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Abstract

Milaszewicz, [Milaszewic J.P, Linear Algebra. Appl. 93,1987, 161—170] presented
new preconditioner for linear system in order to improve the convergence rates of
Jacobi and Gauss-Seidel iterative methods. Li et al.,|Li Y., C., Li, S. Wu, Appl.
Math.Comput. 186, 2007, 379—388]| applied this preconditioner and provided con-
vergence theorem for modified AOR method. Yun and Kim [Yun J.H., S.W. Kim,
Appl. Math. Comput. 201, 2008, 56-64] pointed out some errors in Li et al.’s
theorem and provided some correct results for convergence of the preconditioned
AOR method. In this paper, we analyze their convergence properly and propose
a new theorem for irreducible modified AOR method. In particular, based on di-
rected graph, we prove that the convergence theorem of Li et al. is true, without
any additional assumptions.

Keywords: Preconditioning, accelerated overrelaxation (AOR), convergence anal-
ysis, L-matrix, directed graph.

1 Introduction
Let us consider the following linear systems

Az =, (1)
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where A € R™"™ and b,z € R". Many of the problems that arise in tech-
nological, industrial and science situations are linear systems and there are
some reliable methods for solving this class of problems; see [1-12| and the
references therein. The basic iterative method for solving Eq.(1) can be rep-
resented as:

20D = MIN2D 4 M, i =0,1, ... (2)

where (@ is an initial vector and M !N is the iteration matrix. For sim-

plicity, but without loss of generality, we assume that diag(A) = I and,
A=T1-L-T, (3)

where I, is the identity matrix, L and U are strictly lower and strictly upper
triangular matrices of A, respectively. If A = M — N, where M is nonsingular,
then the basic iterative method for solving Eq.(1) is Eq.(2). This iterative
process converges to the unique solution z = A~'b for any initial vector
value, if and only if the spectral radius of the iteration matrix is smaller
than one; i.e, p(M~'N) < 1.There are some special iterative methods for
solving a linear system Eq.(1) based on Eq.(2). For example, the accelerated
overrelazation iterative method (AOR) is as follows ;

L) — anx(i) + (I —rL) twb, i =0,1,...

where (w,r) are real parameters with w # 0, and:

My = %(1 _rL), Ny = %[(1 — )T+ (w— )L+ wl],
Trw = (I —rL)'[(1 —w) + (w—7r)L+wU]. (4)

A preconditioner is defined as an auxiliary approximate solver which will
be combined with an iterative method. Furthermore, according to critical
importance of spectral radius, in preconditioning, we find a more desired
spectral radius. Therefore, the basic idea of preconditioned iterative methods
is to transform Eq.(1) into the following preconditioned form

PAx = Pb, P € R™". (5)
where P is a linear operator and called the preconditioner. Let

A=PA=D-L-U. (6)
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If we use the AOR method for the modified linear system (5), then we get
the preconditioned AOR iterative method whose iteration matrix is

Trw=(D—rL)'[(1 —w)D+ (w—r)L+wl], (7)
In literature, various authors have suggested different models of (I+S)-type
preconditioner for the above mentioned problem [1-6,8-12] This is a paper

motivated by studying of some previous works and possible gaps or missing
details in there in. Milaszewicz [1|, presented the preconditioner

P=1+5. (8)

where the elements of the first column below the diagonal of A eliminate and,

0 O --- 0
—ay; 0 -+ 0
S = —asy O --- 0 (9)
—an1 0 0
Then A=(I+S)A=1I-L-U+S~SL—-SU =D~ L~—U, where,
D=I1-Dy, L=L-S+SL+ Ly, U=U+Uj, (10)

where, D1, L1, [:]1 are diagonal, strictly lower and strictly upper triangular
parts of SU = Dy + Ly + Uy, respectively. Furthermore, for (i = 2,---  n) we
have:

A = (ai;) = (ay) — (an)(ay). (11)
Hence, when A is Z-matrix (see the following definition), for any j # i, 1; we
have:
Li et.al [2], applied the Milaszewicz’s preconditioner and provided conver-
gence theorem for the preconditioned AOR iterative method. However, since
this theorem was proved under the incorrect lemma, Yun and Kim in [3]
stated that this theorem is not generally true. These authors, under ad-
ditional assumptions provided some correct results for convergence of the
preconditioned AOR method. In this paper, we propose a new theorem for
irreducible L-matrix. In particular, based on directed graph, we prove that
the mentioned convergence theorem of [2] is true, without any additional
assumptions.
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2 Main Results

We begin with some basic notations and preliminary results which we refer
to later.

