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1. Introduction

  Scrub typhus, whose main features include high fever, superficial 

shower, swelling, eschar and rash, is widely distributed in the Asia-

Pacific region, and is a common cause of tropical epidemic disease. 

Due to the lack of specific early diagnostic methods, effective 

Objective: To predict B cell and T cell epitopes of 22-kDa, 47-kDa, 56-kDa and 58-kDa 
proteins.
Methods: The sequences of 22-kDa, 47-kDa, 56-kDa and 58-kDa proteins which were 
derived from Orientia tsutsugamushi were analyzed by SOPMA, DNAstar, Bcepred, 
ABCpred, NetMHC, NetMHC栻 and IEDB. The 58-kDa tertiary structure model was built by 
MODELLER9.17.
Results: The 22-kDa B-cell epitopes were located at positions 194-200, 20-26 and 143-154, 
whereas the T-cell epitopes were located at positions 154-174, 95-107, 17-25 and 57-65. The 
47-kDa protein B-cell epitopes were at positions 413-434, 150-161 and 283-322, whereas the 
T-cell epitopes were located at positions 129-147, 259-267, 412-420 and 80-88. The 56-kDa 
protein B-cell epitopes were at positions 167-173, 410-419 and 101-108, whereas the T-cell 
epitopes were located at positions 88-104, 429-439, 232-240 and 194-202. The 58-kDa protein 
B-cell epitopes were at positions 312-317, 540-548 and 35-55, whereas the T-cell epitopes 
were located at positions 415-434, 66-84 and 214-230. 
Conclusions: We identified candidate epitopes of 22-kDa, 47-kDa, 56-kDa and 58-
kDa proteins from Orientia tsutsugamushi. In the case of 58-kDa, the dominant antigen is 
displayed on tertiary structure by homology modeling. Our findings will help target additional 
recombinant antigens with strong specificity, high sensitivity, and stable expression and will 
aid in their isolation and purification.
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treatment is often delayed[1-4]. 

  Orientia tsutsugamushi (O. tsutsugamushi) autolyzes rapidly in the 

environment; therefore, it is difficult to preserve, culture and purify. 

These limitations restrict the development of serological diagnosis 

of tsutsugamushi disease. Recently, the emergence of recombinant 

antigens has created new opportunities for serological diagnosis. An 

effective method for O. tsutsugamushi is to clone structural genes 

of its immunodominant antigens and express them in Escherichia 
coli to obtain numerous inexpensive recombinant antigens. Purified 

antigens can be used for immunological diagnosis[5-7]. Several 

antigenic proteins of O. tsutsugamushi 22-, 47-, 56-, and 58-kDa 

are the most favorable candidates for diagnosis because they are 

readily recognized by the host immune system and render significant 

immunity[8,9].

  To obtain fusion antigens, bioinformatics software has been used 

to analyze and predict antigenic epitopes of these proteins. Most 

studies use a single bioinformatics software platform for predictive 

analysis; however, their results have limitations[10-12]. To obtain 

a more comprehensive and usable set of antigenic epitopes, seven 

different bioinformatics software programs were used to predict 

B-cell and T-cell epitopes of the 22-, 47-, 56-, and 58-kDa proteins 

of O. tsutusgamushi. The results of these epitope predictions provide 

targets for synthesis of recombinant antigens of O. tsutsugamushi.

2. Materials and methods

2.1. Sequence retrieval 

  Amino acid sequences of the 22-, 47-, 56-, and 58-kDa proteins 

were selected from GenBank (GenBank accession numbers 

M63076.1, L31934.1, AY956315.1, and M31887.1, respectively).

2.2. Prediction of secondary structure

  Secondary structures of proteins were predicted using the SOPMA 

secondary structure prediction method (http://npsa-pbil.ibcp.fr/

cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html)[13,14]. 

Four conformational states (helices, sheets, turns, and coils) were 

analyzed. Default values were used for other parameters.

2.3. Prediction of physicochemical properties

  Physicochemical properties of the 22-, 47-, 56-, and 58-kDa 

proteins were predicted using the protean module of DNAstar[15,16]. 

Amino acid sequences of proteins were input along with four 

properties (hydrophilicity, surface probability, antigenicity, and 

flexible regions). The hydrophilicity, flexibility, surface probability, 

and antigen indices of O. tsutsugamushi proteins were analyzed 

according to the Kyte-Doolittle, Karplus-Schulz, Emini, and 

Jameson-Wolf methods, respectively.

2.4. Prediction of B cell epitopes

   B-cell epitopes were predicted using Bcepred (http://www.

imtech.res.in/raghava/bcepred/bcepred_submission.html)[17,18], 

and ABCpred (http://www.imtech.res.in/raghava/abcpred/) online 

software[19,20]. Selection of length parameter was 16 amino acids for 

Bcepred and ABCpred.

2.5. Prediction of T cell epitopes

  T-cell epitopes were predicted using the Immune Epitope Database 

(IEDB; http://tools.immuneepitope.org/main/index.html)[21,22], 

NetMHC 4.0 server (http://www.cbs.dtu.dk/services/NetMHC/)

[23,24], and NetMHC栻 2.3 server (http://www.cbs.dtu.dk/services/

NetMHC栻/)[24,25]. Parameter selection length for MHC-栺 was 9 

amino acids, and 15 amino acids for MHC-栻.

  For MHC-栺, MHC alleles were set at HLA-A02*01; HLA-

A24*02; HLA-B*40:01; HLA-B*58:01. For MHC-栻, MHC-栻 

alleles were selected at HLA-DRB1*01:01; HLA-DRB1*04:01; 

HLA-DRB1*07:01; HLA-DRB1*09:01.

2.6. Epitope display in tertiary structure

  The homologous template of 58-kDa proteins was selected by 

BLAST server (http://ncbi.nlm.nih.gov/). The crystal structure 

of template was retrieved from PDB for subsequent homologous 

modeling. According to the BLAST results, protein models were 

generated by Modeller9.17 and evaluated by Discrete Optimized 

Protein Energy (DOPE) to select the most suitable model structure. 

Stereochemical quality of the selected model was evaluated by 

SAVES (https://servicesn.mbi.ucla.edu/SAVES/) server. In SAVES, 

ERRAT, PROCHECK and Verify 3D module were selected for 

evaluation.

3. Results

3.1. Prediction of the secondary structure

  Using set conditions (default), the SOMPA online software 

predicted secondary structures for four kinds of the target protein. 

毬-turn and random coil regions of these structures were typical 

binding sites for antibodies. When these structural elements are 

present on protein surfaces, a protein is more likely to be an 

antigenic epitope. Predicted secondary structures of target proteins 

are shown in Figure 1.

3.2. Prediction of physicochemical properties

  Predicted physicochemical properties of the four proteins were 

analyzed using the DNAStar Protean software (Figure 2). Regions 

with a value >1 based on the Emini method were screened out, and 

those regions whose values were >1 based on the Kyte-Doolittle 

and Jameson-Wolf methods were selected, and the region based 

on the Karplus-Schulz method were retained squares. These 

physicochemical properties were further screened for prediction of 

B-cell epitopes.
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3.3. Prediction of B cell epitopes

  For linear antigen epitopes of the four target proteins, prediction 

analysis was carried out using the ABCpred and Bcepred network 

servers. From these analyses, common predicted antigenic epitopes 

were selected. The number of amino acids in an epitope should be 

between 6 and 20. To identify reliable candidate antigen epitopes 

for subsequent experiments, antigenic regions with a greater 

number of amino acid residues were filtered out. For the screening 

process, a scoring method that considered the secondary structure, 

hydrophilicity, flexibility, surface probability, and antigenic index 

of the protein was used. A score of 1 was assigned to the antigen 

epitope region that was predicted from both B cell antigen prediction 

Programs. Moreover, it also scores 1 for favorable predictions of 

hydrophilicity, flexibility, surface probability, or antigenic index. 

