quickly 
deteriorate, and ES loses to at least one of the collections of 
neural networks. We must mention that the exponential 
smoothing method selected for all of the time series is Simple 
Exponential Smoothing, meaning that the ES forecasts are 
constant lines. 

 

Time Series P1 P2 P3 P4 R1 R2 T1 T10 T11 T12 T13 T14 T2 T3 T4 T5

Hidden Layer Units 20 5 3 8 20 20 8 8 5 4 8 10 20 4 20 15

Time Series T6 T7 T8 T9 V1 V10 V11 V12 V2 V3 V4 V5 V6 V7 V8 V9

Hidden Layer Units 20 4 15 15 15 20 20 1 2 1 1 1 1 2 5 1

Method

1 2 5 7 10 14

1-FNN 0.00721 0.00520 0.00488 0.00884 0.01547 0.02157

FNN ensemble 0.00131 0.00076 0.00091 0.00239 0.00372 0.00550

1-LSTM 0.01572 0.00916 0.00911 0.00940 0.01079 0.01407

LSTM ensemble 0.00561 0.00353 0.00357 0.00369 0.00430 0.00566

Days in Forecast Window

Method

1 2 5 7 10 14

1-FNN 0.21285 0.25897 0.35422 0.39680 0.46560 0.54325

FNN ensemble 0.21232 0.25876 0.35443 0.39770 0.46180 0.54177

1-LSTM 0.20397 0.24774 0.33601 0.36917 0.41097 0.45813

LSTM ensemble 0.20348 0.24799 0.33557 0.36926 0.41162 0.45897

Days in Forecast Window

Days in Forecast Window

FNN LSTM ARIMA ES Naive

1 0.21205 0.20268 0.16538 0.18055 0.17894

2 0.25821 0.24684 0.22355 0.25041 0.25484

5 0.35408 0.33462 0.33863 0.40570 0.43541

7 0.39678 0.36805 0.37346 0.45626 0.49433

10 0.46147 0.40925 0.40702 0.50454 0.54906

14 0.54359 0.45441 0.43645 0.54369 0.59119

Test Dataset Loss - Mean Squared Error
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Fig. 3 - Boxplots of test errors (MSE) for FNNs in the

Fig. 4 - Boxplots of test errors (MSE) for FNNs in the
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Both for the test errors of a single network (1-Network) and for the average 

 
Both for the test errors of a single network (1-Network) and for the average 
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Fig. 5 - Boxplots of test errors (MSE) for LSTMs in the

Fig. 6 - Boxplots of test errors (MSE) for LSTMs in the
average errors of 8 networks (Ensemble). Dots represent outliers.

The method that presented the best results in this evaluation 
is the use of ARIMA models selected for each time series using 
Hyndman’s approach for model order selection. The use of 
ARIMA models consistently beats the naïve forecasts, and only 
produces slightly worse results than the LSTM networks in two 
forecasting windows (5 and 7 days). The best ARIMA models 
ignore seasonality and prior data transformation.
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ots of test errors (MSE) for LSTMs in the 1 day forecasting window. Both for the test errors of a single network (1
errors of 8 networks (Ensemble). Dots represent outliers. 

ots of test errors (MSE) for LSTMs in the 14 days forecasting window. Both for the test errors of a single network (1
average errors of 8 networks (Ensemble). Dots represent outliers.

The method that presented the best results in this evaluation 
is the use of ARIMA models selected for each time series using 

approach for model order selection. The use of 
ARIMA models consistently beats the naïve forecasts, and only 
produces slightly worse results than the LSTM networks in two 

The best ARIMA models 
r data transformation. 