Definition 1. (/6, 7]). A matriv A = (a;;) is called a Z-matriz if for any
i # jra;; <0 and a Z-matriz is an L-matriz, if a; > 0. A2 : n,2 : n)
denotes the submatriz of A whose rows are indezed by (2,3, ...,n) and columns
by (2,3,....,n). For an n xn matriz A, the directed graph T'(A) of A is
defined to be the pair (V, E), where V.= {1,--- ,n} is a set of vertices and
E=A{(i,7) aij #0,i,j = 1,--- ,n} is a set of arcs. A path from i to j of
length k in T'(A) is a sequence of vertices o = (ig, i1, - - ,ix) whereig =i and
ir, = J such that (ig,i1), (i1,12), -, (ig_1, k) are arcs of T'(A). A directed
graph T'(A) is strongly connected if for any two vertices i , j, there is a path
fromitojinT'(A). A matric Ay, is said to be irreducible if I'(A) is strongly
connected.

Lemma 1. ([7]). If A be a nonnegative and irreducible matriz, then;
(1) A has a positive real eigenvalue equal to its spectral radius,

(ii) For p(A) > 0, there corresponds an eigenvector x > 0,

(1ii) p(A) does not decrease when any entry of A is increased.

Theorem 1. (/2], Theorem 1). Let T, and T,., be the iteration matrices of
Eqs.(4)and(7) of the AOR method and 0 < r < w < 1. If A is an irreducible
L-matriz and there ezists a nonempty set « C Ny = {2,3,--- ,n} such that
{ 0 < ayan <1, if iEOé,

a1;A;1 — 0, if 7 € N1 — Q.
Then we have;
()If p(Tr0) <1 = p(Tgw) < p(T )
(”)[f p(Tr,w) =1= p(T[,w) = p(Tr,w)'
(wi)If p(Trw) > 1= p(Trw) > p(Trw)-

Since, above theorem was proved under the assumption that an is irre-
ducible, Yun and Kim in [3] by a counterexample, show that it is not generally
true; (see 3], Example 3.1) and under additional assumptions provided the
following result corresponding to Theorem 1:
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Theorem 2. (/3], Theorem 3.3). Let T, and T,,, be defined by (4) and (7),
0<r<w<1, and A2 :n,2:n) be an irreducible submatriz of A. If A
is an L-matriz and there exists a nonempty set « C Ny = {2,3,---,n} such
that { 0 <ayan < 1, if ¢ «,

a1;;1 — O, if 7 € N1 — Q.
Then we have;
()If p(Trw) < 1= p(Trw) < p(Trw)-
(”)[f p(Tr,w) =1= p(T[,w) = p(Tr,w)'
(1)If p(Trw) > 1= p(Trw) > p(Trw)-

Now, we establish alternative results in the following theorems;

Theorem 3. Let A be an irreducible L-matrixz and there exists a nonempty
. 0 < ayan <1, if iEOé,

set « C Ny ={2,3,--- ,n} such that { auag = 0. ifie N, —a.

Then A(2:n,2:n) is an irreducible sub-matriz of A.

Proof. Since A is an irreducible, then for any i,j € Ny = {2,3,...,n} there
is a path o = (ig, i1, ,ixp1) from i(= i) to j(= ixy1) in a directed graph
of A.

IfVs € {1,2,--+,k};is > 1, then from Eq.(12) we have o € T'(A).

If 3s € {1,2,--- | k};is = 1, then we have:

o1 = (G0, 41, -+ 1 0s—1), 02 = (Ist2, lsta, -+ g41), 4s—1 € Ny.

If aj, .., #0, then from Eq.(12), ¢ = (01, 02) € I'(A);

Ifa;,_,i,,, = 0,since Ais anirreducible, there is a path { = (Ts—1, 1,02, "+ s DIy lisy1) €
['(A) from is_1 t0 i541.

Now, if Vi;p; > 1, then from Eq.(12) we have 7 = (01,&,02) € I'(A), and if

p1 = 1,p; > 1, then ay, p, = a1, # 0, then from Eqs.(11) and (12) we get:

@iy 1py = Qig_y,py — (a’isfhl)(a/ilyln)'

Hence, A(2 : n,2 : n) is an irreducible sub-matrix of A and the proof is
completed.O
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Theorem 4. Let A be an irreducible L-matriz and the conditions of Theorem
1 are satisfied; Then;

(U[f p(Tw) <1= p(Tgw) < p(Trw)-
(“)If p(Trw) =1= P(Tgw) = p(Trw).
Proof. Since A is an irreducible L-matrix, by Lemma 1:
dz>0s.tT 0=\, (13)
where, A\ = p(7,.,,) and,
Tow=1—-w)l+w(l—r)L+wU+H,

where, H is a nonnegative matrix. Moreover, with similar to the proof of
Theorem 1, we get:

