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1. Introduction

  Leishmaniasis is a widespread vector-borne disease in the tropical 

and subtropical regions of zoonotic cutaneous leishmaniasis of the 

world with approximately two million new human cases reported 

each year[1,2]. It is estimated that more than 12 million people are 

infected worldwide[3]. Cutaneous leishmaniasis (CL) continues to 

Objective: To investigate and predict the effects of climate change on the potential distribution 
of the main vector and reservoir hosts of the disease in Yazd province in the future. 
Methods: Distribution data for vector and reservoir hosts of zoonotic cutaneous leishmaniasis 
in Yazd province were obtained from earlier studies conducted in the area. MaxEnt ecological 
niche modeling was used to predict environmental suitability. BCC-CSM1-1(m) model and 
two climate change scenarios, RCP 4.5 and RCP 8.5 were used for horizons 2030 and 2050 
climate projections. Future projections were based on data of a regional climate change model.
Results: With both scenarios in 2030 and 2050, the results of jackknife test indicated that the 
mean temperature of wettest quarter and temperature annual range had the greatest effect on 
the model for the vector and the reservoir hosts, respectively. 
Conclusions: The climate conditions are the major determinants of zoonotic cutaneous 
leishmaniasis incidence rate in Yazd Province. These climate conditions provide favorable 
habitats for ease transmission of zoonotic cutaneous leishmaniasis in this endemic area. 
Habitats suitability for the vector and reservoir will be expanding in the coming years 
compared with the current conditions, such that, in horizon 2030 & 2050, the probability of 
the presence of the vector and reservoir within 38 580 and 37 949 km2, respectively, from 
Yazd province is above 60%. Moreover, an increase is predicted in the presence of the 
vector in the western parts and the reservoir in the northern and central parts of the province 
in the future. Understanding the role of environmental and bioclimatic factors in zoonotic 
cutaneous leishmaniasis occurrence can provide a guide for policy-makers in the creation and 
implementation of more effective policies for prevention and control.
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be a major public health problem in Iran, with many endemic foci of 

zoonotic cutaneous leishmaniasis (ZCL) been reported in different 

parts of the country[4,5]. The sand fly Phlebotomus (P.) papatasi 
(Diptera: Psychodidae) is the principal vector of Leishmania major 
(Kinetoplastida: Trypanosomatidae), the causative agent of ZCL 

in the old world[6]. A number of gerbils (Rodentia: Gerbillidae) 

are known as reservoir hosts of ZCL in the old world, including 

Rhombomys (R.) opimus, Meriones libycus, Tatera (T.) indica 

and Meriones hurrianae which are more endemic in Iran[7]. The 

prevalence of ZCL has been reported in different provinces of 

Iran ranging from 1.8% to 37.9%[8,9]. Yazd province, located in 

the central part of Iran, is one of the major endemic foci of ZCL 

in the country. From 2007 to 2016, a total of 4 229 cases have 

been formally reported in Yazd province[10]. Leishmania major is 

responsible for most of the ZCL cases  reported in Yazd province, 

and has been isolated from various rodent reservoirs (R. opimus, 
Meriones libycus and T. indica) and sand fly vector (P. papatasi)[11].

  Vector-borne diseases including ZCL are generally sensitive to 

climatic conditions[12]. It seems like that the incidence of human 

cases strongly correlates with the presence of sufficiently high 

densities of vector and reservoir species[13]. It has been suggested 

that climate change can cause a shift in the geographical spread of 

insect populations in the future through the modification of climatic 

conditions which affect the reproduction and length of annual 

activity of these insect species[14]. Different climatic conditions can 

cause species’ range shifts, therefore, analyses of the distributional 

response of vector and reservoir species to climate change scenarios 

can provide insight into how the spatial epidemiology of ZCL may 

be affected by climate change[15]. 

  Representative concentration pathway (RCPs) scenarios are a set 

of greenhouse gas concentration and emission pathways designed 

to support research on the impacts of climate and potential policy-

makers’ response to climate change[16,17]. RCP scenarios provide 

interpolated climate layers based on the 2003 3rd assessment report 

of the intergovernmental panel on climate change and are publicly 

available[18]. These scenarios assume different climate futures based 

on greenhouse gases emission pathways and their associated radiative 

forcing to the year 2100[18]. In total, a set of four RCPs have been 

developed and are named according to the change in radiative forcing 

by the end of the century: 8.5, 6, 4.5 and 2.6 W/m2. 

  Ecological niche models (ENMs) based on point occurrence data, 

digitized environmental layers, and machine learning algorithms, which are 

usually all overlaid on a geographic information system (GIS) platform, 

provide a better understanding of the distribution of vector-borne 

diseases[19,20]. ENMs attempt to predict the fundamental niche of 

a species, defined as the set of environmental conditions in which 

it can maintain populations without the need for immigration[21]. 

The fundamental niche provides the potential distributional 

pattern of a species when projected to a geographical space[22]. 

Effects of geographical constraints on dispersal and negative 

ecological interactions such as competition may prevent a species 

from occupying its entire fundamental niche[23]. Thus, taking 

such factors into consideration defines the actual geographical 

distribution of a species. Practically, ENMs combine both the 

ecological requirements and spatial locations of species and predict 

the occurrence of species in an area between the potential and 

actual distributions[24]. Modification of these distributions using 

the constraining factors mentioned above generates the actual 

distributions. ENMs can thus provide useful framework for testing 

hypotheses concerning the role of different environmental variables 

in determining species’ distributional patterns[25]. Estimating the 

potential future distributions of vector and reservoir species can help 

to identify potential risk areas for ZCL. The aim of this study was to 

investigate the effect of climate change on the potential distribution 

of ZCL vector and reservoir species in Central Iran in horizon 2030 

and 2050.

2. Material and methods

2.1. Vector and reservoir data

  Existing records from all previous studies conducted on P. papatasi, 
the main vector of ZCL, in Yazd province were collected and entered 

into a database. Previous studies in the area have reported R. opimus 
as the main reservoir host of ZCL in the province. Coordinates of 

collection sites for this gerbil were also recorded in the database. 

2.2. General circulation models

  The results of the research conducted by National Climate Research 

Institute[26] were the basis for selecting General Circulation Models 

in this study. BCC-CSM1-1(m) model at a spatial resolution of 30 s 

(1 km2) was used in our analysis. The Beijing Climate Center Climate 

System Model version 1.1 (BCC_CSM1.1) was used to develop the 

BCC_CSM1.1 (m) model with a moderate resolution[27]. In the present 

study, two scenarios were used for modeling: RCP4.5 and RCP8.5. In 

the RCP4.5 emission scenario, CO2 concentration is estimated to be 

650 PPM by 2100, with a radiative forcing level of 4.5 watts per square 

meter[28,29]. Global Change Assessment Model team at the Joint Global 

Change Research Institute (a branch of the Pacific Northwest National 

Laboratory) in the United States developed the RCP 4.5 scenario[30]. 

The RCP 4.5 scenario is considered as a stabilization scenario, without 

an overshoot, in which total radiative forcing is stabilized shortly after 

2100[31]. RCP 8.5 scenario corresponds to the highest greenhouse 

gas emission trajectory compared to the scenario literature[32], and 

hence also to the upper bound of the RCPs. The greenhouse gas 

concentrations and emission trajectories in RCP 8.5 is estimated to 

increase considerably over time, leading to a radiative forcing level 

of 8.5 W/m2 at the end of the century with a temperature range 
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between 3.5-4.5 ℃[33]. The bioclimatic data based on RCP 4.5 and 

RCP 8.5 scenarios for the years 2030 and 2050 were downloaded 

from www.ccafs.cgiar.org (http://ccafs-climate.org/data) and www.

worldclim.org (http://www.worldclim.org/cmip5_30s), respectively, 

at resolution 30 s.

2.3. Modeling potential occurrence of sand flies and gerbils

  MaxEnt software Ver. 3.3.3 was used to predict the most appropriate 

ecological niches for the target species[34]. The contribution of 

the environmental variables was calculated by Jackknife analysis. 

Variables with no contribution were omitted from the final analysis. 

Eighty percent of the vector/reservoir collection points were used 

for model training and the remaining 20% were used as Test-set. 

MaxEnt was used for random point’s selection. ESRI ArcGIS 10.3 

software was used for the preparation, management and editing of 

spatial and climatic data, modeling, and presentation of the model 

results. The management of climatic data and preparation of the 

expressions for modeling were assisted by Microsoft Excel 2010 

software. 

3. Results

3.1. Modeling for ZCL vector and reservoir hosts in Horizon 
2030: RCP 4.5 scenario, BCC-CSM1-1(m) model

  The estimates of relative contributions of the environmental 

variables to the MaxEnt model for the vector and reservoir hosts 

of ZCL are shown in Table 1. The variables with the highest 

contributions to the models for P. papatasi and R. opimus were bio8 

(73.5%) and bio7 (50.4%), respectively. Area under curve (AUC) 

for P. papatasi was calculated as 0.917. The results of jackknife test 

of variable importance for P. papatasi show that the environmental 

variable with highest gain when used in isolation is bio8, which 

therefore appears to have the most useful information by itself. Bio8 

is the environmental variable that decreases the gain the most when 

it is omitted, which therefore, appears to have the most information 

that is not present in the other variables (Figure 1). The AUC for R. 
opimus was calculated as 0.851. Jackknife test of variable importance 

for R. opimus revealed that the environmental variable with highest 

gain when used in isolation is bio7, which therefore appears to have 

the most useful information by itself. The environmental variable 

that decreases the gain the most when it is omitted is bio7, which 

therefore appears to have the most information that isn’t present in 

the other variables (Figure 2). 

3.2. Modeling for ZCL vector and reservoir hosts, Horizon 
2030: RCP 8.5 scenario, BCC-CSM1-1(m) model

  As shown in Table 1, the variables with the highest contributions to 

the models for P. papatasi and R. opimus were bio8 (38.4%) and bio7 

(93.8%), respectively. The AUC for P. papatasi was calculated as 

0.889 (Figure 3). The results of jackknife test of variable importance 

for P. papatasi show that the environmental variable with highest 

gain when used in isolation is bio8, which therefore appears to have 

the most useful information by itself. The environmental variable 

that decreases the gain the most when it is omitted is bio8, which 

therefore appears to have the most information that isn’t present in 

the other variables (Figure 3). The AUC for R. opimus was calculated 

as 0.794 (Figure 4). Jackknife test of variable importance for R. 
opimus revealed that the environmental variable with highest gain 

when used in isolation is bio7, which therefore appears to have 

the most useful information by itself. The environmental variable 

Table 1. Contribution of variables used for the prediction of the potential distribution of Phlebotomus papatasi and Rhombomys opimus as vector and reservoir 

hosts of zoonotic cutaneous leishmaniasis in Yazd Province, Central Iran, horizon 2030: RCP 4.5 and 8.5 scenarios, BCC-CSM1-1(m) model (%). 

Variables Description
Phlebotomus papatasi Rhombomys opimus

RCP4.5 RCP8.5 RCP4.5 RCP8.5
Bio1 Annual mean temperature (℃)   0.0   0.0   0.0   0.0
Bio2 Mean diurnal range [Mean of monthly (max temp-min temp)] (℃)   4.6   6.1   41.0   5.1
Bio3 Isothermality (Bio2/Bio7) (×100)   2.3   8.3   0.0   0.0
Bio4 Temperature seasonality (standard deviation ×100)   0.0   1.7   0.0   0.0
Bio5 Max temperature of warmest month (℃)   0.0   0.0   0.0   0.0
Bio6 Min temperature of coldest month (℃)   0.8   0.0   0.0   0.0
Bio7 Temperature annual range (Bio5-Bio6) (℃)   0.0   0.0 50.4 93.8
Bio8 Mean temperature of wettest quarter (℃) 73.5 38.4   0.0   0.0
Bio9 Mean temperature of driest quarter (℃)   1.7   0.0   0.0   0.0
Bio10 Mean temperature of warmest quarter (℃)   0.0   0.0   0.0   0.0
Bio11 Mean temperature of coldest quarter (℃)   0.2 10.8   0.0   1.0
Bio12 Annual precipitation (mm)   6.5   4.9   0.0   0.0
Bio13 Precipitation of wettest month (mm)   0.0   4.7   0.0   0.0
Bio14 Precipitation of driest month (mm)   0.5   0.0   0.0   0.0
Bio15 Precipitation seasonality (Coefficient of variation)   4.7   2.8   8.5   0.1
Bio16 Precipitation of wettest quarter (mm)   0.0   0.0   0.0   0.0
Bio17 Precipitation of driest quarter (mm)   2.8   0.0   0.0   0.0
Bio18 Precipitation of warmest quarter (mm)   0.8 16.3   0.0   0.0
Bio19 Precipitation of coldest quarter (mm)   1.5   5.9   0.0   0.0
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Figure 1. Receiver operating characteristic curve and output of MaxEnt model and jackknife analysis for Phlebotomus papatasi in Yazd province, Central 

Iran, Horizon 2030: RCP 4.5 scenario, BCC-CSM1-1(m) model.
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Figure 2. The receiver operating characteristic curve and output of MaxEnt model and jackknife analysis for Rhombomys opimus in Yazd province, Central 

Iran, Horizon 2030: RCP 4.5 scenario, BCC-CSM1-1(m) model.
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Figure 3. The receiver operating characteristic curve and output of MaxEnt model and jackknife analysis for Phlebotomus papatasi in Yazd province, Central 

Iran, Horizon 2030: RCP 8.5 scenario, BCC-CSM1-1(m) model.
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Figure 4. The receiver operating characteristic curve and output of MaxEnt model and jackknife analysis for Rhombomys opimus in Yazd 

province, Central Iran, Horizon 2030: RCP 8.5 scenario, BCC-CSM1-1(m) model.
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that decreases the gain the most when it is omitted is bio7, which 

therefore appears to have the most information that isn’t present in 

the other variables (Figure 4). Environmentally suitable areas for the 

vector and reservoir hosts in horizon 2030 using RCP 4.5 and RCP 

8.5 scenarios have been presented in Figure 5. 

3.3. Modeling for ZCL vector and reservoir hosts, Horizon 
2050: RCP 4.5 scenario, BCC-CSM1-1(m) model, P. 
papatasi

  Table 2 shows estimates of relative contributions of the 

environmental variables to the MaxEnt model for the vector and 

reservoir hosts of ZCL. As shown below, the variables with the 

highest contributions to the models for P. papatasi and R. opimus 
were bio8 (61.1%) and bio7 (50.4%), respectively. The AUC 

for P. papatasi was calculated as 0.903 (Figure 6). Analysis of 

Jackknife test of variable importance for P. papatasi shows that the 

environmental variable with highest gain when used in isolation is 

bio8, which therefore appears to have the most useful information by 

itself. The environmental variable that decreases the gain the most 

when it is omitted is bio8, which therefore appears to have the most 

information that isn’t present in the other variables (Figure 6).

  The AUC for R. opimus was calculated as 0.849 (Figure 7). 

Jackknife test of variable importance for R. opimus revealed that the 

environmental variable with highest gain when used in isolation is 

bio7, which therefore appears to have the most useful information by 

itself. The environmental variable that decreases the gain the most 

when it is omitted is bio2 , which therefore appears to have the most 

information that isn’t present in the other variables (Figure 7). 

3.4. Modeling for ZCL vector and reservoir hosts, Horizon 
2050: RCP 8.5 scenario, BCC-CSM1-1(m) model, P. 
papatasi

  Estimates of relative contributions of the environmental variables 

to the MaxEnt model for the vector and reservoir hosts of ZCL have 

Figure 5. A: Predicted environmental suitability for vector (left) and reservoir (right) of ZCL in Yazd province of Iran using RCP 4.5 scenario, BCC-CSM1-

1(m) model: Horizon 2030. B: Predicted environmental suitability for vector (left) and reservoir (right) of ZCL in Yazd province of Iran using RCP 8.5 

scenario, BCC-CSM1-1(m) model: Horizon 2030.
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Figure 6. The receiver operating characteristic curve and output of MaxEnt model and jackknife analysis for Phlebotomus papatasi in Yazd 

province, Central Iran, Horizon 2050: RCP 4.5 scenario, BCC-CSM1-1(m) model.
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Figure 7. The receiver operating characteristic curve and output of MaxEnt model and jackknife analysis for Rhombomys opimus in Yazd 

province, Central Iran, Horizon 2050: RCP 4.5 scenario, BCC-CSM1-1(m) model.
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been presented in Table 2. As shown in the Table 2, the variables 

with the most contributions to the models for P. papatasi and R. 
opimus were bio8 (53.0%) and bio7 (60.6%), respectively. The AUC 

curve calculated for P. papatasi was 0.891 (Figure 8). Analysis of 

jackknife test of variable importance for P. papatasi showed that the 

environmental variable with highest gain when used in isolation is 

bio8 , which therefore appears to have the most useful information 

by itself. The environmental variable that decreases the gain the most 

when it is omitted is bio8 , which therefore appears to have the most 

information that isn’t present in the other variables (Figure 8). 

  The AUC curve calculated for R. opimus was 0.839 (Figure 9). 

Jackknife test of variable importance for R. opimus showed that the 

environmental variable with highest gain when used in isolation is 

bio7, which therefore appears to have the most useful information 

by itself. The environmental variable that decreases the gain the 

most when it is omitted is bio7, which therefore appears to have the 

most information that isn’t present in the other variables (Figure 9). 

The environmentally suitable area for both vector and reservoir in 

horizon 2030 using RCP 4.5 and RCP 8.5 scenarios is presented in 

Figure 10. 

Table 2. Contribution of variables used to predict the potential distribution 

of Phlebotomus papatasi and Rhombomys opimus as vector and main reservoir 

of ZCL in Yazd Province, Central Iran, horizon 2050: RCP4.5 and RCP8.5 

scenarios, BCC-CSM1-1 (m) model.

Variables
Phlebotomus papatasi Rhombomys opimus

RCP4.5 RCP8.5 RCP4.5 RCP8.5
Bio1   2.1   1.7   0.0   0.0
Bio2   0.2   0.5 48.7 35.6
Bio3   6.5   3.5   0.0   0.0
Bio4 10.4   6.7   0.0   0.0
Bio5   0.0   0.0   0.0   0.0
Bio6   0.0   0.2   0.7   3.8
Bio7   0.0   0.0 50.4 60.6
Bio8 61.1 53.0   0.2   0.0
Bio9   0.6   1.0   0.0   0.0
Bio10   0.0   0.0   0.0   0.0
Bio11   0.0   2.8   0.0   0.0
Bio12   5.4   0.8   0.0   0.0
Bio13   0.3   1.5   0.0   0.0
Bio14   1.1   1.3   0.1   0.0
Bio15   1.1 18.1   0.0   0.0
Bio16   1.3   1.7   0.0   0.0
Bio17   0.2   1.9   0.0   0.0
Bio18   2.3   1.5   0.0   0.0
Bio19   7.4   3.8   0.0   0.0

3.5. Climatic suitability for vector and reservoir hosts of ZCL 
in Yazd province

  The results of the projected (2030 & 2050) climatic suitability for 

the two species (P. papatasi and R. opimus) are shown in Table 3. 

Western and central part of Yazd province will provide more suitable 

climatic conditions for P. papatasi and R. opimus to the end of the 

horizon 2030 and 2050.

