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Abstract In this study two data-driven models to forecast the indisposition of professional welders are presented 

and discussed. One is based on the Takaki-Sugeno adaptive neuro-fuzzy inference system (ANFIS), while the 

other is based on neural networks (NN). Both are parameterized with reference to the overall indisposition of 

welders. The analysis of the two models is performed using the same input and output variables.  The analysis 

was made with great attention to the reliability, capability and accuracy of each model, with reference to a 

public shipyard company in Greece. It was shown that the ANFIS model based on the fuzzy logic approach 

performed better than the neural networks model. 
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1. Introduction 

Welders in any industry are engaged in welding works approximately eight hours per day and exposed to many 

types of health problems. They can be prone to inhaling, ingesting, and coming into skin contact with welding 

fumes. All types of exposures contribute to disease outcome Gonser and Hogan, [5]. 

Welding workers’ exposures are usually measured in the breathing space. There are two harmful factors 

resulting from electric welding which affect a worker during his shift. Vapors are released during the welding 

process, resulting in toxic matter that has the form of gases or solid body particles. The use of the electrical arc 

in the welding process produces a huge emission spectrum of ultraviolet radiation. Real data for toxic gas 

concentration and ultraviolet radiation are important to design an effective model to forecast the welders’ 

indisposition. 

There are various studies that forecast other types of fumes or other types of radiation produced. Yea et al. [19] 

estimated the inflammable concentration. Sterjovski et al. [18] developed and validated a back-propagation 

artificial neural network, to predict the level of diffusible hydrogen. 

Despite a large number of publications on the pathophysiological processes of welding fume exposure, 

relatively few attempts have been made to determine the indisposition levels affected by welding fume exposure 

to identify early effect signs resulting from mixed exposure.  

This study contributes to the existing literature in several ways. First of all, forecasting welders’ indisposition 

has always been an important topic, but the hybrid research of evolutionary computation and statistical model is 

little. This is the first time fuzzy with neural networks are combined to form a neuro-fuzzy model to forecast the 

total indisposition of welders. Secondly, for the first time a neural network is applied to compare the 

performance of the models. Finally, this is first time that these data have been used to build the models.  

The structure of the study is arranged in the following order: Section 2 presents the related research. Section 3 

describes the theoretical background of the model. Section 4 presents the applied models. Model evaluation was 
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carried out in Section 5 where an out-of-sample forecasting procedure was conducted. Finally Section 6 

concludes the paper. 

 

2. Related Research 

Yea et al. [20] have proposed a method of estimating the concentration of inflammable gases from transient 

response patterns, using a semi-conductor gas sensor. The procedure took place for five selected gases: butane, 

town gas, and hydrogen, methane, and propane gas. The experiment proved that the discrimination of the five 

gases supported by a three-layered back-propagation neural network as well as the estimation of their 

concentration inference was successfully performed, due to the assistance of the fuzzy neural network. 

Imamoglu et al. [9] carried out research to study the erythrocyte antioxidant system. The study took place 

among workers who were continuously exposed to welding fumes and gases, which are thought to be oxidant 

pollutants. The collaborated effects of smoking and other risk factors such as gases and welding fumes, which 

had been shown previously by some clinical data, should also be taken into consideration. As a consequence, the 

welders were warned and informed about the harmful effects of inhaling welding fumes and gases.  

There are many reports about welders who have suffered from metal fume fever, lung function changes, 

bronchitis, as well as an increase in the incidence of lung infections. Antonini et al. [2] and Antonini et al. [1] 

carried out an experiment in order to examine the remaining questions about the mechanisms associated with the 

potential pulmonary effects of welding fume exposure.  

Jeong et al. [12] investigated the effects of welding fumes on the histological structure and properties of mucins 

of the nasal respiratory mucosa.  

Zimmera et al. [25] carried out a study in order to specify the effect from shield gas composition, droplet mass 

transfer mode and welding spatter on the aerosols that are derived from gas metal arc welding operations.  

