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Abstract

The soft category theory offers a way to study soft theories developed so far more
generally. The main purpose of this paper is to introduce the basic algebraic
operations in soft categories, and for that we introduce some algebraic operations,
like intersection and union, in categories. Also, the notion of composition of soft
functors is introduced to form category of all soft categories.
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1 Introduction

Molodtsov [1] introduced the concept of soft sets to overcome the difficulties
that arise while dealing with complicated problems involving uncertainties
in economics, engineering, environmental science, medical science and social
science where neither methods of classical mathematics nor mathematical
theories such as probability theory, fuzzy set theory, rough set theory, vague
set theory and the interval mathematics can be successfully used. In soft
set theory, the problem of setting the membership function does not arise,
which makes the theory easily applicable to many different fields, see [2-6].
At present, works on soft theories are progressing rapidly. The algebraic
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structure of soft sets has been studied by some authors, for example see [7—
14]. Maji et al. [15] introduced several operations on soft sets. Aktas and
Cagman [16] defined soft groups and obtained the main properties of these
groups. They also compared soft sets with fuzzy sets and rough sets. Besides,
Jun [17] defined soft ideals on BCK/BCl-algebras. Feng et al. [18] defined
soft semirings, soft ideals on soft semirings and idealistic soft semirings, also
see [19]. Yamak et al. [20] introduced tjhe notion of soft hyperstructures.
Acar et al. [21] defined soft rings. Qiu-Mei Sun et al. |[22| defined the
concept of soft modules and studied their basic properties. Sardar and Gupta
[23] introduced the notions of soft category and soft functor and studied
properties of them in details. The present paper is a sequel to this.

The main purpose of this paper is to introduce basic algebraic operations
on soft categories, for which we firstly define those operations on categories.
We observe that most of the operations on soft sets defined in [15] and [24]
are particular cases of the operations on soft category defined by us. Also,
the notion of composition of soft functors is introduced to form category of
all soft categories.

2 Preliminaries

We assume that reader is familiar to the notations of category theory [25-31].
In this section, we recall some basic definitions of soft set theory and soft
category theory.

Definition 1. [1] Let U be an initial universe set, E be a set of parameters,
P(U) be the power set of U, and A C E. A pair(F,A) is called a soft set
over U, where F is a mapping given by F : A — P(U).

In other words, a soft set over U is a parameterized family of subsets of
the universe U. To illustrate this idea, let us consider the following example.

Let us consider a soft set (F, F) which describes the attractiveness of
houses that Mr.X is considering for purchase. Suppose that there are
six houses in the universe U = {hy, hg, h3, hy, hs, he} under considera-
tion, and that E = {ey, e, €3, €4, €5} is a set of decision parameters. Let
e; = expensive, e; = beautiful, e3 = wooden, e, = cheap, and e5 = in
green surroundings. In this case, to define a soft set means to point out
expensive houses, beautiful houses, and so on.
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Now,

we recall the following definitions from [15,24].

Let (F, A) be soft set over U. Then, (F, A) is called a soft null set if
F(x) =0 for all z € A.

Let (F, A) and (G, B) be soft sets over a common universe U. Then,
(G, B) is called a soft subset of (F, A), denoted by (F, A)C(G, B), if it
satisfies the followings:

(1) B C A

(2) For all z € B, F(z) and G(x) are identical approximations.

Let (F, A) and (G, B) be two soft sets over U. Then, they are said to
be equal if (F, A) is a soft subset of (G, B) and (G, B) is a soft subset
of (F, A).

Let (F, A) and (G, B) be soft sets over a common universe U. Then,
“(F,A) AND (G, B)”, denoted by (F, A)A(G, B), is defined by

(F,A)A(G,B) = (H, A x B),
where H(z,y) = F(x) N G(y) for all (z,y) € A x B.

Let (F, A) and (G, B) be soft sets over a common universe U. Then,
“(F,A) OR (G, B)”, denoted by (F, A)V(G, B), is defined by

(F,A)V(G,B) = (H,A x B),
where H(z,y) = F(x) UG(y) for all (z,y) € A x B.

Let (F, A) and (G, B) be soft sets over a common universe U. Then,
the union of (F, A) and (G, B), denoted by (F, A)U(G, B), is defined
by (F, A)U(G, B) = (H,C), where C = AU B and for all e € C,

F(e) ifeec A-B
H(e) =< Gle) ifee B—A
F(e)UG(e) ifeec ANB.

Let (F, A) and (G, B) be soft sets over a common universe U such that
AN B # (. Then, the restricted union of (F, A) and (G, B), denoted
by (F,A) Ug (G, B), is defined by (F,A) Ug (G,B) = (H,C), where
C=ANnBandforallee C, H(e) = F(e) UG(e).
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e Let (F, A) and (G, B) be soft sets over a common universe U such that
AN B # (). Then, the intersection of (F,A) and (G, B), denoted by
(F, A)N(G, B), is defined by (F, A)N(G, B) = (H,C), where C = ANB
and for all e € C, H(e) = F(e)orG(e) (as both are same set).

