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Abstract 

Learners in South African schools often respond poorly in questions related to the asymptote. Despite the 
fact that there are only a few functions in the South African curriculum that actually explore the asymptote, 
learners still show some deficiency in their understanding of the concept. This research examined Grade 11 
learners’ mathematical discourses about the asymptotes of the hyperbola and exponential functions. Data 
were analysed using the Realisation Tree of a Function, an adaptation of the Realisation Tree Assessment 
tool from Weingarden, Heyd-Metzuyanim and Nachlieli. While the Realisation Tree Assessment tool 
focused on teacher talk, the Realisation Tree of a Function focused on learner expression and responses. 
A qualitative research design was essentially adopted, with exploratory, descriptive and interpretive 
elements complementing both its data collection and analysis. A purposive sampling strategy was 
implemented. Data were collected by means of a test administered to a total of 112 Grade 11 participants 
from four selected secondary schools. Focus group interviews were conducted with 24 of the best-
performing participants by using their responses from the written mathematical tests. 
The results revealed that the learners’ mathematical discourse is not coherent. While learners’ work 
on each representation was often mathematical there seemed to be a struggle when the task had an 
unusual orientation. Different expressions of the same mathematical object elicited different responses. 
The challenge is that learners exhibited a fragmented relationship between the mathematical objects of 
the function.
Keywords: commognition, realization tree, ritualised learning, visual mediators.  

Introduction

Mathematical functions are one of the most important topics in the South African national 
curriculum as signified by the prominence given to it by the Curriculum and Assessment 
Policy Statement (CAPS) (DBE, 2011) in terms of the teaching hours allocated. However, 
national senior certificate results (Spaull, 2013; Taylor, 2011) showed that students still struggle 
with questions related to functions. The research examined the learners’ interpretation of the 
mathematical object, the asymptote, from three algebraic representations of the exponential 
function and a hyperbola. While the mathematical object is the same there was a varying 
interpretation of the asymptote by students, signifying that reification and alienation (Sfard, 
2012; Nachlieli & Tabach, 2012; Nachlieli & Tabach, 2018) of the mathematical object has not 
yet been fully realised. The partial objectification of the mathematical object, the asymptote, 
is responsible for the struggles that learners have in learning of functions. Grade 11 learners’ 
responses to the three questions on the asymptote of a hyperbola and two on the exponential 
function were analysed. The asymptote from the hyperbola had the equation presented in a 
familiar classroom type format, the two exponential functions were presented in a somewhat 



PROBLEMS
OF EDUCATION
IN THE 21st CENTURY
Vol. 77, No. 6, 2019

735

ISSN 1822-7864 (Print) ISSN 2538-7111 (Online) https://doi.org/10.33225/pec/19.77.734

unfamiliar manner although the representations are within the realms of the curriculum to 
which the learners were exposed. 

Commognition

The theory of commognition, as proposed by Sfard (2008), posits that learning of 
mathematics is about how the community of mathematics communicates in a language that 
is understood by the members of this group (Professional community of mathematicians). 
Mathematical discourse is composed of the words used to describe the mathematical objects, 
the symbols that signify the mathematical objects, the routines used in the expression of 
the mathematical objects and the endorsed narratives that are agreed by the professional 
mathematics community (Caspi & Sfard, 2012, Nachlieli & Tabach, 2012; Sfard, 2012). 
Thinking is communication with oneself (Sfard, 2008). Participants of the mathematical 
discourse show their internal communication mostly through what they say, write, draw or 
sketch. Communication is seen in both talk and action. In this research we analysed how learners 
responded to questions on the asymptotes of the hyperbola and exponential functions expressed 
in algebraic form. Learners’ response to these questions raised many questions about saming, 
reification and alienation of the mathematical object, in this case the asymptote (Berger, 2013; 
Sfard, 2008). Saming is when participants of the mathematical discourse fail to distinguish 
between two or more similar mathematical objects, for example, an undefined portion of a 

graph is regarded as an asymptote by some learners [consider the function    
at the point x = 2 and x = 3]. While there were no struggles with drawing a dotted line by 
learners to denote the asymptote it is their interpretation of the algebraic expression of the 
asymptote that needs scrutiny. Algebra in mathematics is a generalisation and compression 
of arithmetic processes. The realization tree of the function is firstly expressed in word form, 
where statements (written or spoken) are drawn. Secondly it is expressed in the form of ordered 
pairs and for neatness and aesthetic pleasure mathematicians use a table of values. Thirdly, 
a function is represented in the form of a diagram on a plane and finally, an algebraic form 
represents the realization of a function.