Subsequently, the ratio of the number of amino acid residues in 

potential antigen epitopes to the total number of amino acid residues 

in the entire region was calculated. Comprehensive analysis of the 

four target proteins calculates the average score of the above three 

aspects. Finally, the Top 10 high average was divided into dominant 

antigen epitopes (Supplementary Table 1). As a result, a series of 

candidate epitopes were obtained, and region information are shown 

in Table 1.

Figure 1. Secondary structure of target proteins using SOPMA. A: 22-kDa; B: 47-kDa; C: 56-kDa; D: 58-kDa.

Figure 2. Physiochemical property predictions for four target proteins using DNAstar. Hydrophilicity plot in blue; flexible regions in cyan; antigenic index 

in magenta; surface probability plot in yellow. A: 22-kDa; B: 47-kDa; C: 56-kDa; D: 58-kDa.
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Table 1. Key regions of the 22-kDa, 47-kDa, 56-kDa and 58-kDa proteins of 

B-cell epitopes.

Name Position Epitopes region Score
22 kDa 194-200 QQKDSSI 0.88

  20-26 SQNSSIS 0.84
143-154 VKHFSSPRDKIK 0.71
  28-37 EQRSQLEKEK 0.67
  40-49 LQGQIGDITG 0.65
  61-87 KLKEWMLKIKDFLISDDFSKLVDSAVK 0.54
108-114 EKGIMGV 0.54
117-130 GIQTVTSGFQNITQ 0.45

47 kDa 413-434 PRDIILSVKRDDNKKDISVKTL 0.70
150-161 DSNQSRVGDQVI 0.65
283-322 TEVIKEGSAAQCGIAPGDVITKFHDKEIKTG

RDLQVAVSS
0.64

163-174 GSPFGLRGTVTN 0.61
447-459 FFTVQRGDRMLYI 0.61
  31-45 LLPQQKSDMHINVNS 0.58
357-368 QSNDQSLVVNGV 0.58

56 kDa 167-173 PQLNDEQ 0.71
410-419 EGDCKQQQGT 0.68
101-108 QVEEGKVK 0.67
217-225 NPVGNPPQ 0.66
110-116 DSVGETK 0.65
187-199 GIDYRVKNPNDPN 0.62
466-472 YTSGKID 0.61
304-324 MQELNDLLEELRESFDGYLGG 0.57
148-161 RDFGIDIPNIPQQQ 0.56

58 kDa 312-317 NDTSKL 0.75
540-548 GGVGGGHHG 0.75
  35-55 RCVAIEQSYGPPKITKDGVSV 0.63
129-141 DVRKNSSPVKNEE 0.63
148-154 TVSSNGD 0.63
323-338 VIVTKDHTTIVHDKNN 0.62
473-478 SKSTDK 0.61
241-253 HTGKPLVLIADDV 0.59
169-184 GQEGVITVEDSKNFNF 0.59

3.4. Prediction of T cell epitopes

  Analysis of the four proteins for MHC-栺 T-cell epitopes used 

the IEDB and NetMHC online prediction softwares. For the IEDB 

software, peptide percentile rank ≤ 1.0 was considered as having high 

affinity. For the NetMHC software, peptides with a rank threshold 

for strong-binding peptides of 0.5 were considered as having high 

affinity. Combining prediction results of the two antigen prediction 

software programs identified the dominant epitopes (Supplementary 

Table 2).

  The 22-kDa, 47-kDa, 56-kDa and 58-kDa proteins for MHC-

栻 T-cell epitopes were analyzed by IEDB and NetMHC栻 online 

prediction software. IEDB selection criteria were the same as for 

MHC-栺. For NetMHC栻, a binding threshold of 50.00 was used to 

define high affinity. The antigen epitopes with higher frequency are 

selected as dominant epitopes (Supplementary Table 2). As a result, 

a series of candidate epitopes were obtained, and region information 

are shown in Table 2.