In [24], it had been pointed out that this definition of intersection is not
well-defined, which was explained with the following example.

[24] Consider two soft sets (F, A) and (G, B), where the universe U is a
set of houses; U = {h1, h2, h3, hd, h5, h6}, and A = {wooden, beautiful},
and B = {beautiful}. Let F(wooden) = {hy,hs}, F(beautiful) =
{ha, hy}, G(beautiful) = {hs}. Now, consider (F, A)N(G,B) = (H,C).
Since “beautiful” € AN B, we have H(beautiful) = F(beautiful) =
{ha, ha} # {hs} = G(beautiful) = H(beautiful), and this is a contradic-

tion.

Therefore, the intersection is now defined in the following way, which is
also known as “restricted” intersection |24].

e Let (F, A) and (G, B) be soft sets over a common universe U such that
AN B # (. Then, the restricted intersection of (F,A) and (G, B),
denoted by (F, A) Ng (G, B), is defined by (F, A) Ng (G, B) = (H,C),
where C'= AN B and for all e € C, H(e) = F(e) N G(e).

e Let (F, A) and (G, B) be soft sets over a common universe U. Then, the
extended intersection of (F, A) and (G, B), denoted by (F, A)Ng (G, B),
is defined by (F, A) Ng (G, B) = (H,C), where C' = AU B and for all
e e C,

F(e) ifec A-B
H(e) =< Gle) ifeec B—A
F(e)nG(e) ifeec ANB.

Now we recall some definitions of soft category .

Definition 2. [23] Let C' be a category, P(C) be the set of all subcategories
of C and A be a set of parameters. Let F': A — P(C) be a mapping. Then,
(F, A) is said to be a soft category over C if F(x) is a subcategory of C, i.e.,
it s nothing but a parameterized family of subcategories of a category.
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[23] Let SET be the category of all sets where the arrows are the set
mappings and A = N = Set of all natural numbers. Also, let F'(n) be the
subcategory of the category SET consisting of all sets having cardinality
n, for all n € N. Hence, (F, A) is a soft category over the category SET.

[23| Let GRP be the category of all groups, where the arrows are the group
homomorphisms. Also, let A = {cyclic, finite, commutative, free}. Then,
(F, A) is a soft category over GRP, where F'(x) is the subcategory of all
groups with the property x. Hence, it is nothing but to point out cyclic
groups or finite groups etc.

Definition 3. /23] Let (F, A) and (H,B) be two soft categories over C.
Then, we say that, (H, B) is a soft subcategory of (F, A) if the followings are
satisfied:

(1) B C A,
(2) H(x) is a subcategory of F(x), for all z € B.

[23] Let (F, A) be the soft category of example 2 and (H, B) be another
soft category over GRP, where B = {cyclic} and H(cyclic) be the subcat-

egory of all finite cyclic groups. Then, clearly (H, B) is a soft subcategory
of (F,A).

Definition 4. /23] Two soft categories (F, A) and (H, B) over same category
C' is said to be equal if (H, B) is a soft subcategory of (F, A) and (F,A) is a
soft subcategory of (H, B).

Definition 5. [23] Let (F, A) be a soft category over C' and C be the dual
category of C. Then, (F,A)? = (F°, A) is said to be the dual soft category
of (F, A) if F°P(x) corresponds to the dual subcategory of F(x), for all x € A.
Clearly (F, A)? is a soft category over CP.

Definition 6. Let (F, A) be a soft category over C and P be a certain prop-
erty of categories. Then, we say that (F, A) is a soft category with property
P, if for all x € A, F(x) as a category has the property P.

In the above definition P may be any property of a category. In [23], we
defined full soft category, balanced soft category, normal soft category, soft
category with limits and many more like these. Here in the above definition
what we try to mean is if we take P as “full” or say “balanced”, then the above
definition yields the definition of full soft category or balanced soft category
as they are defined in [23]
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Definition 7. [23] Let (F, A) over C and (H, B) over D be two soft cate-
gories. Also, suppose that g : A — B is a set mapping and K : C' — D is a
functor [30]. Then, (K, g) is said to be a soft functor from (F, A) to (H, B)
if

(1) K is full [30], i.e., image of C under K is all of D,
(2) g is a mapping from A onto B, and
(8) K(F(z)) = H(g(x)) for all x € A.

3 Algebraic operations in categories

This section contains the introduction of intersection and union of categories
and some of their properties.

Definition 8. Let C and D be two categories. Then, the intersection of two
categories C' and D will be denoted by C'N D, and defined to be as follows:

(1) Ob(C' N D)= 0b(C)NOLD),
(2) Homenpl|A, Bl = Homel[A, BiInHomplA, B] for all A, B € Ob(CND).