The Asymptote

Endorsed narratives are agreed upon by the community of mathematicians, and the 
purpose is to have the same narratives applied within the community. Functions behave in 
distinctive ways under particular conditions. In quadratic and cubic functions, the common 
characteristics are the stationary points and intercepts when the x and y variables are equated 
to zero. Mathematicians generally define an asymptote of a curve as a line that is tangent to a 
curve at infinity.  As the values of the curve increase, the curve and the asymptote approach each 
other. According to this definition, a curve may sometimes cross the horizontal asymptote. The 

vertical asymptote cannot intersect with the curve. While some functions such as  

will have graphs not crossing the asymptote, there are functions such as  in which 
the horizontal asymptote is crossed infinitely many times as the independent variable x tends 
to infinity. 

In terms of the school curriculum definition, the asymptote is a line whose distance from 
the curve tends to zero as the independent variable (either x or y) tends to infinity. Grade 11 
learners are not expected to learn limits. As such, the definition with limits was not suitable for 
them. At the same time, the proposition that the curve should not cross the asymptote is not 
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mathematically correct and should therefore be avoided in the teaching and learning situation 
(Mpofu & Pournara, 2018). As stated in the paragraphs above, the horizontal asymptote may, or 
may not cross the curve of a graph. However, it should not mean that learners should be exposed 
to questions that show the asymptote crossing many times. What is emphasised here is for the 
community of mathematicians not to have contradictions in their endorsed narratives. 

There are generally three kinds of linear asymptotes, a vertical asymptote, a horizontal 
asymptote, and an oblique asymptote. In addition, graphs may have a removable discontinuity. 
In a vertical asymptote, the gradient is undefined, and the asymptote is presented in the form 
of x=a Furthermore, the vertical asymptote is parallel to, or coincides with the y-axis. In many 
instances, making a distinction between the vertical asymptote and the removable discontinuity 
poses a challenge to the learners (Berger, 2013). A function will have a vertical asymptote at 
the zero point of the denominator, provided the denominator is not a factor of the numerator. If 
the denominator is a factor of the numerator, the zero of the denominator is then the removable 
movable discontinuity. 

An asymptote and a removable discontinuity occur when the denominator is zero. The 
difference between the two is that an asymptote cannot be redefined to make the function 
continuous at that point. On the other hand, there is a way of defining a function in removable 
discontinuities such that they are continuous. If a denominator of a rational function is zero at a 
certain value of x and the numerator is not zero, then there is a vertical asymptote at that point. In 
contradistinction, when both the numerator and the denominator are zero, there is a removable 

discontinuity (Berger, 2013). For example,  at x=2 would be  and 

 at x=4 would result in . In this case, the function f has a vertical 
asymptote, while the function h has a removable discontinuity. At grade 11, the curriculum does 
not require knowledge of this difference.

Challenges Concerning Learning Asymptotes

The official secondary school mathematics curriculum in South Africa presents learners 
with functions whose asymptotes are either parallel to the axes or coincide with the axes. The 
hyperbola and the exponential functions have asymptotes at the zero points of the denominator, 
and there is no intersection between the horizontal asymptote and the graphs. The reviewed 
literature showed that learners tended to struggle with the concept of the asymptote (Flesher, 
2003; Kidron, 2011; Mpofu & Pournara, 2018). 

A study by Flesher (2003) found that learners’ asymptote-related difficulties were 
universal. In her cognitively inclined study, Flesher (2003) focused on college learners who 
were expected to describe the meaning of graphical representations in their own words. Some 
of the findings of this study indicated that learners’ mathematical discourse on the asymptote 
was at a granular stage. Flesher’s study was cognitive in nature, hence her usage of the term 
‘conceptual misunderstanding’ because she found that the students saw the asymptote as a 
number and not as a line. This most probably arose from the algebraic calculations rather than 
from the graphs. Some of the learners in the study struggled to position the asymptote, stating 
that the asymptote can only coincide with the axes. This view emanates from an asymptote of 
parent functions, in which there are no vertical or horizontal translations. Yet, some learners 
could not define the horizontal and and/or vertical asymptotes after correctly calculating the 
position of the asymptotes on the Cartesian plane. 

