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Abstract The global asymptotic stability for the disease-free equilibrium (DFE) of a mathematical model for 

tuberculosis (TB) infection is obtained by constructing a suitable Lyapunov function and LaSalle’s invariance 

principle. We define a number called the basic reproduction number (RO) and show that this number determines 

the global dynamics of the system. In particular, it was shown that the DFE is globally asymptotically stable 

(GAS) if  RO< 1. Numerical simulation was provided to illustrate the result. 
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1. Introduction 

Tuberculosis (TB) is an infectious disease of the lung caused by a bacteria known as Mycobacterium 

tuberculosis. Symptoms of TB include loss of appetite, fever, loss of weight, night sweats and chest pain [1]. 

Although, TB is currently well controlled in most countries, recent studies show that TB is rising in Africa, 

Eastern Europe and Asia due to emergence of multi-drug resistance TB, improper use of anti-biotics and 

HIV/TB co-infection [2]. 

Global stability for the disease-free and endemic equilibrium of mathematical models for infectious diseases 

have been reported in the literature [3-6]. 

Usually, the disease-free equilibrium is globally asymptotically stable when RO < 1 and the endemic equilibrium 

is global asymptotically stable when R0 > 1 [7]. 

The aim of this paper is to prove the global asymptotic stability for the disease-free equilibrium of a tuberculosis 

model using a linear Lyapunov function and LaSalle’s invariance principle [8]. 

 

2. The Model and Preliminaries 

The model considered for the transmission dynamics of tuberculosis in this paper is given by  
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The model description of variables and parameters are given in Table 1 

Table 1: Model Variables and Parameters 

Variables/Parameters  Definitions 

S  number of susceptible who do not have the disease yet but could get it 

E  Number of exposed who have the disease but are yet to show any sign of 

symptoms 

I  number of infected who have the disease and could transmit it to others 
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R  number of recovered or removed who cannot get the disease or transmit 

  recruitment rate of susceptible individuals 

  transmission rate of TB 

  natural death rate 

T  death rate due to TB 

  rate of fast progression 

v  rate of slow progression 

d  detection rate of TB 

s  treatment rate of TB 

  proportion of recruitment due to migration 

 

By using the next generation matrix approach formulated by Diekmann et al., [9], the basic reproduction number 

of our model is 
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The disease-free equilibrium of the system is obtained as follows: 

In a DFE, there is no infection in the population, so equation (1) becomes  













RR

SS



 )1(

              (3) 

Since  0 RS  is necessary for an equilibrium. Then, solving, we obtain 
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In the absence of tuberculosis disease, the population size converges to the .
)1(




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We thus study the model in the following region for stability of the DFE 
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3. Global Stability of the DFE 

Theorem 1: If 10 R , then the DFE 0P  of the model is globally asymptotically stable (GAS)  

in  . 

Proof 

The variable S  does not appear in the 1st term of susceptible compartment. By dropping this term, equation (1) 

reduces to 
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We analyse the following reduced system for stability of the DFE. 

Define a Lyapunov function 

iRhIgEfSRIESW ),,,(      (7) 

where f, g, h and i are all positive constants. 

Taking the derivative of W and substituting (6) gives 

RiIhEgSf
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Since the model monitors human population, .0,0,0,0,0,0,0   vd  It follows 

then that 
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Since 10 R  in (11) implies that  0
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. Then, from (12), it is evident that  
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RIES  is the single t on  0P . By LaSalle’s invariance principle, every solution of 

equation (6) with initial conditions in   tends to DFE P0 as t→ ∞. Hence, P0 is globally asymptotically stable in 

the invariant region   if 𝑅0 < 1. 
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4. Numerical Simulation 

To validate the result in section 3, we calculate the basic reproduction number using Table 2 and show that it is 

less than one. 

Table 2: Parameter/Variable and their Assigned Values 

Variables/Parameters  Assigned Values 

S   5 

I  2 

  0.14 

  0.1 

  0.1 

  0.01 

  0.002 

d  0.24 

s  015 

Using equation (2), we calculate R0 = 0.4357 < 1. Consequently, the disease dies out with time and infection is 

cleared in the population. 
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