According to this definition, it can be easily verified that C'N D is again a
category. Also, we see that CND and DNC' are the same category. Moreover.
we can induce this definition for intersection of a family of categories.

Definition 9. Let C' and D be two categories. Then, the union of two cate-
gories C' and D will be denoted by C'U D, and defined to be as follows:

(1) Ob(C' U D) = Ob(C)U Ob(D),
(2) Homeypl|A, Bl = HomelA, BlUHomplA, B] for all A, B € Ob(CUD).

But this union C'U D is not necessarily a category. We illustrate this in
the following example.

Let us consider two categories £ and D, where

Ob(E) ={A,B}, Homl|A, Al={l4}, Hom|B,B]={Ig},
Hom[A,B) ={f}, Hom[B,A] =10
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and

Ob(D) ={B,C}, Hom|C,C|={Ic}, Hom|B,B]={Ig},
Hom[B,C] ={g}, Homl[C,B]=0.

Then, by the previous definition, Ob(EFUD) = Ob(E)UOb(D) = {A, B,C'}
and

Homl[A, Al = {14}, Hom|[B,B]={Ig}, Hom|[C,C|={lc},
Hom[A, Bl ={f}, Hom|[B,A] =0, Hom[B,C| ={g},
Hom|[C, B] =0, Homl[A,C) =0, Hom|[C, A] = 0.

Now as f € Hom[A, B] and g € Hom|[B,C], but fog € Hom[A,C] =0
is a contradiction.

Though we find that, according to the previous definition, union of two
categories is not necessarily a category, but we also observe that there is a
smallest category containing the union /U D. Here that category, say E, is
Ob(M) = Ob(E)UOb(D) = {A, B,C} and Hom[A, A| = {4}, Hom|B, B] =
{Ig}, Hom[C,C] = {Ic}, Hom[A, B] = {f}, Hom[B, A] = 0, Hom[B,C] =
{9}, Hom[C, B] = (0, Hom[A,C]| = f o g, Hom[C, A] = (). Thus, we get the
following definition.

Definition 10. Let C' and D be two categories. Then, the category generated
by C'U D is denoted by CUD and is defined to be the smallest category con-
taining both C' and D as subcategories, i.e., the intersection of all categories
containing both C and D as subcategories. We see that, the category CUD
contains the arrows of the following forms:

(1) arrows of the category C,
(2) arrows of the category D,

(3) arrows of the form f o g where f is an arrow of C' and g is an arrow
of D,

(4) arrows of the form go f where f is an arrow of C' and g is an arrow
of D.

The following is easily derivable from the above definitions.
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Theorem 1. Ob(CUD) = Ob(C' U D). Moreover, if Ob(C N D) = 0, then
CUD=CUD.

Theorem 2. If C', D and E are three categories, then
(1) CN(DNE)=(CND)NE.
(2) CU(DUE) = (CUD)UE.
Proof. (1) We have
Ob(CN(DNE)) =0b(C)NObDNE)
= Ob(C) N (Ob(D) N Ob(E))
= (Ob(C)NOb(D)) N Ob(E))

= 0b(CND)NOb(E)
=0b((CND)NE).

In the similar way, we can show that, for any A, B € Ob(C N (D N E)),

Homl[A, B] in both the categories are equal. Hence, the proof is completed.
(2) According to the definition, both the categories

CO(DUE) and (COD)JE

refer to the same category, which is the smallest category containing C', D
and E. Hence, we get the result. O

Theorem 3. If C' and D are two categories, then
(1) (CND)®=CPnN D”.
(2) (CUD)% = CPUDeP.

Proof. The equality of objects is too trivial to show. So, we show here the
equality of arrows only.

(1) We have

Hom(CmD)op [A, B] = HOm(CmD) [B, A]
= Hom¢|B, AN Homp[B, A]
= Homeor[A, Bl N Hompe[A, B]
= Homgeornper|A, BJ,

for each object A and B. Therefore, the proof is completed.
(2) Suppose that A, B € Ob((CUD)) and f € Homcgper[A, B]. Then,
[ € Homcop)[B, A]. So, by definition, f is of following forms:
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(a) arrow of the category C,
(b) arrow of the category D,

(c) arrow of the form h o g where h is an arrow of C' and ¢ is an arrow of
D,

(d) arrow of the form g o h where h is an arrow of C' and g is an arrow of
D.

In the cases (a) and (b), clearly f € Homgopgper[A, B]. For the case (c),
as h and g belongs to C? and DP, respectively, just altering their directions,
so direction of f is also altered and it becomes g o h in C?UD. The case
(d) is same as (c).

Conversely, suppose that A, B € Ob(C°?UD) and f € Homgopspor|A, B].
Then, is of following forms:

(a) arrow of the category CP,
(b) arrow of the category D,

(c) arrow of the form h o g, where h is an arrow of C? and ¢ is an arrow
of DP,

(d) arrow of the form goh where h is an arrow of C? and g is an arrow of
DeP.

In the cases (a) and (b), clearly f € Homcgpyer|A, B]. For case (c), goh is
in the category (CUD) and so f = hogisin (CUD). The case (d) is same
as (c).

Therefore, the two categories are equal. O

Theorem 4. If C, D and E are three categories, then C' x (D N E) =
(CxD)N(Cx E).

Proof. We have

Ob(C' x (DN E)) = O0b(C) x Ob(D N E)

= 0b(C) x (Ob(D) N Ob(E))

= (Ob(C) x Ob(D) N (Ob(C) x Ob(E))
— Ob((C x D) N (C x E)).

The equality of arrows can be shown similarly. O
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Theorem 5. If C, D and E are three categories, then C x (DUE) = (C X
D)U(C x E).

Proof. The equality of objects can be shown using Theorem 1 and following
the same technique as we adopted in the previous theorem. Now, let us
consider an arrow (f,g) of C' x (DUE). Then, f is an arrow of C and g is
an arrow of DUE. So, g is of following forms:

(a) arrow of the category D,
(b) arrow of the category F,

(c) arrow of the form h o k where h is an arrow of D and k is an arrow of
E

)

(d) arrow of the form k o h where h is an arrow of D and k is an arrow of
E.

For cases (a) and (b), (f,g) becomes an arrow of (C' x D)U(C x E). For
case (c), we observe that, (f,g) = (f, h) o (i, k), where i is an identity arrow
of C' so that the composition is defined. Hence, (f,g) becomes an arrow of
(C' x D)JU(C x E). The case (d) is same as (c).

Conversely, consider an arrow k of (C' x D)J(C x E). Then, k is of the
following forms:

(a) arrow of the category C' x D,
(b) arrow of the category C' x E,

(c) arrow of the form (hy X hg) o (g1 X g2) where (hy X hg) is an arrow of
C x D and (g1 X go) is an arrow of C' x E,

(d) arrow of the form (g; x ¢2) o (hy X hg) where (hy X hy) is an arrow of
C' x D and (g1 X ¢2) is an arrow of C' x E.

In the cases (a) and (b), clearly & becomes an arrow of C' x (DUE). For
the case (c¢), k = (hy0 g1, ha0¢2). As hy and gy are in D and E respectively,
so hy o go becomes an arrow of DUE and hence k becomes an arrow of
C x (DUE). The case (d) is same as (c). Therefore, we get the required
equality. O
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Theorem 6. If C', D and E are three categories, then CU(D N E) is a full
subcategory of (CUD) N (CUE).

Proof. We first observe that

Ob(CUDNE)) =0b(CU(DNE))
=0b((CND)U(CNE))
= 0b((CND)J(CNE)).

Now, let us consider an arrow of h in CU(D N E). Then, by definition,
the following cases are to be considered:

Case 1. If h is an arrow of C, then it is an arrow of both CUD and CUE.
So h is an arrow of (CUD) N (CUE).

Case 2. If h is an arrow of D N E, then also it is an arrow of both CUD
and CUE. So h is an arrow of (CUD) N (CUE).

Case 3. If h is neither an arrow of C' nor an arrow of D N F, then there
are arrows f in C' and g in D N E such that h = fogor h =go f. In both
cases this composition becomes arrows of both CUD and CUE. Hence, h is
an arrow of (CUD) N (CUE).

Therefore, the proof is completed. O

The following example shows that the equality does not hold always in
the above theorem.

Let us consider Z and N as the set of integers and the set of non-negative
integers, respectively. We define f : Z — N as f(r) =2*>and g : Z — N
as g(x) = |z|. Let A= {—1,0,1} be a set and h be the inclusion mapping
from A to Z. Then, clearly the composition mappings f oh and goh are
equal. Now, we construct three categories C', D and F as follows:

(1) Ob(C)={A,Z}, and Hom[A, A] = {ia}, Hom|Z,Z] = {iz},
Hom[A,Z] = {h}, Hom[Z, A] = 0;

(2) Ob(D) ={N,Z}, and Hom|N,N] = {in}, Hom|Z,Z] = {iz},
Hom|Z,N| ={f} , Hom|N,Z] = 0;

(3) Ob(E) = {N,Z}, and Hom|N,N| = {in}, Hom|[Z, 7] = {iz},
Hom|Z,N| = {g} , Hom|N, Z] = 0.

In the above, we denote the identity mapping on a set X as ix. Now,
we see that the composition arrow f oh = g o h becomes an arrow of
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(CUD)N(CUE) but this arrow does not belongs to the category CU(DN
E). Hence, we showed that the equality in the above theorem does not
hold always.

Theorem 7. If C, D and E are three categories, then (C'N D)U(C N E) is
a full subcategory of C' N (DUE).

Proof. We first observe that
Ob(C' N (DUE))

Ob(CN(DUE))
Ob((CUD)N(CUE))
Ob((CUD) NU(CUE)).