Furthermore, learners generalise mathematical objects according to their what they see, 
whether such objects are a procedure or a representation. In her cognitive study, Kidron (2011) 
explored the learners’ concept image of the horizontal asymptote. The learner in question 
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struggled to understand that the horizontal asymptote can intersect with the function. The 
diagrams created some cognitive conflict in which the graph and the asymptote behaved in 
a manner that she (Kidron, 2011) did not expect. After checking for errors in her work, she 
finally accepted that the horizontal asymptote could intersect with the graph infinitely. The 
lesson learnt from Kidron’s (2011) study is that the current high school definition introduced 
to learners in the South African system of education will need to be changed, if learners are to 
continue studying rational functions. The horizontal asymptotes would intersect with the graph 
and in some instances, the asymptote would be a line in the form of y = mx + c. 

In a study conducted by Yerusalemy (1997), learners defined the horizontal asymptote 
as a slope with a gradient of zero. Their initial thoughts on the vertical asymptotes were that 
they occur on every zero point of the denominator. They did not distinguish the removable 
discontinuity from the asymptote. Some of these learners referred to the asymptote as a point, 
which demonstrates that their view of the asymptote was incorrect. Similar to the study by Nair 
(2010), learners in the study by Yerusalemy (1997) above also stated that asymptotes were 
invisible lines. 

Research Aim

Learners’ inability to adequately understand asymptotes and the way they could be 
determined is a universal (common) problem (according to Flesher (2003)) and South African 
learners are susceptible to such difficulties. Evidence obtained from teachers at schools indicate 
that learners answer questions adequately in the written form but fail to explain what they have 
written when asked to explain. Learners tend to believe that the word “asymptote” is used 
only for a hyperbola. This assertion is supported by the National Senior Certificate Diagnostic 
report for the 2015 final examinations in South Africa, where a number of candidates listed two 
asymptotes for an exponential function in response to a question. This research then, attempted 
to explore the following research question: What is the nature of learners’ mathematical 
discourse on the asymptotes of the hyperbola and exponential function?

Research Methodology

General Research Background

The participants (112) were selected from four rural secondary schools in Mthatha in the 
Eastern Cape province in South Africa. This empirical, mixed methods research was underpinned 
within the interpretivist paradigm. Mthatha is a small town with a dense population. Education 
is affected by a variety of factors, including a high illiteracy rate, and a low per household 
income as most residents rely on government grants and some households are child headed. 

Sample

A homogeneous purposive sampling technique was used, where research participants’ in 
possession of similar representative qualities with the study population were selected (Saunders, 
Lewis, & Thornhill, 2012). A dual-purpose testing mechanism was used. Furthermore, six 
learners were purposively selected for task-based interviews per school. The test served the 
purpose of examining the mathematical discourse of Grade 11 learners in the sphere of functions 
in general. 
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Instruments

Qualitative and quantitative data were collected by means of a test and task-based 
interviews. The test was used only to select the participants for the task-based interviews. The 
validity of the test was ensured by asking five other teachers of Grade 11 classes to examine 
the test and by also piloting the test among 10 learners in another non-participating school. 
Approximately one hour was allocated for the actual test administration. The test was conducted 
under strict examination conditions. The test itself comprised 4 questions (40 marks) based on 
sections that the learners had already covered in lessons in previous and current grades.

 Flexibility was used in the administration of the task-based interviews, allowing the 
selected participants to use multiple methods of answering questions. Some preferred to answer 
questions on the chalkboard, some on paper, while others preferred verbal responses only. 
Participants were allowed to express themselves freely in their language of choice. While most 
of the participants responded in English, there were some instances of some learners choosing 
IsiXhosa (the local language widely used in the Eastern Cape) to express themselves. 

The test was administered first because it was used to select the participants for the 
task-based interviews. For purposes of enhancing “the authorial voice” of the participants, the 
questions selected for both the test and the task-based interviews were as close as possible to 
the participants’ everyday classroom experiences.

Four focus groups, comprising six participants each (a group per school) were 
interviewed. This aspect of the research was not included in the study because the intention 
was to look specifically at the individual participant’s discourses related to the asymptote and 
therefore the focus group discussions had no tangible influence on these findings.   

The Realization Tree of a Function

A realization is nothing more than a representation of a mathematical object (Weingarden, 
Heyd-Metzuyanim and Nachlieli, 2018). Sfard (2008) coined the term realization because 
she believes that mathematical objects do not exist in themselves but are a result of human 
communication. For example, quadratic equations are solved using four basic methods. One 
can factorise, complete the square, use a formula or use a graph. The four ways of solving 
quadratic equations are the realizations of the quadratic equation. Learners need to realise the 
connectivity between methods and that the result from each of the methods is the same. What 
enhances learners’ realisation that they are actually doing the same process using different 
means is allowing them (learners) to explore different ways of solving factorizable quadratic 
equations rather than strictly using the formula for those equations that have irrational roots. 
Mudaly (2014) states that visualisation can be used to make connections between concepts. 
There are four basic realizations of a function and these are namely graphical, words, algebraic 
and ordered pairs. Ordered pairs are usually written in the form of a table of values. What 
learners see are discrete values that are not connected to each other. Sfard (2012) refers to this 
kind of communication as impoverished realisations.   

Realisation Tree of a Function Analysis tool

The Realisation Tree of a Function analysis tool (RTF) was adopted from the Realization 
Tree Assessment tool (Weingarden, Heyd-Metzuyanim & Nachlieli, 2018). While Weingarden 
et al. (2018) used a four staged shade coded tool to analyse the realisations by the teacher in 
class, this research reduced the Realization Tree of an asymptote to only three steps to analyse 
learners’ response to questions on the asymptote of a hyperbola and exponential function. The 
RTF has three stages and for convenience, renamed them levels. Level one is where the learners’ 
realization became completely unacceptable to the community of mathematicians, for example 
when an asymptote is written as a number (the asymptote is two) or when an asymptote is 

Vimolan MUDALY, Sihlobosenkosi MPOFU. Learners’ views on asymptotes of a hyperbola and exponential function: A commognitive 
approach



PROBLEMS
OF EDUCATION
IN THE 21st CENTURY
Vol. 77, No. 6, 2019

739

ISSN 1822-7864 (Print) ISSN 2538-7111 (Online) https://doi.org/10.33225/pec/19.77.734

written in the form of coordinates (2;1). The second level is when learners’ response is partially 
acceptable. For example, instead of writing two asymptotes of a hyperbola, the learner just 
writes one asymptote. The last and the highest level of realisations is when the response is 
acceptable to the community of mathematicians and there is no ambiguity. Whether spoken or 
written when learners say the asymptote is y is equal to 2 and x is equal to 1. The highest stage 
was named level three. 

Classification Description Examples

Level 3
Objectified communication. Fluidity in 

communication on the four representation of a 
function 

Able to relate all the realizations of a function. 
e.g. an asymptote is a line; expressed in the 

form of x = a and y = b. 

Level 2
Partial objectification of the mathematical object. 

Expressing related mathematical objects as if 
they are not related 

Drawing a line for an asymptote but writing a 
number for the same mathematical object

Level 1 No objectification at all.
Failure to respond to questions or 

unmathematical statements e.g. an asymptote 
is a point.

The findings were that students readily recognised the asymptotes of functions in 
equations or formula that are generally used in classrooms or tests but when there was a slight 
change the number of correct responses declined. 

Research Results

Participants’ Responses to the Equations of the Asymptotes

The participants were asked to Write the equations of the asymptotes of f in 

. Most of the participants performed well in this question. Over 75% expressed 
the asymptotes correctly, that is, x = 1 and y = - 2. However, 25 participants failed to express 
the asymptote in any mathematically acceptable manner. Four participants did not respond to 
the question at all, and simply left blank spaces. Twelve participants had all their responses 
incorrect and could not name either of the asymptotes. Thirteen participants’ responses were 
partially correct. Most of the participants (75%) responded in a manner that is acceptable to 
the community of mathematicians by stating two asymptotes that were perpendicular to each 
other. Participant A’s responses in relation to the equation of the asymptotes of f was simply x 
= 1 and y = -2.