Table 2. Key regions of the 22-kDa, 47-kDa, 56-kDa and 58-kDa proteins of 

T-cell epitopes.

Name Position Epitopes region Sort
22 kDa 154-174 KEALGAEGLAKLQAASAGLQN 1

  95-107 VSTEMMQAFTGMK 2
  17-25 KSASQNSSI 3
  57-65 TTMNKLKEW 4

47 kDa 129-147 KINIALLKINSPAALSYAT 1
259-267 MLNELTPEL 2
412-420 RPRDIILSV 2
  80-88 QEVFLGSGV 4
210-233 FNLEGKIIGINSIHVSYSGISFAI 5
    6-25 YLHLIVFALQGISNVHSKSL 6
165-181 SPFGLRGTVTNGIISSK 7
338-346 KSMTLKCKI 8
  45-53 SLSDIVEPL 9
308-316 KEIKTGRDL 10
456-464 MLYIALPNI 10
  69-77 ISFNNKVSK 12

56 kDa   88-104 AEIGVMYLTNITAQVEE 1
429-439 KEAEFDLSMIV 2
232-240 FAIHNHEQW 3
194-202 NPNDPNGPM 4
    1-17 MKKIMLIASAMSALSLP 5
504-513 GSYMYSFSKI 6
383-391 KLQRHAGIK 7
125-133 APIRKRFKL 8
357-365 QEAVAAAAV 9
211-219 IPQGNPNPV 10
456-464 IYAGVGAGL 10
327-335 FANQIQLNF 12
  64-72 LSLTNGLPF 13
157-165 IPQQQAQAA 14

58 kDa 415-434 VPGGGVALFYASRVLDSLKF 1
  66-84 LNVGAQFVISVASKTADVA 2
214-230 FENPYILLLDQKVSTVQ 3
514-528 VASLVIATSAMITDH 4
  14-22 KIIEGINVV 5
  31-39 GPKGRCVAI 6

3.5. Epitope display in tertiary structure

  Represented by 58-kDa, homologous modeling template was 
selected from NCBI blast. There were 95% query coverage and 
54.8% sequence percent identity between 58-kDa protein and 
the protein in PDB database. The proteins were generated using 
MODELLER9.17. Model with the lowest DOPE score and GA341 
score was selected for further analysis. Quality assessment of 58-
kDa, protein modeling structure was reasonable. In ERRAT, the 
overall quality factor of the structure was 96.5%. In PROCHECK, 
most of the residues (94.5%) in Ramachandra plot were located in 
the most favorable region, 4.6% in other permissible region, 0.6% in 
generally permissible region, and 0.2% in non-permissible region. 
In Verify 3D, the compatibility of 3D and 1D structures was 94.7%. 
The 58-kDa protein tertiary structure epitope was displayed in Figure 
3.
  According to the predicted results of B cell and T cell epitopes, 
we summarize the regions ranked earlier as follows. In the B cell 
epitopes, the 22-kDa protein region is 194-200, 20-26 and 143-154, 
the 47-kDa protein region is 413-434, 150-161 and 283-322, the 56-
kDa protein region is 167-173, 410-419 and 101-108, the 58-kDa 
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protein region is 312-317, 540-548 and 35-55. In the T cell epitopes, 
the 22-kDa protein region is 154-174, 95-107, 17-25 and 57-65, the 
47-kDa protein region is 129-147, 259-267, 412-420 and 80-88, the 
56-kDa protein region is 88-104, 429-439, 232-240 and 194-202, the 
58-kDa protein region is 415-434, 66-84 and 214-230.