Table 3. Projected climatic suitability (%) and the area (km2) covered by 

different classes for Phlebotomus papatasi and Rhombomys opimus in Yazd 

province, center of Iran.

Study period Suitability
Phlebotomus papatasi Rhombomys opimus

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5
2030s   0-20 55 314 52 904 24 965 22 571

21-40 25 108 23 637 30 432 34 626
41-60 13 519 15 600 34 848 32 359
61-80   6 974   8 680 10 712 11 403
81-100        43      137          0          0

2050s   0-20 55 155 60 563 31 144 31 083
21-40 18 221 20 093 30 178 33 613
41-60 19 783 13 016 28 368 24 599
61-80   7 948   7 218 11 370 11 817
81-100          5      222          0          0

4. Discussion

  To investigate the potential changes in the status of ZCL vector 

and reservoir species in the climate zone of Yazd province in the 

future, the probability of the presence of P. papatasi and R. opimus 
in 2030 and 2050 were examined. Probability of the presence of 

the two studied species was grouped into five classes using equal 

intervals in ArcGIS. Areas with more than 60% presence probability 

of species were considered as areas with high potential of CL 

transmission. In Horizon 2030, by using RCP 4.5 scenario, we found 

that the presence probability of the vector within 7 017 km2 from 

Yazd province is above 60%. In this scenario, the variable with the 

highest contribution to the models for P. papatasi was bio8. Variation 

in this variable from about 70 to 140 has had a negative trend in 

the presence of P. papatasi, and then it does not change. The value 

of AUC was 0.917, which indicates that the output of the model is 

valid.

  RCP 4.5 scenario revealed a potential expansion in the habitat of R. 
opimus to 10 712 km2 from Yazd province. Jackknife test of variable 

importance for R. opimus showed that bio7 has the maximum effect 

on the dispersion of this species. Variation in this variable from about 

395 to 445 has had a negative trend in the presence of R. opimus, 
and then it does not change. The value of AUC was 0.851, which 

indicates that the output of the model is valid. 

  In Horizon 2030, RCP 8.5 scenario revealed a potential dispersion 

of P. papatasi within 8 817 km2 from Yazd province at various 

probabilities. The results of jackknife test show that bio8 has the 

highest effect on the dispersion of this species. Variation in this 

variable from about 0 to 160 has had a negative trend in the presence 

of P. papatasi, and then it does not change. The calculated AUC was 

0.889, which indicates that the output of the model is valid. 

  In this model, we observed a potential presence of R. opimus within 

11 403 km2 from Yazd province. Jackknife analysis for R. opimus 
showed that bio7 has the highest gain among the environmental 

variables. Variation in this variable from about 390 to 445 has had 

a negative trend in the presence of R. opimus, and then it does not 
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Figure 8. The receiver operating characteristic curve and output of MaxEnt model and jackknife analysis for Phlebotomus papatasi in Yazd 

province, Central Iran, Horizon 2050: RCP 8.5 scenario, BCC-CSM1-1(m) model.

Figure 9. The receiver operating characteristic curve for Rhombomys opimus and output of MaxEnt model and jackknife analysis for 

Rhombomys opimus in Yazd province, Central Iran, Horizon 2050: RCP 8.5 scenario, BCC-CSM1-1(m) model.
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change. The value of AUC was 0.794 indicating that the output of 

the model is valid. In Horizon 2030, in general, we observed a higher 

expansion of habitat suitability of ZCL vector and reservoir hosts in 

scenario 4.5 compared with scenario 8.5.

  In Horizon 2050, RCP 4.5 scenario revealed a potential dispersion of 

the vector within 7 953 km2 from Yazd province at various probabilities. 

The results of jackknife test of variable importance to the models for P. 
papatasi show that the environmental variable with highest gain when 

used in isolation is bio8. Variation in this variable from 20 to 115 has 

had a positive trend in the presence of P. papatasi, but in higher values 

up to about 175 has had a negative effect, and after that it does not 

change. The calculated value of AUC was 0.903, which indicates that 

the output of the model is valid. In this scenario, there is a potential 

presence of R. opimus within 11 370 km2 from Yazd province. The 

results of jackknife test of variable importance for R. opimus show 

that the environmental variable with highest gain when used in 

isolation is bio7. Variation in this variable from about 385 to 450 has 

had a negative trend in the presence of R. opimus, and then it does 

not change. The value of AUC was 0.849 indicating that the output 

of the model is valid.