Now, let us consider an arrow of h in (C'N D)J(C' N E). Then, by the
definition, the following cases are to be considered:

Case 1. If h is an arrow of (C'N D), then it is an arrow of both C and
DUE. So h is an arrow of C' N (DUE).

Case 2. If h is an arrow of (C'N E), then it is an arrow of both C' and
DUE. So h is an arrow of C'N (DUE).

Case 3. If h is neither an arrow of C'N D nor an arrow of C'N F, then
there are arrows f in CN D and g in C'N E such that h = fogor h=go f.
In both cases the composition becomes arrows of both C' and DUE. Hence
h is an arrow of C'N (DUE).

Therefore, the proof is completed. O

The following example shows that the equality does not hold always in
the above theorem.

First we consider A, Z, N, f, h and f o h as in the previous example.
Now, we construct three categories C', D and E as follows:

(1) Ob(C) ={A,N}, and Hom[A, A] = {ia}, Hom|[N,N] = {in},
Hom[A,N] = {foh}, Hom|[N, A] = 0;

(2) Ob(D) ={A,Z}, and Hom[A, A] = {ia}, Hom[Z,Z] = {iz},
Hom[A,Z] = {h}, Hom[Z, A] = 0;

(3) Ob(E) ={N,Z}, and Hom|N,N| = {in}, Hom[Z,Z] = {iz},
Hom[Z,N] = {f}, Hom|N,Z] = 0.

In the above, we denote the identity mapping on a set X as ix. Now, we
see that the arrow f o h becomes an arrow of C'N (DUE) but this arrow
does not belongs to the category (C' N D)U(C' N E). Hence, we conclude
that the equality in the above theorem does not hold always.
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4 Algebraic operations in soft categories

In this section, we introduce the notion of AND, OR, intersection, union and
product of two soft categories. Also, we present some results involving them.

Definition 11. Let (F, A) over C and (G, B) over D be two soft cate-
gories. Then, “(F,A) AND (G, B)”, denoted by (F,A)A(G, B), is defined
by (F, A)A(G, B) = (H, A x B) where H(x,y) = F(x) NG(y) for all (z,y) €
Ax B.

We see that, (F, A)A(G, B) is again a soft category over CUD.

Definition 12. Let (F, A) over C and (G,B) over D be two soft cate-
gories. Then, “(F,A) OR (G, B)”, denoted by (F, A)V(G, B), is defined by
(F,A)V(G,B) = (H,A x B) where H(z,y) = F(x)UG(y) for all (x,y) €
AXx B.

We see that, (F, A)V(G, B) is also a soft category over CUD.

Definition 13. Let (F, A) over C and (G,B) over D be two soft cate-
gories such that AN B # (. Then,the intersection of these two soft cate-
gories,denoted by (F, A)N (G, B), is defined by (F, A)N(G,B) = (H,ANB)
where H(e) = F(e) N G(e) for alle € AN B.

Definition 14. Let (F, A) over C and (G, B) over D be two soft cate-
gories. Then, the extended intersection of these two soft categories,denoted
by (F, A) Ng (G, B), is defined by (F, A) Ng (G, B) = (H, AU B), where

F(e) ifeec A—B
H(e) =< Gle) ifee B—A
Fe)nG(e) ifec ANB.

Definition 15. Let (F, A) over C and (G, B) over D be two soft categories.
Then, the union of these two soft categories, denoted by (F, A)U(G, B), is
defined by (F, A)U(G, B) = (H, AU B), where

F(e) ifec A—B
H(e) =< Gle) ifee B—A
F(e)UG(e) ifeec ANB.
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Definition 16. Let (F, A) over C' and (G, B) over D be two soft categories
such that AN B # 0. Then, the restricted union of these two soft cate-
gories,denoted by (F, A)Ur(G, B), is defined by (F, A)Ug(G, B) = (H, ANB)
where H(e) = F(e)UG(e) for alle € AN B.

We observe that intersection, extended intersection, union, restricted
union, defined above, are soft categories over CUD.

Definition 17. Let (F, A) over C and (G, B) over D be two soft categories.
Then, the product of these two soft categories, denoted by (F, A) x (G, B), is
defined by (F,A) x (G,B) = (H, A x B) where H(x,y) = F(z) x G(y) for
all (z,y) € Ax B.

Eventually this product of soft categories becomes a soft category over
C xD.

Now, we observe some properties of these operations.

Throughout this part of this section, we consider (Fi, A1), (Fy, Ag), (F3, A3)
are soft categories over C, D and E.

Theorem 8. We have
(F17 Al) N ((F27 AQ) N (F37 A3)) - ((F17 Al) N (F27 AQ)) N (F37 A3)
Proof. Indeed, we have

(F1, Ar) N ((Fy, Ag) N (F3, Ag))
= (F1, Ay) N (Fy, Ay N As),
where Fy(e) = Fy(e) N F3(e), for e € Ay N Az
= (F5, AN (AN Ag)),
where F5(e) = Fi(e) N (Fa(e) N F3(e)), for e € Ay N (A2 N Ajz)
Applying Theorem 2 we get,
= (Flr,7 (Al N AQ) N Ag),
= (F67A1 N AZ) N (F37A3)a
where Fg(e) = Fi(e) N Fy(e), fore € Ay N Ay
- ((F17A1) N (F27A2)) N (F37A3)'

Theorem 9. We have

(Fl,Al) Ng ((FQ,AQ) Ng (F3,A3)) = ((Fl,Al) Ng (FQ,AQ)) Ng (F3,A3).
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Proof. The proof is similar to the proof of Theorem 8. O
Theorem 10. We have

(F1, A1)URr((F, A2)UR(F3, As)) = ((F1, A1) Ug(Fs, Ag))UgR(Fs, As).
Proof. Indeed, we have

(F1, A1)OR((F2, A2)UR(F3, As))
= (F1, A1)Ur(Fy, A2 N A3),
where Fy(e) = Fy(e)UF3(e), for e € Ay N A3
= (Fg,, Al N (A2 N Ag)),
where F5(e) = Fi(e)U(Fy(e)UF3(e)), for e € A; N (Ay N As)
Applying Theorem 2 we get,
= (F5, (A1 N A2)~m As),
= (F67 Al N AQ)UR(F37 A3)7
where Fg(e) = Fi(e)UFy(e), for e € Ay N Ay
— (Fy, Ay)Or(Fo, Ay))Or(Fs, As).

Theorem 11. We have

(F1, A1) O((Fa, A9)U(F3, A3)) = ((F1, A1) U(Fy, A))U(Fs, As).
Proof. The proof is similar to the proof of Theorem 10. O
Theorem 12. We have

(£, Ar) X ((Fy, A2) N (F3, Az)) = ((F1, Ar) X (Fy, Ag)) N ((F1, Ar) X (F3, Az)).
Proof. Indeed, we have

(F1, A1) x ((F32, A2) N (F3, Ag))
= (FlaAl) X (F4,A2 N Ag),
where Fy(e) = Fy(e) N F3(e), for e € Ay N A
= (F5,A1 X (A2 N A3)),
where F5((e,h)) = Fi(e) x (Fa(h) N F5(h)), for (e,h) € Ay x (A3 N A3)
Applying Theorem 4 we get,
= (F5, (A1 X AQ) N (Al X Ag)),
= (F@,Al X Ag) N (F7,A1 X A3),
where Fg((e, h)) = Fi(e) x Fy(h), for (e,
and  Fr((e, h)) = Fi(e) x F3(h), for (e,
= ((F1, A1) x (Fy, A2)) N ((F1, Ar) x (F3, As)).

)€A1XA2

h
h)€A1XA3
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Theorem 13. We have
(F1, A1) X ((Fy, A2)Np(Fs, A3)) = ((F1, A1) X (Fo, A2))Ne((F1, Ay) % (F3, As)).
Proof. The proof is similar to the proof of Theorem 12. O
Theorem 14. We have

(F1, A1) x ((Fy, A2)UR(Fs, A3)) = ((F1, A1) x (Fy, Ag))UR((F1, Ar) % (F3, A3)).
Proof. Indeed, we have

(F1, A1) x ((Fa, A9)UR(F3, A3))
= (Fl, Al) X (F4, A2 N A3),
where Fy(e) = Fy(e)UF3(e), for e € Ay N A3
= (Fg,,Al X (AQ N Ag)),
where F5((6, h)) = Fl(e) X (FQ(h)OFg(h)), for (6, h) c A1 X (A2 N Ag)
Applying Theorem 5 we get,
= (F5, (Al X A2)~ﬂ (Al X A3)),
= (Fs, Ay x Ag)Ug(F7, Ay x A3),
where Fg((e, h)) = Fi(e) x Fy(h), for (e,h) € A; x Ay
and F;((e,h)) = Fi(e) x F3(h), for (e,h) € A} x A3
= ((F1, A1) X (Fp, A2))Ur((Fy, Ar) x (F3, Ag)).

O
Theorem 15. We have
(F1, A1) x ((Fy, A2)U(F3, Ag)) = ((Fr, Ar) X (F, Ag))U((F1, Ar) x (F, Ag)).
Proof. The proof is similar to the proof of Theorem 14. O
Theorem 16. We have
((F1, A1) N (Fy, Ag))P = (F1, AP N (Fy, Ag)P.
Proof. Indeed, we have

((F1, Ar) N (F, A2))%P
= (F3,A1 N Ag)Op, where F3(€) = Fl(e) N Fg(e), for e € A1 N AQ
= (F3", A1 N Ay),
Applying Theorem 3 we get,
= (FyP, A1 N Ay),
= (Flop> Al) N (F20p7 AQ)
= (Fl, Al)op N (FQ, Ag)Op.
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Theorem 17. We have
((F1, A1) Ng (F, A2))P = (F1, AP Ng (Fy, Ag)®.
Proof. The proof is similar to the proof of Theorem 16.
Theorem 18. We have
((F1, A))UgR(Fy, A2))P = (Fy, Ap)PUR(Fy, Ag).
Proof. Indeed, we have

((F1, A1)UR(F2, A2))?
= (F3, A1 N A3)?, where F3(e) = Fi(e)UFy(e),for e € AN Ay
= (F3?, A1 N Ay),
Applying Theorem 3 we get,
= (F37, A1 N Ay),
= (F77, A)UR(F,", As)
= (Fy, A))PUR(Fy, Ag)P.

Theorem 19. We have
((Fy, A))U(Fy, Ag))P = (Fy, Ap)PU(Fy, Ay)P.
Proof. The proof is similar to the proof of Theorem 18.
Theorem 20. We have
((F1, Ay) X (Fp, A2))P = (F, AP x (Fy, Ag)P.
Proof. Indeed, we have

((F1, A1) x (Fy, Ag))°P

= (Fg,Al X AQ)OP, where Fg((@, h)) = Fl(e) X Fg(h,), for (6, h) € Al X AQ

= (F;p,Al X Ag),
= (F1", A1) x (F3%, As)
= (Flel)Op X (FQ,AQ)Op.
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Theorem 21. (Fy, A))Ug((Fy, A2) N (F3, A3)) is a full soft subcategory of
((F1, A1) Ur (Fy, A2)) N0 ((Fy, AUg(F, As)).

Proof. We have

(Fh AI)OR((F27 AQ) N (F37 A3))
= (Fy, A1)Ug(Fy, Ay N A3), where Fy(e) = Fy(e) N F3(e), for e € Ay N Az
- (Fg,,Al ﬂ A2 ﬂ Ag),

where F5(e) = Fy(e)U(Fy(e) N F3(e)), for e € A; N Ay N As.
Also, we have

((F1, A1)UR(F2, A2)) N ((F1, A1) UR(F3, As))
= (Fg, Ay N Ag) N (F7, Ay N Ag),
where Fg(e) = Fi(e)UFy(e), for e € Ay N Ay
and Fr(e) = Fi(e)UF3(e), for e € AN Az
= (Fg, Al N A2 N Ag),

where Fg(e) = (Fi(e)UFy(e)) N (Fi(e)UF3(e)), for e € AN Ay N As.
From Theorem 6, we conclude that Fj(e) is a full subcategory of Fg(e)
for all e € Ay N Ay N Az. Hence, the result follows. O

Theorem 22. We have

(1) (F1, A1)U((Fy, Ag) N (F3, A3)) is a full soft subcategory of
(Fl, Al) U (FQ, Ag)) N ((Fl, Al)O(F3, A3))

(

(2) (F7, Al)LNJN((FQ, Ay) Ng (Fs, A3)) is a full soft subcategory of
(
(

(3) (F1, A1)Ur((Fy, Ag) N (F3, A3)) is a full soft subcategory of
(Fl, Al)OR(FQ, Ag)) Ng ((Fl, Al)OR(Fg, A3))

Proof. We skip the proof as it is similar to the proof of Theorem 21. O

Theorem 23. ((Fl, Al) N (FQ, AQ))OR((Fl, Al) N (Fg, A3)) 18 a full SOft sub-
category of (F1, A1) N ((Fy, As)Ugr(F3, As)).

Proof. We have

((F1, A1) N (F2, A2))UR((F1, Ar) N (F3, As))
= (Fy, A1 N A2)UR(F5, A1 N A3),
where Fy(e) = Fi(e) N Fy(e), for e € A; N Ay
and Fs(e) = Fi(e) N Fy(e), fore € Aj N As
= (Fs, A1 N Ay N A3),
where Fg(e) = (Fi(e) N Fa(e))U(Fi(e) N F3(e)), for e € Ay N Ay N As.
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Also, we have

(F1, Ay) N ((Fy, A2)UR(Fs, Ag))
= (Fy, Ay) N (Fr, Ay N A3), where Fy(e) = Fr(e)UF3(e), for e € Ay N Az
- (Fg,Al N AQ N Ag),

where Fg(e) = Fi(e) N (Fa(e)UF3(e)), for e € Ay N Ay N As.
From Theorem 7, we conclude that Fg(e) is a full subcategory of Fg(e)
for all e € A; N Ay N Az. Hence, the result follows. O

Theorem 24. We have

(1) ((Fl,Al) (FQ,AQ))O((Fl,Al) (F3,A3)) is a full soft subcategory of
(F1, Ay) N ((Fy, Ag)U(Fs, As)).
(

(2) ((F1,Ay) Ng (Fy, A2))U((F1, Ay) Ne (Fs, A3)) is a full soft subcategory
Of (Fl,Al) OE ((FQ,AQ)O(F3,A3))

(3) ((F1, A1) Ng (Fa, A2))Ug((F1, A1) Ne (Fs, A3)) is a full soft subcategory
Of (Fl,Al) OE ((FQ,AQ)OR(Fg,A3)).