Tt — Az = (\ — 1)£(D —rL) ' (D+rL+(1—7)s)m,

7

g
z

- A7, Al f —w > [ >
T = (=) +w(1—r)D ' LawD T+ = ( 10 =0 (T2Jina 203
7 (0)n-1x1  (T22)n—1xn-1>0

(14)

where, H is nonnegative matrix. By Theorem 3, A(2 : n,2 : n) is an irre-
ducible sub-matrix of A .Therefore, Ts, is irreducible. Then by Lemma 1 and

choosing:
v (1) 1x1 >0 2= (0)1x1 >0,
(-TZ)nflxl (32)n71><1
we have:

l—w (T12)1><n—1 L1 L1 0
= —A =(A—-1 .
( (0)n-1x1 (T22)n-1xn—1 ) ( T2 ) ( T2 ) ( ) ( 22 )
Thus with continue in the proving process of Theorem 2 (|3], Theorem3.3)
the proof is completed.O
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3 Numerical experiments

In this section, we give some examples to illustrate the results obtained in
previous sections.
Example 1. Consider a 4 x 4 matrix A of the following form:

1 —-01 0 —01
01 1 —-01 0

A= 0 0 1 —0.1
01 0 0 1

It is clear that A is an irreducible L-matrix and o = {2,4} (i.e, 0 < ajza91 <
1, 0 < apgaq < 1, and ayzaz; = 0 ). The preconditioned matrix is:

1 01 0 —01
. 0 099 —01 —0.01
A=TESHA=1 4 o 1 o

0 —001 0 099

And then,
099 -0.1 —0.01
A2:n,2;n) = 0 1 —0.1
-0.01 0 099

is an irreducible sub-matrix of A. Assume that 0 < r < w < 1 and Eq.(7)
we obtain:

10 10
10w w
- IL—w 5 99
T22 = O 1—w 1w—0
w(l—r) 107w rw
99 9801 1 w+ 9801

where, Tr,w is nonnegative matrix. Furthermore, since A(2 : n,2;n) is an
irreducible matrix, then Ths is irreducible. Therefore, we can see the results
of Theorem 4.

For example, for w = 1 and r = 0.8, the spectral radius of AOR method
is 0.0931, wheras the spectral radius of preconditioned AOR method with
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Milaszewicz's preconditioner is 0.0286.

Example 2. (Application to the model convection-diffusion equa-
tion)

Consider the three-dimensional convection-diffusion equation
—(Uga 4 Uyy + Uzz) 42Uy + uy +u. = f(2,y,2),

on the unit cube domain Q = [0, 1] x [0, 1], with Dirichlet boundary condi-
tions. When the seven-point finite difference discretization, for example, the
centered differences to the diffusive terms, and the centered differences or
the first-order upwind approximations to the convective terms are applied to
the above model convection-diffusion equation, we get the system of linear
equations Eq.(1) with the coefficient matrix

A=T,QIQI+IRT, @1 +1RI1X1T,,

where, the equidistant step-size h = 1/n + 1 is used in the discretization on
all of the three directions and the natural lexicographic ordering is employed
to the unknowns. In addition,® denotes the Kronecker product, and T, , T},
and T, are tridiagonal matrices given by:

24+ 2h ] 2 —2h
12 77 12 l
2+h70’_2—h].
12 12
For details, we refer to |[13,14]. Then, we solved the n® x n® matrix yielded
by the AOR scheme and preconditioned AOR method.
In Table 1, we report the CPU time for the corresponding schemes with
different parameters. The initial approximation of z(?) is zero vector and we
choose the right- hand side vector, such that X = (1,1, ..., 1)T be the solution
of Ax = b. The stopping criterion when the current iteration satisfies is
tol < eps = 1071, Form the point of view of the CPU time, we can see that
the preconditioned AOR method performs much better than AOR method.

T, = tridiagonal|—

T, =T, = tridiagonal|—

4 Conclusion

In this paper, we have studied a preconditioned method for linear systems.
Convergence properties of this method for irreducible L-matrix were dis-
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Tab. 1: Numerical results for Example 2
n N=n> w r AOR Preconditioned AOR

5 125 0.8 0.5 0.0183 0.0049
7 343 0.8 0.5 0.0674 0.0092
9 729 0.95 0.9 0.1879 0.1509
10 1000  0.95 0.9 0.5343 0.3224

cussed. In particular, based on directed graph, we proved that the mentioned
convergence theorem of [2| is true, without any additional assumptions.
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