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Abstra
t

The soft 
ategory theory o�ers a way to study soft theories developed so far more

generally. The main purpose of this paper is to introdu
e the basi
 algebrai


operations in soft 
ategories, and for that we introdu
e some algebrai
 operations,

like interse
tion and union, in 
ategories. Also, the notion of 
omposition of soft

fun
tors is introdu
ed to form 
ategory of all soft 
ategories.
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1 Introdu
tion

Molodtsov [1℄ introdu
ed the 
on
ept of soft sets to over
ome the di�
ulties

that arise while dealing with 
ompli
ated problems involving un
ertainties

in e
onomi
s, engineering, environmental s
ien
e, medi
al s
ien
e and so
ial

s
ien
e where neither methods of 
lassi
al mathemati
s nor mathemati
al

theories su
h as probability theory, fuzzy set theory, rough set theory, vague

set theory and the interval mathemati
s 
an be su

essfully used. In soft

set theory, the problem of setting the membership fun
tion does not arise,

whi
h makes the theory easily appli
able to many di�erent �elds, see [2�6℄.

At present, works on soft theories are progressing rapidly. The algebrai
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stru
ture of soft sets has been studied by some authors, for example see [7�

14℄. Maji et al. [15℄ introdu
ed several operations on soft sets. Akta³ and

C�a§man [16℄ de�ned soft groups and obtained the main properties of these

groups. They also 
ompared soft sets with fuzzy sets and rough sets. Besides,

Jun [17℄ de�ned soft ideals on BCK/BCI-algebras. Feng et al. [18℄ de�ned

soft semirings, soft ideals on soft semirings and idealisti
 soft semirings, also

see [19℄. Yamak et al. [20℄ introdu
ed tjhe notion of soft hyperstru
tures.

A
ar et al. [21℄ de�ned soft rings. Qiu-Mei Sun et al. [22℄ de�ned the


on
ept of soft modules and studied their basi
 properties. Sardar and Gupta

[23℄ introdu
ed the notions of soft 
ategory and soft fun
tor and studied

properties of them in details. The present paper is a sequel to this.

The main purpose of this paper is to introdu
e basi
 algebrai
 operations

on soft 
ategories, for whi
h we �rstly de�ne those operations on 
ategories.

We observe that most of the operations on soft sets de�ned in [15℄ and [24℄

are parti
ular 
ases of the operations on soft 
ategory de�ned by us. Also,

the notion of 
omposition of soft fun
tors is introdu
ed to form 
ategory of

all soft 
ategories.

2 Preliminaries

We assume that reader is familiar to the notations of 
ategory theory [25�31℄.

In this se
tion, we re
all some basi
 de�nitions of soft set theory and soft


ategory theory.

De�nition 1. [1℄ Let U be an initial universe set, E be a set of parameters,

P (U) be the power set of U , and A ⊆ E. A pair(F,A) is 
alled a soft set

over U , where F is a mapping given by F : A → P (U).

In other words, a soft set over U is a parameterized family of subsets of

the universe U . To illustrate this idea, let us 
onsider the following example.

Let us 
onsider a soft set (F,E) whi
h des
ribes the attra
tiveness of

houses that Mr.X is 
onsidering for pur
hase. Suppose that there are

six houses in the universe U = {h1, h2, h3, h4, h5, h6} under 
onsidera-

tion, and that E = {e1, e2, e3, e4, e5} is a set of de
ision parameters. Let

e1 = expensive, e2 = beautiful, e3 = wooden, e4 = 
heap, and e5 = in

green surroundings. In this 
ase, to de�ne a soft set means to point out

expensive houses, beautiful houses, and so on.
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Now, we re
all the following de�nitions from [15, 24℄.

• Let (F,A) be soft set over U . Then, (F,A) is 
alled a soft null set if

F (x) = ∅ for all x ∈ A.

• Let (F,A) and (G,B) be soft sets over a 
ommon universe U . Then,

(G,B) is 
alled a soft subset of (F,A), denoted by (F,A)⊂̃(G,B), if it
satis�es the followings:

(1) B ⊆ A;

(2) For all x ∈ B, F (x) and G(x) are identi
al approximations.

• Let (F,A) and (G,B) be two soft sets over U . Then, they are said to

be equal if (F,A) is a soft subset of (G,B) and (G,B) is a soft subset

of (F,A).

• Let (F,A) and (G,B) be soft sets over a 
ommon universe U . Then,

�(F,A) AND (G,B)�, denoted by (F,A)∧̃(G,B), is de�ned by

(F,A)∧̃(G,B) = (H,A× B),

where H(x, y) = F (x) ∩G(y) for all (x, y) ∈ A× B.

• Let (F,A) and (G,B) be soft sets over a 
ommon universe U . Then,

�(F,A) OR (G,B)�, denoted by (F,A)∨̃(G,B), is de�ned by

(F,A)∨̃(G,B) = (H,A× B),

where H(x, y) = F (x) ∪G(y) for all (x, y) ∈ A× B.

• Let (F,A) and (G,B) be soft sets over a 
ommon universe U . Then,

the union of (F,A) and (G,B), denoted by (F,A)∪̃(G,B), is de�ned
by (F,A)∪̃(G,B) = (H,C), where C = A ∪B and for all e ∈ C,

H(e) =







F (e) if e ∈ A− B

G(e) if e ∈ B − A

F (e) ∪G(e) if e ∈ A ∩ B.

• Let (F,A) and (G,B) be soft sets over a 
ommon universe U su
h that

A ∩ B 6= ∅. Then, the restri
ted union of (F,A) and (G,B), denoted
by (F,A) ∪R (G,B), is de�ned by (F,A) ∪R (G,B) = (H,C), where
C = A ∩ B and for all e ∈ C, H(e) = F (e) ∪G(e).
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• Let (F,A) and (G,B) be soft sets over a 
ommon universe U su
h that

A ∩ B 6= ∅. Then, the interse
tion of (F,A) and (G,B), denoted by

(F,A)∩̃(G,B), is de�ned by (F,A)∩̃(G,B) = (H,C), where C = A∩B

and for all e ∈ C, H(e) = F (e)orG(e) (as both are same set).

In [24℄, it had been pointed out that this de�nition of interse
tion is not

well-de�ned, whi
h was explained with the following example.

[24℄ Consider two soft sets (F,A) and (G,B), where the universe U is a

set of houses; U = {h1, h2, h3, h4, h5, h6}, and A = {wooden, beautiful},
and B = {beautiful}. Let F (wooden) = {h1, h3}, F (beautiful) =
{h2, h4}, G(beautiful) = {h4}. Now, 
onsider (F,A)∩̃(G,B) = (H,C).
Sin
e “beautiful′′ ∈ A ∩ B, we have H(beautiful) = F (beautiful) =
{h2, h4} 6= {h4} = G(beautiful) = H(beautiful), and this is a 
ontradi
-

tion.

Therefore, the interse
tion is now de�ned in the following way, whi
h is

also known as �restri
ted� interse
tion [24℄.

• Let (F,A) and (G,B) be soft sets over a 
ommon universe U su
h that

A ∩ B 6= ∅. Then, the restri
ted interse
tion of (F,A) and (G,B),
denoted by (F,A) ∩R (G,B), is de�ned by (F,A) ∩R (G,B) = (H,C),
where C = A ∩B and for all e ∈ C, H(e) = F (e) ∩G(e).

• Let (F,A) and (G,B) be soft sets over a 
ommon universe U . Then, the

extended interse
tion of (F,A) and (G,B), denoted by (F,A)∩E (G,B),
is de�ned by (F,A) ∩E (G,B) = (H,C), where C = A ∪ B and for all

e ∈ C,

H(e) =







F (e) if e ∈ A− B

G(e) if e ∈ B − A

F (e) ∩G(e) if e ∈ A ∩ B.

Now we re
all some de�nitions of soft 
ategory .

De�nition 2. [23℄ Let C be a 
ategory, P (C) be the set of all sub
ategories

of C and A be a set of parameters. Let F : A → P (C) be a mapping. Then,

(F,A) is said to be a soft 
ategory over C if F (x) is a sub
ategory of C, i.e.,

it is nothing but a parameterized family of sub
ategories of a 
ategory.



63 Sardar, Gupta, Davvaz

[23℄ Let SET be the 
ategory of all sets where the arrows are the set

mappings and A = N = Set of all natural numbers. Also, let F (n) be the
sub
ategory of the 
ategory SET 
onsisting of all sets having 
ardinality

n, for all n ∈ N . Hen
e, (F,A) is a soft 
ategory over the 
ategory SET.

[23℄ Let GRP be the 
ategory of all groups, where the arrows are the group

homomorphisms. Also, letA = {cyclic, finite, commutative, free}. Then,
(F,A) is a soft 
ategory over GRP, where F (x) is the sub
ategory of all

groups with the property x. Hen
e, it is nothing but to point out 
y
li


groups or �nite groups et
.

De�nition 3. [23℄ Let (F,A) and (H,B) be two soft 
ategories over C.

Then, we say that, (H,B) is a soft sub
ategory of (F,A) if the followings are
satis�ed:

(1) B ⊆ A,

(2) H(x) is a sub
ategory of F (x), for all x ∈ B.

[23℄ Let (F,A) be the soft 
ategory of example 2 and (H,B) be another
soft 
ategory over GRP, where B = {cyclic} and H(cyclic) be the sub
at-
egory of all �nite 
y
li
 groups. Then, 
learly (H,B) is a soft sub
ategory
of (F,A).

De�nition 4. [23℄ Two soft 
ategories (F,A) and (H,B) over same 
ategory

C is said to be equal if (H,B) is a soft sub
ategory of (F,A) and (F,A) is a
soft sub
ategory of (H,B).

De�nition 5. [23℄ Let (F,A) be a soft 
ategory over C and Cop
be the dual


ategory of C. Then, (F,A)op = (F op, A) is said to be the dual soft 
ategory

of (F,A) if F op(x) 
orresponds to the dual sub
ategory of F (x), for all x ∈ A.

Clearly (F,A)op is a soft 
ategory over Cop
.

De�nition 6. Let (F,A) be a soft 
ategory over C and P be a 
ertain prop-

erty of 
ategories. Then, we say that (F,A) is a soft 
ategory with property

P , if for all x ∈ A, F (x) as a 
ategory has the property P .

In the above de�nition P may be any property of a 
ategory. In [23℄, we

de�ned full soft 
ategory, balan
ed soft 
ategory, normal soft 
ategory, soft


ategory with limits and many more like these. Here in the above de�nition

what we try to mean is if we take P as �full� or say �balan
ed�, then the above

de�nition yields the de�nition of full soft 
ategory or balan
ed soft 
ategory

as they are de�ned in [23℄
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De�nition 7. [23℄ Let (F,A) over C and (H,B) over D be two soft 
ate-

gories. Also, suppose that g : A → B is a set mapping and K : C → D is a

fun
tor [30℄. Then, (K, g) is said to be a soft fun
tor from (F,A) to (H,B)
if

(1) K is full [30℄, i.e., image of C under K is all of D,

(2) g is a mapping from A onto B, and

(3) K(F (x)) = H(g(x)) for all x ∈ A.

3 Algebrai
 operations in 
ategories

This se
tion 
ontains the introdu
tion of interse
tion and union of 
ategories

and some of their properties.

De�nition 8. Let C and D be two 
ategories. Then, the interse
tion of two


ategories C and D will be denoted by C ∩D, and de�ned to be as follows:

(1) Ob(C ∩D) = Ob(C) ∩ Ob(D),

(2) HomC∩D[A,B] = HomC [A,B]∩HomD[A,B] for all A,B ∈ Ob(C∩D).

A

ording to this de�nition, it 
an be easily veri�ed that C ∩D is again a


ategory. Also, we see that C∩D and D∩C are the same 
ategory. Moreover.

we 
an indu
e this de�nition for interse
tion of a family of 
ategories.

De�nition 9. Let C and D be two 
ategories. Then, the union of two 
ate-

gories C and D will be denoted by C ∪D, and de�ned to be as follows:

(1) Ob(C ∪D) = Ob(C) ∪ Ob(D),

(2) HomC∪D[A,B] = HomC [A,B]∪HomD[A,B] for all A,B ∈ Ob(C∪D).

But this union C ∪D is not ne
essarily a 
ategory. We illustrate this in

the following example.

Let us 
onsider two 
ategories E and D, where

Ob(E) = {A,B}, Hom[A,A] = {IA}, Hom[B,B] = {IB},
Hom[A,B] = {f}, Hom[B,A] = ∅
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and

Ob(D) = {B,C}, Hom[C,C] = {IC}, Hom[B,B] = {IB},
Hom[B,C] = {g}, Hom[C,B] = ∅.

Then, by the previous de�nition, Ob(E∪D) = Ob(E)∪Ob(D) = {A,B,C}
and

Hom[A,A] = {IA}, Hom[B,B] = {IB}, Hom[C,C] = {IC},
Hom[A,B] = {f}, Hom[B,A] = ∅, Hom[B,C] = {g},
Hom[C,B] = ∅, Hom[A,C] = ∅, Hom[C,A] = ∅.

Now as f ∈ Hom[A,B] and g ∈ Hom[B,C], but f ◦ g ∈ Hom[A,C] = ∅
is a 
ontradi
tion.

Though we �nd that, a

ording to the previous de�nition, union of two


ategories is not ne
essarily a 
ategory, but we also observe that there is a

smallest 
ategory 
ontaining the union E ∪D. Here that 
ategory, say E, is

Ob(M) = Ob(E)∪Ob(D) = {A,B,C} and Hom[A,A] = {IA}, Hom[B,B] =
{IB}, Hom[C,C] = {IC}, Hom[A,B] = {f}, Hom[B,A] = ∅, Hom[B,C] =
{g}, Hom[C,B] = ∅, Hom[A,C] = f ◦ g,Hom[C,A] = ∅. Thus, we get the

following de�nition.

De�nition 10. Let C and D be two 
ategories. Then, the 
ategory generated

by C ∪D is denoted by C∪̃D and is de�ned to be the smallest 
ategory 
on-

taining both C and D as sub
ategories, i.e., the interse
tion of all 
ategories


ontaining both C and D as sub
ategories. We see that, the 
ategory C∪̃D

ontains the arrows of the following forms:

(1) arrows of the 
ategory C,

(2) arrows of the 
ategory D,

(3) arrows of the form f ◦ g where f is an arrow of C and g is an arrow

of D,

(4) arrows of the form g ◦ f where f is an arrow of C and g is an arrow

of D.

The following is easily derivable from the above de�nitions.
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Theorem 1. Ob(C∪̃D) = Ob(C ∪ D). Moreover, if Ob(C ∩ D) = ∅, then
C∪̃D = C ∪D.

Theorem 2. If C, D and E are three 
ategories, then

(1) C ∩ (D ∩ E) = (C ∩D) ∩ E.

(2) C∪̃(D∪̃E) = (C∪̃D)∪̃E.

Proof. (1) We have

Ob(C ∩ (D ∩ E)) = Ob(C) ∩ Ob(D ∩ E)
= Ob(C) ∩ (Ob(D) ∩ Ob(E))
= (Ob(C) ∩ Ob(D)) ∩ Ob(E))
= Ob(C ∩D) ∩ Ob(E)
= Ob((C ∩D) ∩ E).

In the similar way, we 
an show that, for any A,B ∈ Ob(C ∩ (D ∩ E)),
Hom[A,B] in both the 
ategories are equal. Hen
e, the proof is 
ompleted.

(2) A

ording to the de�nition, both the 
ategories

C∪̃(D∪̃E) and (C∪̃D)∪̃E

refer to the same 
ategory, whi
h is the smallest 
ategory 
ontaining C, D

and E. Hen
e, we get the result.

Theorem 3. If C and D are two 
ategories, then

(1) (C ∩D)op = Cop ∩Dop
.

(2) (C∪̃D)op = Cop∪̃Dop
.

Proof. The equality of obje
ts is too trivial to show. So, we show here the

equality of arrows only.

(1) We have

Hom(C∩D)op[A,B] = Hom(C∩D)[B,A]
= HomC [B,A] ∩HomD[B,A]
= HomCop[A,B] ∩HomDop[A,B]
= HomCop∩Dop[A,B],

for ea
h obje
t A and B. Therefore, the proof is 
ompleted.

(2) Suppose that A,B ∈ Ob((C∪̃D)op) and f ∈ Hom(C∪̃D)op [A,B]. Then,
f ∈ Hom(C∪̃D)[B,A]. So, by de�nition, f is of following forms:
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(a) arrow of the 
ategory C,

(b) arrow of the 
ategory D,

(
) arrow of the form h ◦ g where h is an arrow of C and g is an arrow of

D,

(d) arrow of the form g ◦ h where h is an arrow of C and g is an arrow of

D.

In the 
ases (a) and (b), 
learly f ∈ HomCop∪̃Dop[A,B]. For the 
ase (
),
as h and g belongs to Cop

and Dop
, respe
tively, just altering their dire
tions,

so dire
tion of f is also altered and it be
omes g ◦ h in Cop∪̃Dop
. The 
ase

(d) is same as (
).

Conversely, suppose that A,B ∈ Ob(Cop∪̃Dop) and f ∈ HomCop∪̃Dop[A,B].
Then, is of following forms:

(a) arrow of the 
ategory Cop
,

(b) arrow of the 
ategory Dop
,

(
) arrow of the form h ◦ g, where h is an arrow of Cop
and g is an arrow

of Dop
,

(d) arrow of the form g ◦ h where h is an arrow of Cop
and g is an arrow of

Dop
.

In the 
ases (a) and (b), 
learly f ∈ Hom(C∪̃D)op[A,B]. For 
ase (
), g ◦ h is

in the 
ategory (C∪̃D) and so f = h ◦ g is in (C∪̃D)op. The 
ase (d) is same

as (
).

Therefore, the two 
ategories are equal.

Theorem 4. If C, D and E are three 
ategories, then C × (D ∩ E) =
(C ×D) ∩ (C × E).

Proof. We have

Ob(C × (D ∩ E)) = Ob(C)×Ob(D ∩ E)
= Ob(C)× (Ob(D) ∩Ob(E))
= (Ob(C)×Ob(D) ∩ (Ob(C)× Ob(E))
= Ob((C ×D) ∩ (C ×E)).

The equality of arrows 
an be shown similarly.
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Theorem 5. If C, D and E are three 
ategories, then C × (D∪̃E) = (C ×
D)∪̃(C ×E).

Proof. The equality of obje
ts 
an be shown using Theorem 1 and following

the same te
hnique as we adopted in the previous theorem. Now, let us


onsider an arrow (f, g) of C × (D∪̃E). Then, f is an arrow of C and g is

an arrow of D∪̃E. So, g is of following forms:

(a) arrow of the 
ategory D,

(b) arrow of the 
ategory E,

(
) arrow of the form h ◦ k where h is an arrow of D and k is an arrow of

E,

(d) arrow of the form k ◦ h where h is an arrow of D and k is an arrow of

E.

For 
ases (a) and (b), (f, g) be
omes an arrow of (C × D)∪̃(C × E). For


ase (
), we observe that, (f, g) = (f, h) ◦ (i, k), where i is an identity arrow

of C so that the 
omposition is de�ned. Hen
e, (f, g) be
omes an arrow of

(C ×D)∪̃(C × E). The 
ase (d) is same as (
).

Conversely, 
onsider an arrow k of (C ×D)∪̃(C × E). Then, k is of the

following forms:

(a) arrow of the 
ategory C ×D,

(b) arrow of the 
ategory C × E,

(
) arrow of the form (h1 × h2) ◦ (g1 × g2) where (h1 × h2) is an arrow of

C ×D and (g1 × g2) is an arrow of C × E,

(d) arrow of the form (g1 × g2) ◦ (h1 × h2) where (h1 × h2) is an arrow of

C ×D and (g1 × g2) is an arrow of C × E.

In the 
ases (a) and (b), 
learly k be
omes an arrow of C × (D∪̃E). For
the 
ase (
), k = (h1 ◦ g1, h2 ◦ g2). As h2 and g2 are in D and E respe
tively,

so h2 ◦ g2 be
omes an arrow of D∪̃E and hen
e k be
omes an arrow of

C × (D∪̃E). The 
ase (d) is same as (
). Therefore, we get the required

equality.
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Theorem 6. If C, D and E are three 
ategories, then C∪̃(D ∩ E) is a full

sub
ategory of (C∪̃D) ∩ (C∪̃E).

Proof. We �rst observe that

Ob(C∪̃(D ∩ E)) = Ob(C ∪ (D ∩ E))
= Ob((C ∩D) ∪ (C ∩ E))
= Ob((C ∩D)∪̃(C ∩ E)).

Now, let us 
onsider an arrow of h in C∪̃(D ∩ E). Then, by de�nition,

the following 
ases are to be 
onsidered:

Case 1. If h is an arrow of C, then it is an arrow of both C∪̃D and C∪̃E.
So h is an arrow of (C∪̃D) ∩ (C∪̃E).

Case 2. If h is an arrow of D ∩ E, then also it is an arrow of both C∪̃D
and C∪̃E. So h is an arrow of (C∪̃D) ∩ (C∪̃E).

Case 3. If h is neither an arrow of C nor an arrow of D ∩ E, then there

are arrows f in C and g in D ∩ E su
h that h = f ◦ g or h = g ◦ f . In both


ases this 
omposition be
omes arrows of both C∪̃D and C∪̃E. Hen
e, h is

an arrow of (C∪̃D) ∩ (C∪̃E).
Therefore, the proof is 
ompleted.

The following example shows that the equality does not hold always in

the above theorem.

Let us 
onsider Z and N as the set of integers and the set of non-negative

integers, respe
tively. We de�ne f : Z → N as f(x) = x2
and g : Z → N

as g(x) = |x|. Let A = {−1, 0, 1} be a set and h be the in
lusion mapping

from A to Z. Then, 
learly the 
omposition mappings f ◦ h and g ◦ h are

equal. Now, we 
onstru
t three 
ategories C, D and E as follows:

(1) