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Abstract—Prognostics assesses and predicts future machine
health, which includes detecting incipient failuresand predicting
remaining useful life. Several studies approachedrpgnostics as
a time series forecasting problem. The main goal ghis study is
to evaluate the performance of a set of methods the prediction
of future values from a dataset of time series catted from
sensors installed on an industrial gas turbine. Méiods tested
include the use of ensembles of feedforward neuraletworks,
ensembles of long short-term memory networks, expemtial
smoothing, and Auto Regressive Integrated Moving Aerage
(ARIMA) models. Results show that the use of ARIMAmModels to
forecast on the dataset is the best default methad apply, and is
the only method that consistently beats a simple i\&e no-change
model.
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. INTRODUCTION

Condition Based Maintenance (CBM) is a maintenance

policy that aims to take maintenance action beforfailure
happens. CBM times the maintenance action by dsgess
product condition, and predicting failure based data
gathered from the product. Even though the teclyiedoand
technical methods for CBM are still in their infanc
advancements in information technology have acatddr
growth in CBM technology by providing network baridti,
data collection and retrieval, data analysis, aratisibn
support capabilities for large datasets of timeieser
Nowadays, process data, collected in the formnoé tseries, is
often compressed and archived for record keepirdy arly
retrieved for emergency analysis after a fault basurred.
However, this data could be of tremendous advantetyen
combined with effective analytics and superior cating
power capable of generating knowledge from the [d3t42].

e Model based approaches presume that it is
possible to build a mathematical model from the
understanding of the physical mechanisms
involved in the failure modes of the machine that
bases the model. These approaches have the
advantage of providing the ability to incorporate
physical understanding of the system. However, if
the understanding of the system degradation is
poor, it may be difficult to model the system
behavior.

» Data driven approaches use data gathered from
sensors or by the machine operators to track
features that indicate the degradation of the
system. Data driven approaches can leverage
computer intelligence techniques like neural
networks and decision trees or statistical
techniques like auto-regressive models.

» Hybrid approaches combine model based and data
driven approaches in an effort to leverage the
advantages and diminish the disadvantages of both
types of approaches.

Historically, empirical evaluations have shown &veral
domains that statistically sophisticated or comptesthods do
not necessarily achieve more accurate forecastinfier series
than simpler methods. However, recent evaluatioaseh
concluded that complex methods based on compugtion
intelligence and neural networks have caught uml toat
simple methods can no longer claim to outperform
computational intelligence methods without a progmpirical
evaluation [5].

Several studies on prognostics have dealt withroinfa
time series forecasting perspective. These stagliply diverse
forecasting techniques, such as Auto Regressive ingov
Average models, Recurrent and Feedforward Neuraldiks,

Diagnostics and prognostics are two parts of CBMSupport Vector Regression, Markov models and sirtipear

Diagnostics is a reactive process. It takes plétee a fault has
already occurred and aims to determine the roctecaid the
failure.
corresponding expenses. On the other hand, prageadsta
proactive process. It assesses and predicts fuhaehine
health, which includes detecting incipient failureend
predicting remaining useful life [3]. When done jpedy, it can
improve machine conditions and decrease the anmafuddwn
time for all equipments.

There are three classes to the current approaahes
prognostics: model based, data driven and hybtid [4

regression, to time series of different types afdition related
parameters (e.g. machine vibration) in order todigte

It cannot prevent machine downtime and theemaining useful life and next failure occurrenég [7], [8],

(91, [10].

There are published works showing positive resiutisn
neural networks applied to time series forecasitingomains
other than CBM. [11], [12]. These studies show tkz
application of time series forecasting methods ¢haseneural
networks, combined with huge amounts of historitath, may
lead to better prognostics of industrial machirgiimately,
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better prognostics may lead to reduced mainteneosts and
increased production availability.

Neural networks are subject to variance due to hteig
initialization and to the training algorithm (stachic gradient
descent). This means that even if using the sactétecture
and training set, different instances of the trainprocedure
might yield different values for the network weighand,
consequently, different output values for the samat. A way
to deal with this variance is to employ an ensembie
networks.

The basic idea behind an ensemble is to build digifen
model by combining a collection of simpler base sied13].
Silveira and Maué [14] applied ensembles of Infdrama
Retrieval and Word Embedding algorithms to answetltipie-
choice questions. The ensemble showed better peafare
than previous approaches, both on accuracy andamad
deviation. Ensembles of classifiers also showedeisoip
performance in distinguishing between Brazilian &udopean

Moving Average (ARMA) model on baseline data. The
authors used deviations from the ARMA model on rfeitu
values as a degradation index. After the degradatioex
reaches a threshold, Pham et al. used Cox's PHM
(Proportional Hazards Model) to create a survivalbability
curve as a function of time followed by Support ¥ec
Regression (SVR) to predict remaining useful life.

Heng et al. [7] used an atrtificial neural networkhwthe
most recent values of a condition index (bandpassation)
as inputs. The ANN does not predict future values the
condition index, rather predicting probability odiltire in
fixed time intervals ahead of the last conditiodér measure.
Heng et al. benchmarked the proposed model agsivst
ANN models predicting reliability and an ElIman Reemt
Neural Network (RNN) that approached prognosis iam t
series prediction. The authors considered RNNshasrtost
commonly used models in the prognostics literaturet

Portuguese, when compared with any of the inditiduareported superior results from their proposed model

classifiers in the ensembles [15].

The main goal of this study is to evaluate the grenince
of a set of methods in the prediction of futureueal of
monitored parameters in industrial machines. Ththaus are
data driven and deal with prognostics from a tinegies
forecasting perspective.

Datong et al. [8] presented an on-line (incremental
learning) SVR based strategy (MSPO-SVR) for préaticbf
industrial sensor data. The authors tested théeglreon the
Tennessee Eastman benchmark dataset. Datongcetrglare
the presented strategy against traditional on$N&. MSPO-
SVR showed superior performance based on MSE.

This study is an empirical evaluation, executed by Njy and Yang [9] used a neural network to fuse taoke

forecasting on a dataset collected from an inchlstgas
turbine. The dataset consists of a collectionroktseries. The
study evaluates forecasts generated by neural netweith
different architectures selected for each of thividual time
series in the dataset. The study also evaluatescdsts
generated by well-established forecasting techsiga®IMA
models and exponential smoothing). The naive nogha
model serves as a benchmark for all the consideredasting
methods.

The contribution of this paper is in the generatioh
knowledge directed specifically to the improvemeot
prognostics, when considered as a time series dstiag
problem. To the best of the authors’ knowledgerethie a
scarce amount of published evaluations of multiptecasting
methods on data from real machines. This knowléslgseful
for the understanding of the best forecasting nuastavailable
for those who want to estimate the remaining uskfel of
industrial machines.

The structure of the remainder of this study ifaiews.
Section Il presents some related works in the arefas
prognostics and predictive maintenance. SectiomédBcribes
the dataset used in the study, the preprocessipiggdpo the
dataset prior to any model building, and the neoetivorks
used to generate forecasts. Section IV describescdeting
methods well established within the time serieedasting
community. Section V covers the method and metdc f
forecast evaluation. Finally, Section VI presehts tesults and
provides a conclusion for the study.

Il. RELATED WORK

A. Prognostics as Time Series Forecasting

Several studies approached prognostics as a times se
forecasting problem. Pham et al. [6] used an AutgrBssive

features into a single value used for condition iooimg.
After the condition index reaches a threshold value non-
linear techniques, Dempster-Shafer regression aabt-|
squares support vector machines, predict the futetevior
of the monitored index. A weighted average combities
predictions from both methods.

Cho et al. [10] developed a hybrid approach to iptettie
next failure time of a centrifugal compressor usiigration
data. Bellow a threshold value, the authors appiddarkov
model to predict next failure time. Above the thres value,
they apply a mix of moving average filter and sienfihear
regression.

The studies cited show the variety of forecasting
techniques used in the field of prognostics. Marfythe
techniques from these studies are included in tineent
research. Some of these studies have limitatiotiseimumber
of techniques evaluated, while some of them perftasis on
benchmarks datasets, allowing comparisons withr cfuelies.
Table | provides an overview of the cited relateathy

B. Time Series Forecasting With Neural Networks

There are published works showing positive resiutis
neural networks applied to time series forecastingomains
other than CBM. Khashei and Bijari [11] introducech
approach based on using an Auto Regressive Ineefrat
Moving Average (ARIMA) model to extract featureort a
time series. The features serve as training inpua tsingle
hidden layer feedforward network. Ma et al. [12¢dis Long
Short-Term Memory (LSTM) neural network to predietffic
speed.
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C. Big Data and Predictive Maintenance

Yan et al. [16]discuss how industry 4.0 has aroused a
round of interest in advanced manufacturing and
advances in sensor technology, computer sciencdigndats
lead to a new industrial revolution. While discuggithe

TABLE I.

challenges of integrating data from vais sources, not only
sensor data but also environmental data and staffviedge,
the authorpresent a case study of machining tool degrad.
which, like the current research, uses only sensoi, though

RELATED WORK ONPROGNOSTICS

Study Relevant Point:

Forecasting Methoc Data

Pham et al. [€ * Degradation index derived from sen
data

* Reliability mixedwith traditional time
series forecasting

* No comparison to other methc

Vibration data from methar
compressor (same as [9])

Three Stage: ARM/— PHM
— SVR

Heng et al. [7 » Comparison between prognostics Feedforward Neural Networ | Irving Pulp and Pap
reliability and as time series forecas Elmann RNN
Datong et al. [¢ | « Raw sensor da MSPC-SVR Tennessee Eastir
* Proposed methods compared only
different SVR method
* MSE as metric
Niu and Yang [€ | « Degradation index derived frosensol DSR, LS-SVM Vibration data from methar

data using NN
» No comparison to other meth¢

compressor (same as [6])

Cho et al. [1C * Raw sensor ds
» No comparisorto other methoc

* MAPE as metric (no normalized data)

Two Stage: Markc Chain—
Moving Average Filter +
Linear Regression

Vibration data from ga
compressor

also consideringinstructured sensor data (images from a |
scanner).

Wan et al. [17] stat¢hat one of the challenges faced
preventive maintenance in the context of industfy i the
design of the algorithm for offline prediction aedaluation o
service life, and that recent technology allows ffeal time
alarms while still lacking in m@dictability. The authors
propose a cloud architecture that uses neural mesvto
predict machining tool remaining life (in fixed émwals).

The following subsections describe the dataset uséus
research, the preprocessing appliedthe dataprior to any
forecasting, and the forecastingethod based on neural
networks applied to the dataset.

A. Data

The data used in this study comes fran oil platform’s
data managemesystem. The system stores data from mul
sensors instaltethrough the offshore facility. The focus of
current research is on data collected from theassris oni of
the platform’s gas turbinesvhich is responsible for generati
power for the platform.

The dataset includes valuesllected from 32 senrs,
which measure pressure (P), vibration,mperatur (T) and
rotation speed (R).Fig. 1 shows a schematic of t
instrumentation’s position on tlgas turbine

The raw data alsmcludes values logg when the turbine
is not operating. These valudgviate considerdy from the

DATA AND METHODS

values observed whetine machineis operating. Hence, the
study excludes thos#gata pointswhich were collected during
stoppages.

The data managemesystem does not log values for ei
sensor at a fixed sampling rate. Drent reasons may trigger a
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Fig. 1 -Position of embedded sensors on the turbine urmfesideratior

datalogging event for each sensor, resulting in asyorbus
time seriesln order to allow the research to proceed with
use of standard forecastitgchniques for evenly spaced til
series, preprocessing of the dataset aggregate#nbeseries
into evenly spaced data.

Daily bins divide the dataset. For each time seribs
aggregéed values equal the mean of values collected
during a 24 hours period (a daily b. In the event there are not
any value<ollected in a 24 hours peri for one of the series,
making it impossible to calculate an average vétu¢hat day,
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this day with no data uses a value linearly intefgal from the
adjacent days. Working with daily values is a resealesign
choice. Daily values are useful for monitoring lobgrm
degradation mechanics of a machine. The researdt easily
be redone with different intervals, leading to eliént results.

neuron. The third element is the activation funttidhe
activation function limits the output of the neuramd is
responsible for the nonlinearities in the netwdtguations (1)
and (2) give the output, of a neurork that uses weighted
sum as its adder. Haykin [20] gives further detaits the

In order to guarantee secrecy of the real operatinmathematics of neural networks.

parameters, normalization of the dataset usingradsrd scaler
occurs. The resulting series have mean zero, stho@iation
one and are dimensionless. Regardless of real \rtlieg,
input normalization is a common preprocessing &emeural
networks. The resulting dataset contains 1461 dailyes for
each of the 32 sensors.

We perform a preliminary analysis of the study'sadat.
The first step in the analysis is the augmenteckdjid-uller
test with the objective of assessing trend statipnaThe
second step is Levene’s test with the objectiveasdessing
homoscedasticity (stationarity on variance). Timalftest used
in the preliminary analysis is the Anderson-Darlitggt for
normality. These tests allow for the analysis aheaelevant
characteristics of the time series. The test resuk shown in
section IV.

The study splits the dataset in two. The first 96f4he
data serves as the training dataset for all of ftmecasting
methods. The final 10% of the data is the testusetd in order
to evaluate the accuracy of the models in proparobu

m
Vi = Z Wi jXj + bk #(1)
j=1

Where:

wy ;- Weight of the connection between neuron j andorek,
x;: Output of neurorj;

b,.: The bias of neuroh.

X = () #(2)

Where:
v,.. Activation potential of neuroh;
@: Is the activation function.

One type of neural network used is this study is
Feedforward Neural Networks (FNN), in which there ao
loops. The layers are ordered and a network laghr wses as
input the output from the previous layer. This gtedeates an
independent FNN for each time series in the datagleich

training-sample data. There are no changes to modgkes as input only lagged values from the timeeseii

parameters in the evaluation phase. All forecastireghods
output one-step ahead forecasts.

The choice of the 10% size for the test set is Wuthe
nature of the current research’s data. With crestianal data
(data collected at a single point in time, like gaa of dogs or
a collection of forms filled by a group of peopl#)e data have
no obvious ordering and the test set selectioariglom in the
available data. That makes the test set and theingaset
similarly distributed, even for bigger sizes ofttests. For time
series, given that the data is collected sequéntisler time,
there is an obvious ordering to the data, anddakeget comes
from the most recent observations. If the testisdbo big,
there can be significant differences in patternsvben the
training set and the test set.

It would not be feasible to follow a more sophiated
version of training/test sets split, like time sericross
validation [18], due to the increase required ie ttumber of
instances of the neural network training problem6(limes
increase for the one-step ahead forecast scengtgmice, the
authors use a 10% size for the test set as a ffdoetween
computational resources and better forecasts.

B. Feedforward Neural Networks

Neural network is a term that encompass a larges abéd
models and learning methods. Neural networks argirmear
statistical models that model the outputs as nealifiunctions
of linear combinations of the inputs. One buildsneural
network by connecting simple computing cells calhedirons

forecasts. This means this study does not consjessible
information in the interaction between series.

It is necessary to define the architectures of FNNs
before proceeding with the final training. All FNNsed in this
study use the same procedure for architecture tamiecrhe
architecture selection procedure starts with at spii the
training set: 2/3 for training and 1/3 for validati

At this point, it is beneficial to make a clear tdistion
between the validation set and the test set. Theatian set is
a subdivision of the training set. The use of adation set is
an approach to the selection of hyperparameteasméchine-
learning algorithm. Hyperparameters that control deio
capacity (like number of units in the hidden layspuld not
be learned on the training set. Otherwise, the tpgrameters
would always choose maximum model capacity, resgiltn
overfitting. This is the importance of using a dalion set for
hyperparameter selection [21]. In the case of aateetwork,
these hyperparameters are the network parametatstth
backpropagation algorithm cannot learn: number ayfels,
number of units in each layer, form of activatiamdtion,
between others.

This study considers several architectures witlieniht
numbers of units in the hidden layer and diffenemtnbers of
lagged values as inputs. This study only consideaiitectures
with a single hidden layer. The procedure continwéth
training of the different architectures on the el training
set for a maximum of 1000 epochs with early stogpirthe
validation loss (Mean Squared Error (MSE), as i @@®es not

or processing units. This study uses neural nesvorkimprove after 10 consecutive epochs. The final FNiNsned

implemented in Python using the Keras library [19].

There are three basic elements to a neuron’s mbulst, a
set of connecting links to other neurons, eachacitarized by
a weight of its own. Second, an adder, often caléed
propagation function, used to sum all the inpubalg to the

on the entire training set, use the architectunes presented
the smallest average validation loss after 10 itrgimuns. All
FNNs use hyperbolic tangent as the activation fanobf the
units in the hidden layer.
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th€=1(yt —yt)?

MSE =
k

#(3)
Where:

y,: Forecasted value forat timet;

v:. Actual value fory at timet;

k: Number of forecasted points.

After selection of the architectures for each teeees, the
forecasts created for the test set use a colleofi@8 FNNs that
have the same previously selected architecture.rafyimegy
combines the outputs from the individual FNNs. Euwthors
expect this procedure will reduce variance in tbsults. The
size 8 for the network collections is a design cadby the
authors. According to the central limit theorentjaace would
be further reduced by increasing the number of oeksvin the
collection [22]. However, since this research doetsdeal with
confidence intervals, we elect to use 8 networkarireffort to
achieve a representative result, while keeping cdatipnal
costs low.

C. Long Short Term Memory Units

A Recurrent Neural Network (RNN) is a neural netivor
that allows feedback loops. The state of an RNNjckvh
consists of the activation values of the hiddersgiepends on
the past values of the state. The presence of &e&dloops
helps RNNs in processing sequential data, like tsedes.
RNNs are susceptible to the problem of gradientabikty.
The longer the network runs, the more unstable thee
gradients on inputs further back in time.

Long Short Term Memory (LSTM) units, are a spetypke
of processing unit used to build the hidden layera LSTM
neural network. LSTM units address the problem rafdgent
instability by creating paths through time that dalerivatives
that will neither vanish nor explode [21]. The LSTMits have
an adaptive forget gate designed to reset a stéte when its
contents are no longer relevant. The forget gatdrais the
weight of the state self-loop and, in that way, howuch of the
information in the state is preserved or discatoletveen time
steps. Gers et al. [23] give further detail on LSTiMts.

All LSTM networks tested use only a single timeded
value as input, given that unrolling the computagiograph
shows that the output of a recurrent network iualtt a
function of the entire time series and that the MSuinits
should have the capability to accumulate all rehvpast
information in their states. This study createsiratependent
LSTM network for each series in the dataset. THg imput of
each independent LTSM is the value at 1 of the time series
it forecasts.

It is necessary to define the number of LSTM uitshe
hidden layer before proceeding with the final tiragn All
LSTM networks used in this study use the procedbhi
follows for selection of the number of units in thieden layer,
which is similar to the procedure used for the fertdard
architecture described in the previous section.

The procedure starts with a split of the trainieg 2/3 for
training and 1/3 for validation. This study consgleseveral
architectures with different number of units in th&lden
layers. The procedure continues with training @& tietworks
on the reduced training set for a maximum of 10@fchs with
early stopping if the validation loss (MSE) doeg moprove

after 10 consecutive epochs. The reason to usédatian set
for LSTM network size selection is the same asdtan past
section on FNN networks. The final LSTM networksiried
on the entire training set, uses the number ofdndahits that
presented the smallest average validation loss Hftdraining
runs.

After selection of the architectures for each teeees, the
forecasts created for the test set use a collectid® LSTM
networks that have the same previously selectelitacture.
Averaging combines the outputs from the individu&ITM
networks. The authors expect this procedure willuce
variance in the results. The same comment fromsketion on
the size of the network collections applies.

IV. WELL ESTABLISHED FORECASTINGMETHODS

The following subsections describe well-established
methods developed by practicing forecasters. Tégtian also
describes the naive no-change forecast, whicleisithplest of
all forecasting methods. The naive forecast isntiigmum a
forecasting method must be able to improve upon.

A. Exponential Smoothing

Exponential smoothing is a forecasting approach tisas
all historical values as predictors, giving moreghe to more
recent values, as in (4) for Simple Exponential Stining
(SES). The equation shows that the forecast fae tim 1 is a
weighted average between the most recent obsemvatiand
the forecast for time. Recursively substituting, yields (5).

X1 = axe + (1 - ) (X)#(4)

Where:

X.41: Forecasted value farat timet + 1;
x¢: Actual value forr at timet;

a: Smoothing parameter.

Repr=axy +a(l —a)xe_q + a(l — a)?x,_, + - #(5)

As long as0<a <1, the weight given to each
observation decreases exponentially as each olisercames
from further in the past, hence the name exporlentia
smoothing.

SES is a suitable forecasting method for data witte@nd
or seasonal patterns. SES has a flat forecastidmnecheaning
the forecast for all subsequent time steps takesdnee value
[18]. There are several exponential smoothing nuthather
than SES. It is possible for the ES method to allowtrend
and/or seasonal components. Hyndman et al. [24itifgtea
total of fifteen exponential smoothing methods, hwiive
possibilities for the trend component (None, AdditiAdditive
damped, Multiplicative and Multiplicative damped)dathree
possibilities for the seasonal component (None,ithadand
Multiplicative).

This study follows Hyndman et al. [24] state space
approach for ETS (Error, Trend, Seasonality) maaétction.
An ETS model is a statistical model that underlgs ES
method. Each individual time series on the dathastan ETS
model selected for itself. The R functioats() applies
Hyndman’s approach automatically. It is the comipoiteal
tool used for ES method selection and parametienatson.
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B. Auto Regressive Integrated Moving Avet Models

Auto Regressive Integrated Moving AveracARIMA)
models combine Auto Regressive (AR) models, Mo
Average (MA) models and differencing. Differenciisga way
to make time series stationary by computing théedéhces
between consecutive observations. The addition
differencing allows for norstationary (on trend) data. /
ARIMA (p,d,q) model combines an AR model of orderg
MA model of order g and d order diffamcing

The study uses the R function auto.arima() for rh
selection and parameter estimation. It conductsaact ove
possiblemodels and selects the best one based on the |
Akaike Information Criterion (AIC). Hyndman anc
Khandakar [2b provide details on the functi's
implementation.

C. Naive Forecast

A naive model is a model that presumes thingsreitiain
the same as thelyave in the past. For time series data,
naive (no change) model simply forecasts the nesématior
to be equal as the latest observation. The naivdehserves a
a benchmark model for other models. If a model oa
produce better forecasts thasimple alternative like nae no-
change, it is of no use [26].

V. FORECASTING ANDFORECASTEVALUATION

Forecast accuracy assessment occurs after modehdy:
The metric used for this model evaluation phasthéssame
used in model training: MSEas in (3. The accuracy
assessment uses the test set consisting of théd&stof the
full dataset.

The model evaluation phase tests model accuracgnmy
on onestep ahead forecasts, but also on multistep &
forecasts. Forecasting windows tested are 1, 7, 10 and 14
days ahead.

For ARIMA models and ETS (with additive error
parameter estimation uses maximum likelihood, whasults
in similar parameter estimates to minimizing themsof
squared errors for these models. The error is tfierehce
between the fitted (forecasted) value and the actulalevat ¢
given time t.The forecasting equations for ARIMA and E
models for a given tim& + h, whereT is the last observed
value in the time series, depend on the forecasaficks for
time steps betweeh andT + h. This means the forecasti
equations for ARIMA and ETS are inherently recugsand ¢
single model can be used to predict a forecastimglow of
arbitrary size [18].

For models based on neural networks (LSTM NN
FNN), the forecasting ittegy depends on the architecture
the network. One possibility is to map a k stepaahf®recas
to a network with k units in its output layer, as the
architectures discussed in [27]. Otlagproach is to create
network with a single unit in theutput layer, and to apply th
network recursively, the forecast for time- 1 serves as input
for the model to forecast the values at tt + 2 and so on,
until all required forecasts are computed. Thithis approac!
used in the Neural Network Auto Regsion described in [1¢
In this research, we elect to use the second agipigiace it is
more similar to the way forecasting in ARIMA and &Works

and, more importantly, this approach means a singte/ork
can be used to forecast in windows of ane.

Retraining the neural networks after the obsermatid
every new sample in the test set would require ifsigmt
computational resources. In order to avoid the adgatnal
costs, there are no updates to network weightsnglutte
model evaluation stagln order to testhe different forecasting
methods in the same conditions, there are alsohaages t
the parameters of the ARIMA and ETS models, evemgh
the computational costs would be significant srdte these
methods.

The presented MSEre the average for all of the tir
series. The results do not show what the best rddtiroeact
individual univariate time series would be. They sl which
method would deliver the best results, on averdge,a
random univariate time series drawn frthe dataset, which in
turn consists of a diverse collection of time ser®llectec
from the same industrial turbir

VI. RESULTSAND DISCUSSION

A. Preliminary Analysis of the Time Sel

Table Il bellov shows the results -values) for the
augmented Dickefruller test (alternative hypothesis of
stationarity) forthe 32 time series in the dataset. Tabl
shows the pralues for Levene’s test (alternative hypothesi
heteroscedasticity) and TablV shows the p-values for the
Andersonbarling test. As these tables show, with a
significance level, it is possible to say thatafllthe 32 time
series in the dataset arend stationary, heteroscedastic
not normally distributed.

B. ARIMA Model Selection

ARIMA models assume that the ta is homoscedastic.
However, as per the last subsection, the datasetvs
heteroscedastic behavior. One option is this $doais to
ignore the violation of the assumption of homosstdiy.
Another option is to apply a transformation to theta. Wi
consider both options. For each individual timeese we fit
on the training data models with and without a -Cox
transform andelect the model with the lowest Al

TABLE II. P-VALUES FROMTHE AUGMENED DICKEY-FULLER TEST FOR
EACH OF THE TIME SERIESN THE DATASET
Series p-value Series P-Vzlue Series P-Value
PL < 0.0100 Tia < 0.0100 Vil < 0.0100
P2 < 0.0100 T2 < 0.0100 viz < 0.0100
P3 < 0.0100 T3 < 0.0100 V2 0.0234
P41 < 0.0100 T < 0.0100 V3 0.0109
RL < 0.0100 75 < 0.0100 VA 0.0112
R2 < 0.0100 TG < 0.0100 V5 0.0153
T1 < 0.0100 77 < 0.0100 Ve D.0292
Ti0 < 0.0100 T8 < 0.0100 V7 = 0.0100
Ti1 < 0.0100 9 ~<0.0100 VE = 0.0100
Ti2 < 0.0100 V1 0.0120 Ve D.0238
Ti2 < 0.0100 V1o ~<0.0100
TABLE III. P-VALUES FROM LEVENE'S TEST FOR EACH OF THE TIME

SERIES IN THE DATASIT
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Sensor E-Value Senscr P-Value Sznsor P-Valuz
Pl < 0.0001 T11 = 0.0001 Vil < 0.0001
p2 < 0.0001 T2 = 0.0001 viz < 0.0001
P3 < 0.0001 T2 = 0.0001 w2 < 0.0001
r4 < 0.0001 T4 <0.0001 V3 < (0.0001
R1 < 0.0001 T5 <0.0001 W4 < (0.0001
R2 < 0.0001 T6 <0.0001 W5 < (0.0001
T1 < 0.0001 T7 <0.0001 Ve < (0.0001
T10 < 0.0001 T2 <0.0001 A < (0.0001
Ti1 < 0.0001 T2 <0.0201 B < (0.0001

Tiz2
Ti3

< 0.0001
< 0.0001

V1
V10

<0.0001
<0.0001

o <0.0001

TABLE IV. P-VALUES FROM THE ANDERSONDARLING TEST FOF EACH OF
THE TIME SERIES IN 'HE DATASET
Sensor P-Value Sensor P-Value Sensor P-Vslue
F1 <0.0001 Ti4 < 0.000L Vil <0.0001
F2 <0.0001 T2 < 0.000L viz2 <0.0001
F3 <0.0001 T3 < 0.000L V2 <0.0001
F4 <0.0001 T4 < 0.000L Vi <0.0001
F1 = 0.0001 TS < 0.000L V4 = 0.0001
F2 = 0.0001 T < 0.000L V3 = 0.0001
T1 = 0.0001 T7 < 0.000L Ve = 0.0001
T10 = 0.0001 T3 < 0.000L VT = 0.0001
Ti1 = 0.0001 TS < 0.000L Va = 0.0001
Tiz = 0.0001 W1 < 0.000L Ve = 0.0001

Ti3 <0.0001 V10 < 0.000L

The auto.arima() function is capable of applying a E-
Cox transformation to the data. Theelection of thel
parameter is automatidhe model fitting considers a 7 de
seasonality period. Table V shows the results nbthion the
test set by the ARIMA models selected with thisoaaur
(labeled ARIMA transform)Table V also shows the rets
obtained on the test set by ARIMA models that do
consider seasonality antiat do not allow fc any previous
data transform (labeled simple ARIMA).

TABLE V. AVERAGE MEAN SQUAREDERRORS OBTAINED ON HE TEST
SET BYARIMA MODELS
Method Days in Forecast Window
1 2 5 7 10 14
ARIMA Transform  0.17225 0.23766 0.37852 0.42262 0.46479 0.50207
Simple ARIMA 0.16538 0.22355 0.33863 0.37346 0.40702 0.43645

The results show that the ueé simple ARIMA models
deliversbetter results than considering seasonality ausing
a data transform to deal with the heteroscedastiGiable VI
shows for how many of the timseries a method delivers t
best results. For 19 tingeries both proceres select the same
model. TheTable shows the distribution of the remaining
seriesbetween both ARIMA model selection procecs.

TABLE VI. FOR HOW MANY SERIES ANARIMA SELECTION PROCEDURE
DELIVERS THE BEST RBULTS.
Method Days in Forecast Window
1 2 5 7 10 14
ARIMA Transform 6 4 4 5 6 6
Simple ARIMA 7 9 9 8 7 7

As the tables show, not accounting for snality and
prior data transformation, which is not a good ficas does
delivers better results on average and for a biggenber of

time series. Hence, we elect to ignore the hetedssticity of
the data and to consider the best possible ARIMAletgas
the models without a data transform and that docoaoside!
seasonality. Table VBhows the orders of the models sele:
for each of the time series.

C. Neural Network Architecture Select

The prediction methods that use independent n
networks require selection of hyperparametAs previously
discussed,hte hyperparameters selection phase uses a s
the training set: 2/3 for training and 1/3 for daliion. Table
VIII shows the achitectures considered for each indepen
FNN. The number of time lags on an FNN equates ta
number of units on the input layeThe independent LSTM
networks tested use a single time lagnput and test the same
number of units in the hidden la' as the considered FNNSs.
Both FNNs and LSTM networks have a single unit ba
output layer, representing the forecast for tt + 1. Table IX
shows the selected FNN architectures and TX shows the
selected LSTM architectures for each time serias¢d on the
average validation loss after 10 training r

TABLE VII. ORDERS OF THEARIMA MODELS SELECTED FOR EACH OF
THE TIME SERIES
Sensor Model Sensor Model
P1 ARIMA(0,1,3) T6 ARIMA(1,1,1)
P2 ARIMA(1,1,3) T7 ARIMA(1,1,1)
P3 ARIMA(5,1,4) T8 ARIMA(1,1,1)
P4 ARIMA(1,1,1) T9 ARIMA(3,1,1)
R1 ARIMA(2,1,1) V1 ARIMA(1,1,2)
R2 ARIMA(1,1,1) V10 ARIMA(1,1,2)
T1 ARIMA(1,1,2) V11 ARIMA(0,1,2)
T10 ARIMA(3,1,3) V12 ARIMA(2,1,2)
T11 ARIMA(2,1,1) V2 ARIMA(1,1,2)
T12 ARIMA(2,1,1) V3 ARIMA(1,1,0)
T13 ARIMA(2,1,1) V4 ARIMA(2,1,0)
T14 ARIMA(2,1,1) V5 ARIMA(2,1,1)
T ARIMA(1,0,1) V6 ARIMA(3,1,0)
T3 ARIMA(1,1,2) V7 ARIMA(1,1,2)
T4 ARIMA(2,1,1) V8 ARIMA(1,1,2)
TS5 ARIMA(0,1,4) V9 ARIMA(1,1,3)
TABLE VIII.  ARCHITECTURES CONSIDRED FOR EACH INDEPENDENT
NEURAL NETWORK.
Time Lags 1,2,3,45

Hidden Layer Units 1,2,3,4,5,8, 10, 15, 20

TABLE IX. SELECTEDFNN ARCHITECTURES FOR EACH TIME SERIES
Time Series P1 P2 P3 P4 Rl R2 T1T10T11T12TI3T14 T2 T3 T4 T5
Hidden Layer Units 3 81010 1 3 5 8 815 5 8 15 8 15 20
Time Lags 14115332 25221133
Time Series T6 T7 T8 T9 V1VIOVI1VI2 V2 V3 V4 V5 V6 V7 V8 V9
Hidden Layer Units 10 4 8 10 15 20 15 5 20 15 20 15 15 15 15 5
Time Lags 2123 2 233 212 31312
TABLE X. SELECTEDLSTM ARCHITECTURES FOR EACH TIME SERIES
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Time Series P1 P2 P3 P4 R1 R2 T1T10T11T12T13T14 T2 T3 T4 TS5
Hidden Layer Units 20 5 3 82020 8 8 5 4 8 10 20 4 20 15
Time Series T6 T7 T8 T9 ViV10V11V12 V2 V3 V4 V5 V6 V7 V8 V9

Hidden Layer Units 20 41515152020 1 2 1 1 1 1 2 5 1

D. Network Averaging Effect on Variance

In order to evaluate the variance on the final ngdend
the effect of averaging on reducing this variar®eets of 8
networks each were created, both for the FNN amdttfe
LSTM networks, all with the same architecture, elected in
the previous subsection. The boxplots in Fig. 8 thig. 6 are
for the test set errors, for the 1 and the 14 dayscasting
windows, both for a single network (64 in totalmguosing the
8 sets) and for the 8 sets of 8 networks. Fronbthelots, it is
visible that averaging reduces significantly theiarece in the
results. It should be noted that there are outiiethe boxplots
for the ensembles (both LSTM NN and FNN) in thedly d
ahead window. This indicates that the size 8 ferghsembles,
while clearly reducing the variance on the finadulés, is not
enough to ensure that the results fall well wittiie middle of
the distribution in small forecasting window.

Table XI for the standard deviation of the tesbesy both
for the single networks and for the sets of 8 neka&oshows
further evidence on the effect of averaging. As eexpd,
averaging does reduce the variance on the finaltreshile
having no negative impact on the expected resslsezn by
the limited effect on the median test error (TaiXd).
Averaging is especially important in the case ofTMB
networks, where outliers are present on the bogplot a
single network in all forecasting windows.

TABLE XI. STANDARD DEVIATION OF THE TEST ERRORSALL
FORECASTING WINDOWS
Method Days in Forecast Window
1 2 5 7 10 14
1-FNN 0.00721 0.00520 0.00488 0.00884 0.01547 0.02157
FNN ensemble  0.00131 0.00076 0.00091 0.00239 0.00372 0.00550
1-LST™M 0.01572 0.00916 0.00911 0.00940 0.01079 0.01407
LSTMensemble 0.00561 0.00353 0.00357 0.00369 0.00430 0.00566

TABLE XII. MEDIAN OF THE TEST ERRORSALL FORECASTING WINDOWS

Method Days in Forecast Window

1 2 5 7 10 14
1-FNN 0.21285 0.25897 0.35422 0.39680 0.46560 0.54325
FNN ensemble  0.21232 0.25876 0.35443 0.39770 0.46180 0.54177
1-LSTM 0.20397 0.24774 0.33601 0.36917 0.41097 0.45813
LSTMensemble 0.20348 0.24799 0.33557 0.36926 0.41162 0.45897

E. Results on the Test Set

Table XIIl summarizes the results obtained by aipgiyhe
proposed forecasting methods to the test set. dtbrthe FNN
and LSTM networks, the presented results are frosingle
collection of 8 networks with the same architectéreeraging
combines the outputs from the 8 networks. The Heleof the
collection between the 8 sets previously discusseghdom.

TABLE XIII. MSE ON THE TEST SET FOR EACH OF THE FORECASTING
METHODS.
Days in Forecast Window Test Dataset Loss - Mean Squared Error
FNN LSTM ARIMA ES Naive

1 0.21205 0.20268 0.16538 0.18055 0.17894
2 0.25821 0.24684 0.22355 0.25041 0.25484
5 0.35408 0.33462 0.33863 0.40570 0.43541
7 0.39678 0.36805 0.37346 0.45626 0.49433
10 0.46147 0.40925 0.40702 0.50454 0.54906
14 0.54359 0.45441 0.43645 0.54369 0.59119

The collection of LSTM networks yields better résihan
the FNNs in all forecasting windows. This resulc@nsistent
with the literature that points that recurrent mumetworks are
the best neural networks to process sequential. dEta
collection of FNNs beats the naive forecast in dasting
windows bigger than two days. For forecasting wimslo
bigger than one day, the univariate LSTM is capabie
delivering better results than the no-change naigthod.

Exponential smoothing applied to each time seriely o
produces worse forecasts than the naive methdekiorte-step
ahead forecast scenario. However, for bigger fataog
windows, the results delivered by the method quickl
deteriorate, and ES loses to at least one of tHections of
neural networks. We must mention that the expoaknti
smoothing method selected for all of the time seiseSimple
Exponential Smoothing, meaning that the ES forecase
constant lines.
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average errors of 8 networks (Ensemble). Dots septeoutliers

The method that presented the best results iretlzikiation The fact that, for some scenarios, the naive fate
is the use of ARIMA models selected for each times using  provide the best results might be surprising to esoeaders
Hyndman’'s approach for model order selection. The us:  With a 5% significance, we rejected the aDF testidl
ARIMA models consistently beats the naive forecastd only  hypothesis of unit root for all of the 32 time ssriin th
produces slightly worse results than the LSTM nekwin two  dataset, which means the series in the dataseptdoaok like
forecasting windows (5 and 7 day$he best ARIMA model random walks. However, after looking at the resfidts the
ignore seasonality and pridata transformatio forecasts in the test set, we tried KPSS testsardataset. Th
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KPSS test has a null hypothesis of stationaritythWé 5%
significance level, we only do not reject the rutpothesis of
stationarity for one of the time series in the data(as per
Table XIV). We have opposing evidences on whethertime
series are random walks or not. Naive forecastthareptimal
forecasts for random walks and the KPSS tests na@gpiain

why the naive forecasts yield the best result®imesscenarios.

TABLE XIV. P-VALUES FROM THEKPSSTEST FOR EACH OF THE TIME
SERIES IN THE DATASET

Sensor p-Value Sensor p-Value Sensor p-Value
P1 0.0100 T14 0.0100 V11 0.0100
P2 0.0100 T2 0.1000 V12 0.0100
P3 0.0100 T3 0.0100 V2 0.0100
P4 0.0133 T4 0.0100 V3 0.0100
R1 0.0100 T5 0.0100 V4 0.0100
R2 0.0100 T6 0.0100 V5 0.0100
T1 0.0100 T7 0.0100 V6 0.0100
T10 0.0100 T8 0.0100 V7 0.0100
T11 0.0100 T9 0.0100 V8 0.0100
T12 0.0100 V1 0.0100 V9 0.0100
T13 0.0100 V10 0.0100

Besides the KPSS tests, further evidence in thdtsethat
it is difficult to model any regularity in the stied time series
are that all series are forecasted with SES, whids a flat
forecast function (like the naive model), and ttet use of a
transform does not benefit ARIMA forecasts. Theultss
reinforce the difficulty in forecasting irregulamie series.

Based on the dataset used on this study, shouldeleet a
single method between the ones tested in this stugyoduce
forecasts on a diverse collection of time seriemndr from
industrial machinery sensors, the default forengstnethod
should be the use of independent ARIMA models setetor
each time series. Not only ARIMA models produced liest
forecasts in this empirical evaluation, but
computational resources
parameters are much smaller.

F. Conclusion

This work empirically evaluated the
performance of a set of different forecasting md¢han a
dataset of time series drawn from industrial sensdithe
dataset comes from sensors installed in a gasyitbcated on
an oil platform.

We draw a few conclusions from the results. Fithe
results achieved show that using ARIMA models tredast
the time series is the best default methodologgpiay, and is
the only methodology that consistently beats a lmpive no-
change model. Second, the results add further ew&dé& the
literature that recurrent architectures are superio
feedforward architectures for neural networks ialishgy with
time series data.

Third, this study also shows the positive effattvariance
of averaging the output from several neural netaorkhe
variance reduction is particularly important fordividual
LSTM networks, which show outliers in test set esrm all
the tested forecasting windows. We elected to adleations
of 8 networks on this work. This number proved g
enough to eliminate outliers in the boxplot of test errors for
the collections in small forecasting windows. Lgsthe results
showed that it can be difficult to beat a naiveséaist with

alsoe th
required to select the fnod<?

forecasting

irregular time series that may be considered agoranwalks.
Some of the time series in the dataset (like thetioms R1 and
R2) are far less relevant to machine protection tthers (like
radial vibrations V1 thru V10).

This study presents limitations. First, there wdsais on
evaluating neural networks. This limited the timaitable to
evaluate other forecasting methods developed bgdheuter
science (e.g., Support Vector Regression) and sBtati
communities. Moreover, there is no guarantee thabuld not
be possible to find neural networks capable ofdjig better
forecasts than the ones achieved by the best perigr
methods in this research. Second, while the datasetists of
32 time series, they were drawn from only 4 typesachine
sensors. Also, the time series in the dataset grdeebe
irregular. Some of the time series in the dataiké (the
rotations R1 and R2) are far less relevant to nma&cpiotection
than others (like radial vibrations V1 thru V10)erRaps,
controlling the more relevant series using the tetsvant and
control variables could lead to more well behavedl a
forecastable time series.

This research does not consider outlier removal
interactions between variables. Finally, it shobdnoted that
on this study we focused on finding a general basicasting
method capable of dealing with all the differemeiseries. A
procedure capable of selecting a different, andsymably
best, forecasting method for each of the time sedeuld
possibly yield better results on the test set.

Future studies should focus on improving the varidtthe
time series in the dataset, assessing a greatéstywaof
forecasting methods, drawing better performancemofiels
based on neural networks, considering the intenastbetween
the different series and assessing the effect tiieouemoval
on model accuracy. Other research points of intesse
defining a methodology to size the necessary nundfer
networks in a collection in order to assure thasulte
andomness is properly reduced, and a procedurableajpf
selecting the best forecasting method for eacthviddal time
series.

and
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