  In Horizon 2050, by using RCP 8.5 scenario, we observed that 

there is a potential presence of P. papatasi within 7 440 km2 of Yazd 

province. The results of jackknife test of variable importance for P. 
papatasi indicate that the environmental variable with the highest 

gain when used in isolation is bio8 . Variation in this variable from 

about 20 to 180 has had a negative trend in the presence of P. 
papatasi, and then it does not change. The value of AUC was 0.891, 

which indicates that the output of the model is valid.

  In this Horizon, there is a potential dispersion of R. opimus within 

11 817 km2 of Yazd province. Jackknife test of variable importance 

Figure 10. A: Predicted environmental suitability for vector and reservoir of zoonotic cutaneous leishmaniasis in Yazd province of Iran 

using RCP 4.5 scenario, BCC-CSM1-1(m) model, Horizon 2050: vector (left) and reservoir (right). B: Predicted environmental suitability 

for vector and reservoir of zoonotic cutaneous leishmaniasis in Yazd province of Iran using RCP 8.5 scenario, BCC-CSM1-1(m) model, 

Horizon 2050: Vector (left) and Reservoir (right).
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for R. opimus revealed that the environmental variable with the 

highest gain when used in isolation is bio7. Variation in this variable 

from about 395 to 445 has had a negative trend in the presence of R. 
opimus, and then it does not change. The calculated value of AUC 

was 0.839, indicating that the output of the model is valid.

  According to the prediction of the model in the study area, in both 

2030 and 2050 there is a decrease in the environmental suitability 

for P. papatasi, while the condition will increase the suitable areas 

for R. opimus, although the changes are not so big. Previous studies 

conducted in other countries revealed a significant relationship 

between CL and climatic factors. Toumi et al in Sidi Bouzid reported 

that only average temperature was not a statistically significant 

predictor of ZCL incidence[35]. Contrary to our findings, in another 

study, Temperature Annual Range & Mean Temperature of Wettest 

Quarter (℃) had the greatest effect on the presence of ZCL vector 

and reservoir, respectively. The results of our study are consistent 

with the findings of other researchers around the world including 

Roger et al in South America and Sing in Rajasthan, India. Both 

studies showed that the incidence of the disease increased with rise 

of temperature and decreased with decline of relative humidity[36,37]. 

  In a study conducted by Yazdanpanah and Rostamianpur[38] in 

Ilam Province in the West of Iran, they found a positive correlation 

between average temperature and CL incidence, whereas this 

correlation was negative in another study conducted by Mozafari 

and Bakhshizadeh[39] in Yazd-Ardakan plain in central of Iran. In 

contrast to our findings, both studies conducted in Ilam and Yazd 

reported that the association between CL epidemic and relative 

humidity was not significant, whereas in our study, relative humidity 

appeared to be the most significant factor. 

  Climate factors are the major determinants of ZCL incidence rate 

in Yazd Province. These climate conditions provide the favorable 

habitats for propagation and transmission of ZCL in this endemic 

area. Habitat suitability for the vector and reservoir hosts in the 

coming years will be expanding such that in horizon 2030 and 

2050 the probability presence of the vector and reservoir hosts in 

38 580 and 37 949 km2, respectively, from Yazd province is above 

60%. Also, we predict an increase in the presence of the vector in 

the western parts and the reservoir in the northern and central parts 

of the province in the future. In the present study, we observed a 

complex relationship between environmental factors, bioclimatic 

factors and ZCL occurrence in Yazd province. Understanding the 

role of environmental and bioclimatic factors in ZCL occurrence can 

provide a guide for policy-makers in the creation and implementation 

of more effective policies for the prevention and control.
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