Proof. We skip the proof since it is similar to the proof of Theorem 23. [
Theorem 25. We have

((F1, A1) AND (Fy, A2))? = (F1, A1) AND (F;, Ay)P
Proof. Indeed, we have

((F1, A1) AND (F,, Ag))P

= (F3,A1 X A2)op’ where Fg((e, h)) = Fl(e) N Fg(h), for (6, h) S A1 X A2
= (F;p,Al X Ag),

= (F{*, Ay) AND (F;*, As)

- (Flel)OP AND (FQ,AQ)OP.

Theorem 26. We have

((FlaAl) OR (F27A2))Op - (F17A1)Op OR (F27A2)Op
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Proof. We have

((F1, A1) OR (Fy, A))?

= (Fg,Al X AQ)OP, where Fg((e, h)) = Fl(e) U Fg(h), for (6, h) S Al X A2
= (F3", A1 x Ay),

(Flop7 Al) OR (F20p7 AQ)

— (F\, A1) OR (Fy, Ay)™.

O

Note that the operations union, restricted union, intersection, extended
intersection, AND, OR in soft category are just the generalizations of union,
restricted union, restricted intersection, extended intersection, AND, OR in
soft set respectively. So the theorems above on these operations are also
generalization of the corresponding theorems of soft set.

5 Composition of soft functors

In this section, we introduce the notion of composition of soft functors and
form the category of all soft categories.

Let (F1, Ay), (F2, Ay) and (F3, A3) are soft categories over the categories
C1, Cy and Cj respectively. Let (K7, g;) and (Ks,g2) be soft functors from
(F1, Ay) to (Fy, As) and (Fy, Ay) to (F3, As), respectively. Then, (K, g) is said
to be the composition of these soft functors and defined to be (Ky0K7, g20¢1).

Now, we show that (K, g) is a soft functor from (Fy, A1) to (F3, Az). First
of all we observe that, being composition of two full functors, K is a full soft
functor from C; to C3. Secondly, it is clear from the context that ¢ is a
surjection from A; to Az. And last but not the least, we see that,

K(Fi(z)) = (Ko Ky)(Fi(x))
= Ky(Kq(Fi(x)))
= Ky(Fy(g1(x))), as (K1, ¢1) is a soft functor,
= F3(g2(g1(2))), as (Ka,g2) is a soft functor,
— Fl(g2091)(x)
= F3(9(2)).

Hence, the composition of two soft functors is again a soft functor.
Furthermore, we observe that, for each soft category (F, A) over C' there
exists an ‘identity’ soft functor, namely (Ic,i4), where Io is the identity
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functor on the category C and i4 is the identity function on the set A, in the
sense that given any soft category (G, B) over D and a soft functor (K g)
from (£, A) to (G, B) or from (G, B) to (F,A), (Ic,i4) o (K,g) = (K,g) or
(K,g)o (Ig,ia) = (K, g), respectively.

Now, we are going to prove that, associativity holds for composition of
soft functors. Let (Fi, A1), (Fy, A2), (Fs, Az) and (Fy, Ay) are soft categories
over the categories C, Cy, C5 and Cy, respectively. Let (K1, g1), (K2, g2)
and (K3, g3) be soft functors from (Fy, A;) to (Fy, As), (Fy, As) to (F3, As)
and (F3, A3) to (Fy, Ay), respectively. Then,

((K3,93) 0 (K2, 92)) o (K1,91) = (K30 Ka,9309s) 0 (K1, 1)
(K30 Kj3)o Ky, (g3092)001)

= EK3 o (Ky0Ki),g30(g20491))
(

K3>93) o (Kz o Ki,92 091)
K3, 93) o (K2, 92) o (K1,01)).

All the results, we proved above, implies that the class of all soft categories
along with the soft functors form a category which we denote by SCAT. It
is also worthy to note that, for a given category C, all soft categories over C'
is a full subcategory of SC AT which we denote by C' — SCAT.

6 Conclusion

Both the category theory and soft set theory play vital roles in several areas
like engineering, medical sciences, supply chain management etc. Category
theory is ideal for reasoning about structure, abstracting away from details,
and automation. Many branches like type theory, programming language
semantics, topos theory etc have strong categorical theoretical background.
On the other hand, soft set theory, as a tool of soft computing, individually or
in integrated manner, is turning out to be a strong candidate for performing
tasks in the area of data mining, decision support systems, supply chain
management, medicine, data compression etc. So, in the light of this paper,
one can find some useful application using this new algebraic structure of
soft category. Also, one can try to define more operations in soft category
and find relationship between them.
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