Further studies on the sequences of the radiation have been made by the scientific community. Mellit et al. [14] 

used an adaptive neuro-fuzzy inference system (ANFIS), which focused on estimating the sequences of the 

monthly mean clearness index and the total solar radiation data in isolated grounds, using geographical 

coordinates. Moreover, a multi-layer perceptron (MLP) has been used. Basically, longitude, altitude and latitude 

comprise the inputs of the ANFIS model, while the outputs are the 12 values of the monthly mean clearness 

index. As a result of that experiment as well as taking into serious consideration its mean values, an estimation 

of the root mean square error (RMSE) between measured and estimated values and the mean absolute 

percentage error (MAPE) took place. The first variable ranged between 0.0215 to 0.0235, while the second was 

less than 2.2%. Additionally, it was unavoidable to compare the results obtained by the ANFIS model and those 

from the artificial neural network (ANN) models, so as to present the advantage of the proposed method.  

Mubiru [16] developed an artificial neural networks model, which could be used for predicting the daily total or 

monthly average solar radiation on a horizontal surface for various different locations in Uganda based on 

geographical and meteorological data, such as: sunshine duration, latitude, relative humidity, longitude, 

maximum temperature and altitude.  

According to Oyabu [17], there are many different sensors and systems that have seen the light in order to detect 

disasters in domestic circumstances, like fires and gas leaks. The system adopts fuzzy reasoning, which is made 

up of simple membership functions and is capable of estimating the grade of each disaster. 

For the purpose of the study, an ANFIS model was used for the first time as a tool of modelling and forecasting 

the indisposition which professionals involved in electric welding face. The model predicts the reaction of the 

workers’ immunizing system in terms of the total indisposition, against the fumes and the radiation of the 

welding run, after being exposed to it for a certain period of time.  

 

3. Theoretical Background 

3.1. Neuro-fuzzy approach 

Fuzzy logic theory was first formulated by Zadeh [22 & 23] as a new way of characterizing non-probabilistic 

uncertainties. In contrast to the Boolean 1-0 logic, fuzzy logic also permits in-between values for any judged 

statement, i.e., it applies a continuous, multi-valued logic between 0 and 1. A fuzzy inference system (FIS) is a 

computing framework that combines the concepts of fuzzy logic, fuzzy decision rules, and fuzzy reasoning as 
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Jang [11] has highlighted.The fuzzy decision rules are the way a fuzzy inference system (FIS) relates an input 

variable χ to an output variable y. In the case where more than one variable is involved on the premise side, the 

structure of the rule takes the form: 

If x1 is A and x2 is B, then y is Ζ      (1) 

where x1 and x2 are the input variables and A, Βand Ζare linguistic values (small or big etc.) defined as the 

membership function (MF) in the input and output spaces. The steps to create a fuzzy inference model are as 

follows: 

 Fuzzification: the input variables are compared with the MFs on the premise part of the fuzzy rules to obtain the 

probability of each linguistic label. 

 Calculation (through logic operators) of the probability on the premise part to get the weight (fire strength) of 

each rule. 

Application of firing strength to the premise MFs of each rule to generate the qualified consequent of each rule 

depending on its weight. 

Defuzzification: the qualified consequents are aggregated to produce a crisp output. 

In early examples of fuzzy modeling, attempts were made to extract the fuzzy rules directly from the expert 's 

knowledge. Later, new methods were developed which used an automatic process to generate the fuzzy rules, 

while taking advantage of neural network algorithms. 

 
Figure 1: A two-input first-order Sugeno fuzzy model with two rules, Jang et al., [11] 

A neuro-fuzzy system is defined as a combination of neural networks and the Fuzzy Inference System. Thus, 

Jang and Sun15 introduced an Adaptive Neuro-Fuzzy Inference System (ANFIS) where the MF parameters 

were fitted to a dataset through a hybrid-learning algorithm. The basis of the ANFIS model is the theory of 

artificial neural networks (ANN). Figure 1 depicts the fuzzy reasoning process of a first-order Sugeno-type 

fuzzy inference system (FIS), with two input variables (x and y), one output (z), and two if-then rules. Each 

input space has been characterized by two intuitively labeled membership functions (MFs), drawn separately for 

clarity, and the graphical representation of each rule. Figure 2 depicts the structure architecture of ANFIS. 