4. Discussion

   O. tsutsugamushi is a pathogen causing scrub typhus, and 
taxonomically belongs to the oriental family of Rickettsia 
tsutsugamushi. O. tsutsugamushi is the only species in this genus, 
which comprises seven strains: Kato, Gilliam, Karp, Yonchon, 
Shimokoshi, Kawasaki, and Kuroki. The Karp strain is dominant 
in tropic areas[26]. Therefore, proteins of the Karp strain were 
selected for this study. Protein antigen epitope studies using 
traditional experimental methods are time-consuming and laborious. 
Bioinformatics methods will reduce the number of epitopes and 
focus on the epitopes which are most likely to be antigenic. In 
our study, seven prediction software programs that use a range of 
prediction principles were used to predict the B and T epitopes of 
four target proteins, respectively. 
  For prediction of B cell epitopes, the ABCpred server with an 
artificial neural network and the Bcepred server with amino acid pair 
antigenicity scale were used[27]. For T-cell epitope prediction, IEDB 
was used to obtain a consensus based on NN-align, SMM-align, 
and a combinatorial peptide library. NetMHC 4.0 and NetMHC

栻 2.3 servers based on artificial neuron networks were also used. 
In addition, the physicochemical properties of B cell epitopes, 
including hydrophilicity, surface probability, antigenicity, flexible 
regions, and secondary structure were evaluated. Results from the 
above analyses were scored to establish the reliability of predicted 
antigenic epitopes.  
  This study focused on identifying adjacent or overlapping regions 
of B cell and T cell epitopes. Hickman found that the 81-100 region 
of the 47-kDa protein sequence elicits an antigenic response[28]. 
Chen found that the C-terminal region 333-430 can elicit a protective 

immune response[10]. The two regions are also included in the 
present study, although the former region rank is lower than others 
due to less frequent appearances and low epitope scores. Seong 
found that the three regions of the 56-kDa protein, 19-113, 142-203, 
and 243-328, were strongly antigenic, and Choi found that the 393-
432 region of the sequence also showed an antigenic response[29,30]. 
The present study is consistent with these two studies. Overlapping 
areas might serve as a focus for future research using the 56-kDa 
recombinant antigens. With regard to the antigenic epitopes of the 
22-kDa and 58-kDa proteins, no reports have been documented thus 
far. The antigenic epitopes identified in this study may assist the 
subsequent study of these two proteins.
  According to homology modeling, the three-dimensional structure 
of 58-kDa is obtained, and the accuracy of our prediction can 
be further explained by the display of the epitope on the tertiary 
structure. Govindaraj D et al used the same method to predict B and 
T cell epitopes and three-dimensional structure of Per a 10 Allergen 
of Periplaneta americana, followed by in vitro validation[31]. The 
results of in vitro experiments showed certain correctness. This 
further illustrates the high accuracy of the prediction method.
  In summary, bioinformatics methods are used to obtain detailed 
predictions of the four epitopes of O. tsutsugamushi, the Karp strain. 
This study provides experimental data for the identification and 
screening of epitopes.
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Supplementary Table 1. Top 10 result of linear antigenic prediction of the 22-kDa, 47-kDa, 56-kDa and 58-kDa proteins. 