This response corresponds with the discourse of the community of mathematicians. 

Participant A wrote the two asymptotes of  mathematically because she 
expressed them as evidence of interpreting the symbolic mediator; that is, the function f. Her 
explanation of why she expressed her response in the form of an equation was that “…it is 
because an asymptote is a function”. We classified her communication on the asymptote of 
the hyperbola as being at level three because every member of the professional community of 
mathematicians would have interpreted it in a similar way. 

Participant B produced a non-mathematical response, which could be classified as a 
ritualised routine and an example of a level two communication. Ritualised routines are a result 
of ritualised learning where procedures are committed to memory and are recalled and applied 
mechanistically when a particular application calls for its enactment.  His initial response was 
correct (x = 1 and y = -2), and then went on to write the coordinate (1; -2). The asymptote is 
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regarded as a coordinate in the same manner that one would do for a turning point, or intercept 
where the x and y-values are written as a coordinate. When asked why he wrote the coordinate, 
Participant B pointed to the intersection of the two asymptotes as the reason for doing so. 
However, it was clear that participants knew how to identify the asymptote from an equation, 
but probably did not know what the asymptote actually was. Participant B could interpret the 

symbolic visual mediator , which was classified according to the RTF analysis 
tool as level two because his communication exhibits a partial development in the learning of 
asymptotes, although he could write the equations for the asymptotes.

The work of the participants reflected the second type of mathematically unacceptable 
responses when they presented the equation in terms of the p and q parameters. Participant 
C presented his answer for the asymptote as p = x = 1 and y = q = - 2. When a function is 
generalised, p and q are used to represent the vertical and horizontal shifts respectively. These 
parameters are used in almost all the functions in the Further Education and Training (FET) 
phase in South Africa. The participants’ responses were intentional and incorrect because they 
tended to equate the vertical and horizontal shifts to the asymptotes. Adler and Ronda (2015) 
supported this argument when they stated that learners misconstrue these mnemonics as part 
of the Cartesian plane. From the researchers’ experience, mathematics teachers have inculcated 
the notion of simplifying mathematics by emphasising the parameters to such an extent that 
learners know the parameters to be the real asymptotes. Participant C wrote his equations and 
included the letters p and q together with the equations, which showed that he is able to interpret 
the symbolic visual mediator, as he is able to name asymptotes from the equation. 

Participant C’s interpretation of the asymptote was classified as partially mathematical 
because he could identify the equations of the asymptote.  Participant C’s routines are “ritualised 
mathematical” because he included p and q in his equation. Participant C’s communication 
remained at the ritualised stage. His communication was classified as being in level two 
because his communication has both mathematically accepted symbolic visual mediators and 
mnemonics. The example of a third level classification according to the RTF analytical tool is 
shown in the discussions that follow. The participants had some knowledge of the asymptote of 
a hyperbola, which was demonstrated by the three respondents excluding the y and writing the 
equation as if it was only a number. 

Participant D used inductive reasoning to arrive at her answer. Naming the asymptote 
as -2 is mathematically incorrect, since -2 cannot be located on the Cartesian plane. There is a 
tendency by some learners to think that p or q could replace x and y respectively, or that they 
were synonymous such that one could replace the other interchangeably. Participant D first 

wrote a general equation , and had to be reminded of the asymptotes of the 
function. She then substituted the number three for a. She further equated q to the asymptote. 
Finally, she wrote that asymptote = -2. The object, which Participant D wrote, did not exist 
on the Cartesian plane because the word asymptote did not show a clear representation on the 
coordinate system.  She did not do anything about the vertical asymptote. She also did not 
mention the vertical asymptote.  The participant’s routines were ritualised because she followed-
up the routines of others as her own routines, which did not lead to mathematically endorsed 
narratives. Participant D’s equations were not mathematical as they could not be located on the 
Cartesian plane. Her level of communication is at level one because she failed to identify the 
asymptote from an algebraic representation showing some disjointed relationships.