 
Figure 2: An illustration of the ANFIS architecture [11] 
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For simplicity, it was assumed that the examined fuzzy inference system has two inputs, x  and y , and one 

output. For a first-order Sugeno fuzzy model, a common rule set with two fuzzy if–then rules is defined as: 

Rule 1:  If x  is 
1A and y is 

1B then 
1111 ryqxpf            (2) 

Rule 2: If x  is 
2A and y is 

2B then 
2222 ryqxpf           (3) 

As seen from Figure 2, different layers of ANFIS have different nodes. Each node in a layer is either fixed or 

adaptive. Different layers with their associated nodes are described below: 

Layer 1: Every node i  in this layer is a square node with a node function. 

)(,1 xO
iAi              (4) 

where x  is the input to node i  and iA  is the linguistic label (small, large, etc.) associated with this node. In 

other words, iO ,1  is the membership function of a fuzzy set iA which specifies the degree to which the given 

input x  satisfies the quantifier iA .In this study )(x
iA  of a triangular shape was used with a maximum value 

equal to 1 and a minimum value equal to 0: 
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where iii cba ,,  is the parameter set. As the values of these parameters change, the triangular-shaped functions 

vary accordingly, thus exhibiting various forms of membership functions for fuzzy set iA . Parameters in this 

layer are referred to as premise parameters. 

 

Layer 2: Every node in this layer is a circle node labelled ∏, which multiplies the incoming signal and sends 

the product out: 

.2,1),(*)(,2  iyxwO BiAiii 
    

(6) 

 

Layer 3: Every node in this layer is a circle-fixed node labelled N. The i-th node calculates the ratio of the i-th 

rule’s firing strength to the sum of all rules' firing strengths:  

.2,1,
21

,3 


 i
ww

w
wO i

ii                (7) 

For convenience, the outputs of this layer are called normalized firing strengths. 

Layer 4: Every node i  in this layer is an adaptive square node with a node function 

)( 1,4 iiiiii ryqxpwfwO             (8) 

Where iw  is a normalized firing strength from layer 3 and iii rqp ,,  is the parameter set in this layer. 

Parameters in this layer are referred to as consequent parameters.  

 

Layer 5: The single node in this layer is a circle-fixed node labelled ∑, which computes the overall output as 

the summation of all incoming signals: 


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w

fw
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As Jung [11] has presented, this architecture develops an adaptive network that is functionally equivalent to a 

two-input first-order Sugeno fuzzy model with four rules, where each input has two membership functions. The 

main advantage of this model is its transparency and efficiency. The ANFIS model was implemented in a 

Matlab environment which is available in the Fuzzy logic Toolbox. 
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3.2. The Artificial Neural Network approach 

Neural networks try to imitate the function of the brain and for this reason the connections between neurons 

determine the function of the network. They are constituted by highly interconnected simple elements called 

artificial neurons which receive information, elaborate it through mathematical functions and pass it on to other 

artificial neurons. In particular, in multilayer perceptron feed-forward networks, the artificial neurons are 

organized in layers: an input layer, one or more hidden layers and an output layer, Hagan et al [6]. In this study, 

one hidden layer is considered, since it is shown that this type of network can approximate any function, 

McNelis [13]. 

The full definition of an NN model implies the quantification of the number of neurons in the hidden layer and 

the weight values, since the neuron numbers in the input and output layers are fixed by the numbers of input and 

output variables, respectively. 

Nevertheless, with regard to the neuron number in the hidden layer, it is usually defined by a trial and error 

procedure, searching for the lowest number of neurons without penalizing model efficiency (Hsu et al. [8]; 

Zealand et al. [24]; Chiang et al. [3]). 

As regards the quantification of the weight values, two different algorithms are frequently used to train the 

model: the Levenberg Marquardt algorithm (Hagan and Menhaj [6]) and the scaled conjugate gradient algorithm 

(Moller, [15]). Hence, the former algorithm seems to perform better with ANN models characterized by few 

neurons, and thus few weights, while the latter with ANN models is characterized by many neurons, and thus 

many weights. In order to avoid over-fitting and to improve the ANN model robustness, an early stopping 

procedure was used (Demuth and Beale, [4]). In this procedure three data sets are considered: training, a 

validation and a testing set. The first and second subsets are used to setup the model, and a third subset to test it. 