Name pos peptide score Length Name pos peptide score Length 

22kDa 194-200 QQKDSSI 0.88 7 56kDa 167-173 PQLNDEQ 0.71 7 

20-26 SQNSSIS 0.84 7 410-419 EGDCKQQQGT 0.68 10 

143-154 VKHFSSPRDKIK 0.71 12 101-108 QVEEGKVK 0.67 8 

28-37 EQRSQLEKEK 0.67 10 217-225 NPVGNPPQ 0.66 8 

40-49 LQGQIGDITG 0.65 10 110-116 DSVGETK 0.65 7 

66-81 MLKIKDFLISDDFSKL 0.58 16 187-199 GIDYRVKNPNDPN 0.62 13 

61-72 KLKEWMLKIKDF 0.55 12 466-472 YTSGKID 0.61 7 

108-114 EKGIMGV 0.54 7 304-319 MQELNDLLEELRESFD 0.57 16 

79-87 SKLVDSAVK 0.48 9 148-161 RDFGIDIPNIPQQQ 0.56 14 

117-130 GIQTVTSGFQNITQ 0.45 14 315-324 RESFDGYLGG 0.56 10 

47kDa 419-434  SVKRDDNKKDISVKTL  0.72 16 58kDa 312-317 NDTSKL 0.75 6 



297-312 APGDVITKFHDKEIKT 0.70 16 540-548 GGVGGGHHG 0.75 9 

413-428  PRDIILSVKRDDNKKD   0.67 16 45-55 PPKITKDGVSV 0.64 11 

150-161 DSNQSRVGDQVI 0.65 12 148-154 TVSSNGD 0.63 7 

283-298 TEVIKEGSAAQCGIAP 0.65 16 129-141 DVRKNSSPVKNEE 0.63 13 

163-174 GSPFGLRGTVTN 0.61 13 35-50 RCVAIEQSYGPPKITK 0.62 16 

447-459  FFTVQRGDRMLYI 0.61 13 323-338 VIVTKDHTTIVHDKNN 0.62 16 

31-45 LLPQQKSDMHINVNS 0.58 15 473-478 SKSTDK 0.61 6 

357-368 QSNDQSLVVNGV 0.58 12 169-184 GQEGVITVEDSKNFNF 0.59 16 

307-322 DKEIKTGRDLQVAVSS 0.57 16 241-253 HTGKPLVLIADDV 0.59 13 

 

 



Supplementary Table 2. Analysis of the 22-kDa, 47-kDa, 56-kDa and 58-kDa proteins MHC-I and MHC-II T-cell epitopes using IEDB; NETMHC and NETMHCII 

online prediction software. 

Name pos peptide MHC-I(Allel) pos peptide MHC-II(Allel) 