In a question that required learners to write the equation of the asymptote of f(x) – 5 

given , gave credence to the notion that participants’ routines were ritualised. 
Participant R simply wrote down the answer y = - 5, without showing any working, procedure 
or method. The answer was acceptable, as it was a horizontal asymptote. There was no 
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ambiguity with her response, and the community of mathematicians would have deduced the 
same meaning. Her interpretation was endorsed in the mathematical discourse. Participant W 
also provided a similar solution, like many of the other participants.

Participant TT produced a different dimension to the asymptote of an exponential 

function by writing  . In responding to the question requiring the participants to 
write the equation of the asymptote of f (x) – 5 , Participant TT multiplied the constant -5 with 
the exponent x. An asymptote is a linear function, but what Participant TT wrote was not a 
linear equation. Participant TT did not interpret the symbolic visual mediator f (x) – 5  in a 
mathematically acceptable manner. He confused f (x) – 5 with. In fact f (5x), Participant TT only 
responded to the former (f (x) – 5) by making substitutions to the equation and did not respond 
to the question directly. There is nothing in the response that relates to an asymptote. He did not 
know what an asymptote was and did not know how it is represented as an equation, which is 
an example of level one communication on the Realization Tree of a Function. 

In this section, the four categories of the participants’ test responses were discussed. The 
first category is that of participants providing a correct answer without showing any process 
or method. The second category was that of participants who provided the desired responses 
and also showed the processes leading to the answer. The third category of participants wrote a 
vertical line, instead of a horizontal asymptote. As a result, they misrepresented the asymptote 
of an exponential function by writing an equation showing a vertical line instead of a horizontal 
one. The last category consisted of a discordant depiction of responses, which had nothing to 
do with the equation of an asymptote. 

 In the third question that the participants were expected to respond to, the phrase 
exponential function did not appear in the question, but the equation was exponential 

. The number of participants who successfully named the asymptote 
decreased to 29 (when compared to the 84 who successfully answered question one). This 
decline can be attributed to the general ritualization of learning of functions. The difference 
in these two questions was that familiar mathematical language was used in the first question, 
whereas changed, unfamiliar symbols were used in the third question. 

 While the variables in  are θ and t learners used the variable y for the 
asymptote. None of them used the variables from the equation. A few learners like Participant H 

were able to identify the asymptote from the equation  but they still expressed 
their answer as y = 20 instead of θ = 20. Although the variables were incorrect, we classified 
Participant H’s communication as level two because she could identify the asymptote from the 
equation indicating that she recognized the exponential function, but her routines are ritualized 
because the variable is θ and not y. 

Discussion 

Mathematics is not all about writing or stating mathematically acceptable responses to 
questions. Learning mathematics necessitates that learners be able to show how mathematical 
objects relate to each other, by displaying an understanding of the concept. Learning of 
mathematics does not mean that learners should simply reproduce through rote learning what 
they have done in class. Often, learners, through the authority of the teacher or textbook, adhere 
strictly to the procedures demonstrated in class or in the textbook.  Engelbrecht, Bergsten and 
Kagesten (2016: 570) state that “as is the case in many countries in the world, mathematics 
teaching at the upper secondary level often has an emphasis on procedural skills rather than 
conceptual understanding”. This explains why some participants could successfully complete 
certain questions whilst they struggled with those that were slightly different.
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When learners in this research displayed a low level of communication about the 
asymptote, it showed that their understanding of the concept was still very poor. The learners 
could replicate the simple solutions that they had already seen but had no idea about how they 
should respond to questions that had symbols that were unfamiliar. The learners adhered to the 
symbolic artefacts that they used previously but could not equate those symbols to new ones. This 
implied that their narratives depended entirely on replicating procedure rather than engaging 
with the mathematics required. Roberts and Le Roux (2018) agreed by stating that “relational 
thinking could produce more than one way to solve a problem and each method would produce 
a different branch on the realisation tree”. These learners should have discursively related 
their previous ideas about the asymptote to the new equation and produced a solution that was 
appropriate. The learners’ inability to extrapolate their solution from the ritualised version of 
the problem to a changed version implies that there was a deficit of real understanding of the 
concept and the process. Understanding can generally be viewed as the ability to use a concept 
flexibly. This research showed that the learners were rigid in their application of the concept and 
any variation in the symbols confused the learners.