The fact that, for some scenarios, the naïve forecasts 
provide the best results might be surprising to some readers. 
With a 5% significance, we rejected the aDF test’s null 
hypothesis of unit root for all of the 32 time series in the
dataset, which means the series in the dataset do not look like 
random walks. However, after looking at the results for the 
forecasts in the test set, we tried KPSS tests in the dataset. The 
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Both for the test errors of a single network (1-Network) and for the average 

 

est errors of a single network (1-Network) and for the 

The fact that, for some scenarios, the naïve forecasts 
provide the best results might be surprising to some readers. 
With a 5% significance, we rejected the aDF test’s null 
hypothesis of unit root for all of the 32 time series in the 
dataset, which means the series in the dataset do not look like 
random walks. However, after looking at the results for the 
forecasts in the test set, we tried KPSS tests in the dataset. The 
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KPSS test has a null hypothesis of stationarity. With a 5% 
significance level, we only do not reject the null hypothesis of 
stationarity for one of the time series in the dataset (as per 
Table XIV). We have opposing evidences on whether the time 
series are random walks or not. Naïve forecasts are the optimal 
forecasts for random walks and the KPSS tests might explain 
why the naïve forecasts yield the best results in some scenarios. 

TABLE XIV.   P-VALUES FROM THE KPSS TEST FOR EACH OF THE TIME 
SERIES IN THE DATASET 

 

Besides the KPSS tests, further evidence in the results that 
it is difficult to model any regularity in the studied time series 
are that all series are forecasted with SES, which uses a flat 
forecast function (like the naïve model), and that the use of a 
transform does not benefit ARIMA forecasts. The results 
reinforce the difficulty in forecasting irregular time series.  

Based on the dataset used on this study, should one select a 
single method between the ones tested in this study to produce 
forecasts on a diverse collection of time series drawn from 
industrial machinery sensors, the default forecasting method 
should be the use of independent ARIMA models selected for 
each time series. Not only ARIMA models produced the best 
forecasts in this empirical evaluation, but also the 
computational resources required to select the model 
parameters are much smaller. 

F. Conclusion 

This work empirically evaluated the forecasting 
performance of a set of different forecasting methods in a 
dataset of time series drawn from industrial sensors. The 
dataset comes from sensors installed in a gas turbine located on 
an oil platform.  

We draw a few conclusions from the results. First, the 
results achieved show that using ARIMA models to forecast 
the time series is the best default methodology to apply, and is 
the only methodology that consistently beats a simple naïve no-
change model. Second, the results add further evidence to the 
literature that recurrent architectures are superior to 
feedforward architectures for neural networks in dealing with 
time series data. 

 Third, this study also shows the positive effect on variance 
of averaging the output from several neural networks. The 
variance reduction is particularly important for individual 
LSTM networks, which show outliers in test set errors in all 
the tested forecasting windows. We elected to use collections 
of 8 networks on this work. This number proved not big 
enough to eliminate outliers in the boxplot of test set errors for 
the collections in small forecasting windows. Lastly, the results 
showed that it can be difficult to beat a naïve forecast with 

irregular time series that may be considered as random walks. 
Some of the time series in the dataset (like the rotations R1 and 
R2) are far less relevant to machine protection than others (like 
radial vibrations V1 thru V10).  

This study presents limitations. First, there was a focus on 
evaluating neural networks. This limited the time available to 
evaluate other forecasting methods developed by the computer 
science (e.g., Support Vector Regression) and statistics 
communities. Moreover, there is no guarantee that it would not 
be possible to find neural networks capable of yielding better 
forecasts than the ones achieved by the best performing 
methods in this research. Second, while the dataset consists of 
32 time series, they were drawn from only 4 types of machine 
sensors. Also, the time series in the dataset proved to be 
irregular. Some of the time series in the dataset (like the 
rotations R1 and R2) are far less relevant to machine protection 
than others (like radial vibrations V1 thru V10). Perhaps, 
controlling the more relevant series using the less relevant and 
control variables could lead to more well behaved and 
forecastable time series. 

This research does not consider outlier removal and 
interactions between variables. Finally, it should be noted that 
on this study we focused on finding a general best forecasting 
method capable of dealing with all the different time series. A 
procedure capable of selecting a different, and presumably 
best, forecasting method for each of the time series could 
possibly yield better results on the test set. 

Future studies should focus on improving the variety of the 
time series in the dataset, assessing a greater variety of 
forecasting methods, drawing better performance of models 
based on neural networks, considering the interactions between 
the different series and assessing the effect of outlier removal 
on model accuracy. Other research points of interest are 
defining a methodology to size the necessary number of 
networks in a collection in order to assure that result 
randomness is properly reduced, and a procedure capable of 
selecting the best forecasting method for each individual time 
series. 
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