IEDB rank NETMHC rank IEDB rank NETMHCII rank 

22kDa 17 KSASQNSSI HLA-B5801 0.7 HLA-B5801 0.53 158 GAEGLAKLQAASAGL HLA-DRB10101 0.96 HLA-DRB10101 

HLA-DRB10701 

HLA-DRB10901 

0.8 

8 

0.4 
57 TTMNKLKEW HLA-B5801 0.8 HLA-B5801 0.55 

95 VSTEMMQAF HLA-B5801 0.25 HLA-A4601 0.54 159 AEGLAKLQAASAGLQ HLA-DRB10901 

HLA-DRB10101 

0.58 

0.96 

HLA-DRB10101 

HLA-DRB10701 

HLA-DRB10901 

0.5 

8 

0.2 

99 MMQAFTGMK HLA-A0301 0.25 HLA-A0301 0.042 

154 KEALGAEGL HLA-B4001 0.2 HLA-B4001 0.031 160 EGLAKLQAASAGLQN HLA-DRB10901 

HLA-DRB10101 

0.81 

0.96 

HLA-DRB10101 

HLA-DRB10701 

HLA-DRB10901 

0.9 

8 

0.2 

47kDa 6 YLHLIVFAL HLA-A0301 0.6 HLA-A0201 0.25 11 VFALQGISNVHSKSL HLA-DRB10401 

HLA-DRB10701 

0.87 

0.94 

HLA-DRB10101 

HLA-DRB10401 

HLA-DRB10701 

8 

4 

15 



45 SLSDIVEPL HLA-A0201 0.5 HLA-A0201 0.07 129 KINIALLKINSPAAL HLA-DRB10901 0.08 HLA-DRB10101 

HLA-DRB10401 

HLA-DRB10901 

4 

4 

0.5 

69 ISFNNKVSK HLA-A0301 0.5 HLA-A0301 0.4 130 INIALLKINSPAALS HLA-DRB10901 0.08 HLA-DRB10101 

HLA-DRB10401 

HLA-DRB10901 

2 

2 

0.3 

80 QEVFLGSGV HLA-B4001 0.2 HLA-B4001 0.4 131 NIALLKINSPAALSY HLA-DRB10101 

HLA-DRB10901 

0.62 

0.07 

HLA-DRB10101 

HLA-DRB10401 

HLA-DRB10901 

HLA-DRB11501 

0.7 

8 

2 

0.15 

139 SPAALSYAT HLA-B0702 0.7 HLA-B0702 0.4 

165 SPFGLRGTV HLA-B0702 0.5 HLA-B0702 0.12 132 IALLKINSPAALSYA HLA-DRB10901 0.07 HLA-DRB10101 

HLA-DRB10401 

HLA-DRB10901 

0.7 

4 

0.15 

173 VTNGIISSK HLA-A0301 0.35 HLA-A0301 0.2 210 FNLEGKIIGINSIHV HLA-DRB11501 0.9 HLA-DRB10101 

HLA-DRB10701 

HLA-DRB11501 

16 

4 

4 

225 SYSGISFAI HLA-A2402 0.3 HLA-A2402 0.04 211 NLEGKIIGINSIHVS HLA-DRB11501 0.9 HLA-DRB10101 

HLA-DRB10701 

16 

8 



HLA-DRB11501 4 

259 MLNELTPEL HLA-A0201 0.3 HLA-A0201 0.03 212 LEGKIIGINSIHVSY HLA-DRB11501 0.9 HLA-DRB10101 

HLA-DRB10701 

HLA-DRB11501 

4 

8 

2 

308 KEIKTGRDL HLA-B4001 0.55 HLA-B4001 0.15 213 EGKIIGINSIHVSYS HLA-DRB11501 0.9 HLA-DRB10101 

HLA-DRB10701 

HLA-DRB11501 

4 

2 

8 

338 KSMTLKCKI HLA-B5801 0.3 HLA-B5801 0.15 214 GKIIGINSIHVSYSG HLA-DRB11501 0.9 HLA-DRB10101 

HLA-DRB10701 

HLA-DRB11501 

4 

4 

16 

412 RPRDIILSV HLA-B0702 0.3 HLA-B0702 0.03 215 KIIGINSIHVSYSGI HLA-DRB11501 0.9 HLA-DRB10101 

HLA-DRB10701 

HLA-DRB11501 

8 

4 

16 

456 MLYIALPNI HLA-A0201 0.6 HLA-A0201 0.1 216 IIGINSIHVSYSGIS HLA-DRB11501 0.9 HLA-DRB10101 

HLA-DRB10701 

HLA-DRB11501 

16 

4 

16 

56kDa 5 MLIASAMSA HLA-A0201 1 HLA-A0201 0.25 1 MKKIMLIASAMSALS HLA-DRB10901 0.13 HLA-DRB10101 

HLA-DRB10401 

HLA-DRB10701 

HLA-DRB11501 

0.7 

1.25 

8 

4 

64 LSLTNGLPF HLA-B5801 0.8 HLA-B5801 0.25 

94 YLTNITAQV HLA-A0201 0.4 HLA-A0201 0.04 2 KKIMLIASAMSALSL HLA-DRB10901 0.14 HLA-DRB10101 0.4 



125 APIRKRFKL HLA-B0702 0.5 HLA-B0702 0.08 HLA-DRB10401 

HLA-DRB10701 

HLA-DRB10901 

HLA-DRB11501 

1.1 

4 

1.5 

4 

157 IPQQQAQAA HLA-B0702 0.9 

 