More in detail, the first subset was used for training the model. At each training step, the calibrated model is 

validated using the second subset.  While the first training steps are performed, the error decreases, as it does in 

the corresponding validation phase. As the model begins to overfeed the data, the error in the validation phase 

begins to rise and thus the training procedure is stopped. The artificial neural network model was implemented 

in the Matlab environment where it is available in the Neural Network Toolbox. 

 

4. Method presentation 

4.1. Inputs, output & data collection 

The data used in this study refer to a public shipyard company of Greece. The presented experiment to model 

the risk that professionals of electric welding face started by recording the harmful factors caused by the electric 

welding which affects the worker during a shift, i.e. the vapors released during the electric welding as well as 

the ultraviolet radiation that is produced. 

The workers spend half of their shift in the workshop and the rest of it on the ship. The place where the samples 

were gathered from referred to the boiler works, a big room with sufficient air flow (therefore, there was an 

existence of quick refreshment of air in the workplace) and, as a result, nobody could expect a large 

concentration of gases in the space from the welding, which was verified by the samples. Samples for a gas 

cloud were carried out with VOC, a machine from the Noetic Ergonomics and Security Lab., which calculates 

gas concentration in ppb. As long as the ultraviolet radiation was concerned, a machine was used, which 

calculates ultraviolet radiation in μW/m
2
. 

According to a presidential decree, a welding worker’s shift lasts for 4 hours at most. So the samples were taken 

with a frequency of 2 minutes for 2 hours of continuous welding (which is half the shift). In this way, it was 

possible to gather 120 samples (120 moments) which were sufficient to successfully train the proposed system. 

The collection of the samples was initially carried out with a visit to the workshop which, because of the good 

ventilation, is considered an open area. The ventilation of air was always over 1m/s* and the atmosphere was 

refreshed 4 times per hour, almost every 15 minutes, which is considerably good. In this part, it is possible to 

clearly distinguish the effect of the harmful factors of electric welding on the workers and the way they are 

affected.  

Each worker was initially asked to inform us on the indisposition they felt every 2 minutes (time defined as the 

moment of the sample) using a 10-point scale, where 0 denoted that the worker was not affected at all from 
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either the cloud of gases or the radiation, and 10 indicated that it was unbearable for him. The type of electrode 

that was chosen was the ordinary one which is often used, and so the procedure for taking samples began. The 

samples were taken at the height of the head of the worker, so that a correct and precise picture of what enters 

the respiratory system and the radiation that reaches him could be taken. 

A remarkable observation that comes up from the board is that the ventilation of the room almost every 15 

minutes causes a decrease of gas levels released with the same frequency. The data of the input variables of 

toxic gas concentration (ppb) and radiation (μW/m
2
) and the output variable of total indisposition were fed to 

the ANFIS and NN models. Therefore, the models learn to forecast the total indisposition of the worker relating 

to the gas concentration in the room and the radiation. Figure 3 depicts a part of the collected data used to create 

and evaluate the proposed model.  

 
Figure 3: A part (60 samples) of the training and evaluation data 

Figure 4 presents a scatter plot of the training data. As can be seen the data are not distributed across the input 

space of the model in a uniform manner. This is due to the type of data. The lack of data at the lower right 

corners of the input spaces enables the creation of a sharp ascent or descent at each of the surface corners of 

Figure 5. Figure 5 illustrates a three-dimensional surface of the neuro-fuzzy model. This is a smooth non-linear 

surface which states that the indisposition increases as the radiation and toxic fumes are increased. 

 
Figure 4: A scatter plot of the training data 
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Figure 5: The ANFIS surface 

 

4.2. Model Training  

The method of trial and error was used in order to decide the type of membership function that best describes 

the model and provides the lowest error. An estimate of the root mean square error (RMSE) between observed 

and modeled values was computed for each trial, and the best structure was determined by considering a trade-

off between the mean square error and the number of parameters involved in computation. The gauss2 

membership function gave better results than the gauss, generalized bell, trapezoidal, zmf, pimf and triangular 

membership functions. 