This lack of understanding is explained by Rittle-Johnson and Schneider’s (2015) 
argument that conceptual knowledge can be described as knowledge rich in relationships. The 
learners had not created sufficiently detailed relationships between the concept of the asymptote 
and the symbols associated with them. They recalled that which the teacher had done but they 
could not complete the exercises that involved symbols that were different.

The learners’ failure to respond to a variation in questions reinforced the view that 
participants’ mathematical discourses were mostly ritualised routines. As alluded to by 
Nachlieli and Tabach, (2018), there is no guarantee that ritualised learning will lead to flexibility 
in the learning and application of mathematics. The teaching and learning process should be 
more about learners exploring mathematical objects and discovering endorsed narratives by 
themselves rather than a learning situation where rules and procedures of doing mathematics 
are often given to the learner. 

Lavie, Steiner and Sfard (2019) claim that rituals are a necessary part of learning and 
thus cannot be excluded from the classroom altogether. They claim that seminal routines are 
essential at the stage where new discourses are likely to develop. One of the ways of beginning 
the process of concept development is by creating it as a ritual. However, further exploration 
and activity must be used to develop that routine into deeper understanding so that the learner 
would become aware of some practical application of the concept.

Sfard (2016) also posited the argument that it was the intangibility of mathematical 
objects, which constituted the main challenge in the learning of mathematics. This is true for 
most mathematics but in order to influence the discursive narratives of the learners, they need 
to engage in more explorative activities. The learners in this research were able to only work 
with what their teacher did. It was argued that they simply followed routines learned. But 
Robert and Le Roux (2018) theorised that “explorations are the most sophisticated form of 
routine. Explorative discourse is characterised by narratives about mathematical objects that are 
endorsable in terms of mathematical axioms, definitions and theorems”. 

This is exactly why Anderson et al. (2001) state that “in instructional settings, learners are 
assumed to construct their own meaning based on their prior knowledge, their current cognitive 
and metacognitive activity, and the opportunities and constraints they are afforded in the setting, 
including the information that is available to them” (p 38). Through an explorative discourse, 
learners are able to negotiate meaning and accrue a deeper understanding that enables them to 
answer questions that are changed from the ones that they have already interacted with.
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Conclusions

There was a lack of coherence in learners’ mathematical discourse, as what learners 
wrote in one solution was different from the next one. Presenting the same question in a 
different way, resulted in learners struggling with the same concept, signifying a ritualised 
nature of learning of functions. The learners had memorised the procedure and the concept and 
applied it to questions that they recognised. Their understanding of the process of identifying 
the asymptote was shallow, isolated and disconnected. The procedure was accomplished by 
rote execution of the procedure. There was no indication that the learners had attained a well-
connected understanding of the concepts.
         Learning of mathematics is enhanced by means of explorations, rather than merely expecting 
learners to follow ritualistically the solutions and procedures presented by their teachers, other 
learners and textbooks. Opportunities for learning and deepening of mathematical discourses 
have a chance of occurring when learning and teaching move from rituals to the exploratory 
mode. Ritualised learning will often produce uncoordinated and fragmented communication 
from learners. While learners were able to use mathematical words and symbols, they did so 
without making connections with the Realisation Tree of that particular mathematical object. 
For learners to solve unseen, non-routine problems their exploratory routines should be strong. 

Use of different visual mediators was a hindrance to learners’ success mainly because 
learners had a different interpretation of each visual mediator due to their inexperience. These 
learners should have been exposed to different visual mediators during their exploratory work 
as they engaged with the operational and symbolic relationships between the equation and the 
derivation of the asymptote. Learners were not able to locate the asymptote because of the 
symbols used. Each realisation morphs into a tree of understanding that enables the learner to 
successfully produce correct solutions for the asymptote.

A further study focusing on interpretation of algebraic visual mediators of functions will 
help in understanding some of the challenges the learners had with the interpretation of the 
asymptotes from algebraic statements.
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