HLA-B0702 0.5 

194 NPNDPNGPM HLA-B0702 0.3 HLA-B0702 0.08 3 KIMLIASAMSALSLP HLA-DRB10901 0.23 HLA-DRB10101 

HLA-DRB10401 

HLA-DRB10701 

HLA-DRB10901 

HLA-DRB11501 

1.25 

2 

8 

1.5 

4 

211 IPQGNPNPV HLA-B0702 0.6 HLA-B0702 0.3 

232 FAIHNHEQW HLA-B5801 0.2 HLA-B5801 0.03 

327 FANQIQLNF HLA-B5801 0.7 HLA-B5801 0.25 88 AEIGVMYLTNITAQV HLA-DRB10901 0.42 HLA-DRB10101 

HLA-DRB10401 

HLA-DRB11501 

4 

4 

4 
357 QEAVAAAAV HLA-B4001 0.65 HLA-B4001 0.15 

383 KLQRHAGIK HLA-A0301 0.35 HLA-A0301 0.15 89 EIGVMYLTNITAQVE HLA-DRB10401 0.77 HLA-DRB10101 

HLA-DRB10401 

HLA-DRB10901 

HLA-DRB11501 

2 

4 

4 

4 

429 KEAEFDLSM HLA-B1301 0.4 HLA-B4001 0.2 

431 AEFDLSMIV HLA-B4001 

HLA-B1301 

0.45 

0.4 

HLA-B4001 0.07 

456 IYAGVGAGL HLA-A2402 0.5 HLA-A2402 0.4 90 IGVMYLTNITAQVEE HLA-DRB10401 0.77 HLA-DRB10101 

HLA-DRB10401 

HLA-DRB10901 

HLA-DRB11501 

4 

4 

1.5 

4 

504 GSYMYSFSK HLA-A0301 0.3 HLA-A0301 0.06 

505 SYMYSFSKI HLA-A2402 0.25 HLA-A2402 0.03 

58kDa 14 KIIEGINVV HLA-A0201 1 HLA-A0201 0.17 66 LNVGAQFVISVASKT HLA-DRB10901 0.5 HLA-DRB10101 

HLA-DRB10701 

4 

4 



HLA-DRB10901 0.9 

67 NVGAQFVISVASKTA HLA-DRB10901 0.31 HLA-DRB10101 

HLA-DRB10701 

HLA-DRB10901 

2 

4 

0.4 

68 VGAQFVISVASKTAD HLA-DRB10901 0.29 HLA-DRB10101 

HLA-DRB10701 

HLA-DRB10901 

2 

2 

0.2 

69 GAQFVISVASKTADV HLA-DRB10901 0.24 HLA-DRB10101 

HLA-DRB10401 

HLA-DRB10701 

HLA-DRB10901 

0.9 

4 

1.5 

0.15 

70 AQFVISVASKTADVA HLA-DRB10901 0.26 HLA-DRB10101 

HLA-DRB10701 

HLA-DRB10901 

2 

1.5 

0.3 

214 FENPYILLLDQKVST HLA-DRB10301 0.13 HLA-DRB10101 

HLA-DRB10301 

HLA-DRB11501 

4 

0.9 

4 

215 ENPYILLLDQKVSTV HLA-DRB10301 0.13 HLA-DRB10101 

HLA-DRB10301 

HLA-DRB10401 

HLA-DRB11501 

1.5 

0.3 

4 

4 

31 GPKGRCVAI HLA-B0702 0.9 HLA-B5801 0.5 216 NPYILLLDQKVSTVQ HLA-DRB10301 0.1 HLA-DRB10101 

HLA-DRB10301 

4 

0.15 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HLA-DRB10401 

HLA-DRB11501 

4 

4 

415 VPGGGVALFYASRVL HLA-DRB11501 0.3 HLA-DRB10101 

HLA-DRB10701 

HLA-DRB11501 

8 

8 

0.5 

417 GGGVALFYASRVLDS HLA-DRB11501 0.17 HLA-DRB10101 

HLA-DRB10701 

HLA-DRB11501 

8 

8 

0.3 

418 GGVALFYASRVLDSL HLA-DRB11501 0.18 HLA-DRB10101 

HLA-DRB10701 

HLA-DRB11501 

8 

8 

0.4 

419 GVALFYASRVLDSLK HLA-DRB11501 0.3 HLA-DRB10101 

HLA-DRB10301 

HLA-DRB10701 

HLA-DRB11501 

8 

4 

16 

0.8 

420 VALFYASRVLDSLKF HLA-DRB11501 0.92 HLA-DRB10101 

HLA-DRB10301 

HLA-DRB10701 

HLA-DRB11501 

8 

4 

8 

0.25 

514 VASLVIATSAMITDH HLA-DRB10301 0.78 HLA-DRB10101 

HLA-DRB10701 

HLA-DRB10901 

4 

8 

4 

 

 