Also, the method of trial and error has been applied to choose the optimum number of membership functions for 

each input. The use of more membership functions increases the rules of the model according to the formula: 

inputsofnumberMFsofnumberrulesofnumber            (10) 

After many trial and error attempts, the results have shown that the increase in the number of rules beyond 2 

MFs decreases the accuracy of the model. Finally, two-membership functions of gauss2 shape were chosen for 

each input variable. 

Once the ANFIS structure was identified, the parameters of the triangular MFs and the output constants were 

fitted using the hybrid learning algorithm [Jang, 10].  ANFIS applies a mixture of the least-squares method (for 

the consequent part of the rules) and the back-propagation gradient descent method (for the premise part of the 

rules) for training the Fuzzy Inference System (FIS) membership function parameters to emulate a given 

training data set. It also uses a checking data set for checking the model over fitting. Table 1 presents the ANFIS 

parameter types and their values. 

Table 1: ANFIS parameter types and their values used for training 

ANFIS parameter type  Value 

MF type  Gauss2 function 

Number of MFs  2 

Output MF  Linear 

Number of nodes  21 

Number of linear parameters  12 

Number of non-linear parameters  12 

Total number of parameters  24 

Number of training data pairs  96 

Number of evaluating data pairs  24 

Number of fuzzy rules  4 

The model was tested many times using a different number of epochs. Finally, taking into consideration the root 

mean square error, the best results were obtained after 1000 epochs. After 1000 training epochs, the model was 

able to predict the total amount of indisposition based on the fumes and radiation. Figure 6 depicts the form of 
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the initial membership functions of each input variable before the training of the model and the final 

membership function form after the completion of the training process. 

 
Figure 6: The form of the MFs before and after the training 

The algorithm creates the following four rules (
22  =4) according to formula (10):  

Rule 1:  If x is A1 and y is B1, then f1 = p1x + q1y + r1 

Rule 2:  If x is A1 and y is B2, then f2 = p1x + q2y + r2 

Rule 3:  If x is A2 and y is B1, then f3 = p2x + q1y + r3 

Rule 4:  If x is A2 and y is B2, then f4 = p2x + q2y + r4 

The linguistic interpretation of the above rules is as follows:  

Rule 1: If toxic fumes are insignificant and radiation is insignificant then the indisposition is (1) 

Rule 2: If toxic fumes are insignificant and radiation is significant then the indisposition is (2) 

Rule 3: If toxic fumes are significant and radiation is insignificant then the indisposition is (3) 

Rule 4: If toxic fumes are significant and radiation is very significant then the indisposition is (4) 

The bullets 1, 2, 3 and 4 are the results of the formula after having been trained ( f1,f2, ,f3 and f4). 

Figure 7 depicts a graphical representation of the fuzzy inference rule mechanism.  

 
Figure 7: A view of the rule mechanism 
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As previously written, the aim of this study is to compare and analyse fuzzy logic and neural network 

approaches for setting up data-driven welders’ risk forecasting models. To perform this experiment, the same 

input and output variables were considered for both approaches. So, the neural network model is parameterized 

with the same training data. By trial and error ranging between 3 and 25 neurons, the final NN architecture is 

characterized by two neurons in the input layer, 12 in the hidden layer and one in the output layer. However, the 

Levenberg Marquardt algorithm was used for training the model since it was characterized by a low number of 

inputs.  

 

Results 

Ninety six data samples were used to train the models. The remaining 24 samples that were not used during the 

training phase were fed into the models to evaluate their performance (out-of-sample evaluation). A graphical 

representation between actual values and ANFIS estimated values was illustrated in Figure 8, indicating the 

performance of the test data that were excluded from the building of the model. The blue line with square marks 

illustrates the observed values and the red line with asterisk marks illustrates the estimated values by ANFIS. 

Accordingly, Figure 9 depicts the graphical representation of the NN model. 

 
Figure 8: Actual values and ANFIS forecasts out-of-sample 

 
Figure 9: Actual values and NN forecasts out-of-sample 
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The performance of ANFIS and NN was assessed based on calculating four main types of errors: Mean Square 

Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage 

Error (MAPE). The errors have been calculated for both approaches; Table 2 summarizes the error results. 

Table 2: Forecasting results 

Type of errors ANFIS NN 

MSE 0.1524 0.4690 

RMSE 0.3904 0.6848 

MAE 0.3439 0.4810 

MAPE 7.953 11.671 

 

The ANFIS that minimized the four error measures (bold) described in the previous section was superior to the 

NN model. These results showed that the toxic fumes and the radiation in the training input data set were the 

key points in improving the indisposition forecasts. Other aspects, such as a more detailed collection of input 

variables, may be fundamental to improve the general quality of the forecasts. Moreover, it is well known that 

there are many limitations in the estimation of concentrations for toxic gases or radiation because of the 

unforgiving nature of the sensors involved. Hence, multiple sensors have been generally utilized to overcome 

the problems. However, it is expected that the limitations may be cleared to some extent even with only one 

sensor if more information or parameters are obtained from the sensor.  

Furthermore, it is now worth stressing that while performing all the previous numerical experiments, some 

problems relating to the reliability of the ANFIS model must be mentioned. However, it has been noted that 

when this model is applied, the input training data set can lead to a rule system which is not able to furnish a 

result for each testing of input data. In other words, the input vectors do not satisfy any rules during the testing 

phase when the model uses the zmf and pimf membership functions, thereby making it impossible to execute the 

forecast. In particular, this proposed model was not able to execute a forecast in some testing cases since the 

input vectors do not satisfy any “IF” condition of the trained/calibrated rules for zmf and pimf MFs.  

From a statistical viewpoint, the error values are not very low, but independently of the specific values of errors. 

Therefore, what is more important is that this model can forecast a satisfactory level of electrical welding 

workers’ total indisposition and it is superior to the NN model. 

 

6. Conclusion 

This study addressed the problem of comparing two data-driven approaches (the ANFIS approach and the neural 

network approach), in terms of accuracy, reliability and capability of dealing with two input variables to forecast 

the risk of professional welders in terms of the total indisposition.  

With regard to the accuracy, both models provide good accuracy when trained with the same data.  

Nevertheless, the accuracy was calculated based on the lowest error of four different very common statistical 

errors: MSE, RMSE, MAE, and MAPE. The error results show that the ANFIS model outperforms the NN 

approach. 

As regards the reliability, it has been shown that the considered models present different levels of reliability. In 

particular, ANFIS was not able to forecast in some evaluation cases when the zmf and pimf are used, as 

explained in the previous section.  In addition, the NN model has not presented this problem since, given its own 

architecture, for each input vector an output vector is always obtained through the transfer functions of the 

hidden layers. 

As regards the capability to deal with the input information, there are no differences in both approaches. 

Moreover, total indisposition levels can be accurately forecasted for the input variables (and their ranges) using 

an ANFIS approach. ANFIS is a model-free, easy-to-implement approach. In contrast to traditional forecasting 

methods, little training is needed to calculate the total indisposition predictions. Thus, it implements a single-

fitting procedure to non-linear situations, without the need for establishing a formal model for the problem being 

resolved. Similarly, no a priori information was required to determine the empirical relationship between the 

explanatory and forecasted variables, and the method suitability is always tested a posteriori. Furthermore, the 
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transparent rule structure of ANFIS allows the researcher to extract information on the empirical relationship 

between the toxic fumes and the radiation over time and to provide concise explanations. 

Despite the above advantages, the ANFIS must be implemented very carefully. The minimum number of data 

samples must be at least 100, and the number of model parameters should not exceed one fourth of the number 

of samples in the training sets, in order to avoid the risk of over-fitting and losing generality. A limitation also 

exists for the number of rules that can be implemented within the framework of an ANFIS model. Hence, it 

hasbeen shown that the accuracy of the model initially increases with the number of rules, but beyond a certain 

number, the accuracy of the model starts to decrease again. Therefore, all the latter considerations indicate that, 

given its very structure, the ANFIS approaches perform better when the physical phenomena considered are 

synthesized by both a limited number of variables and if-then logic statements. 
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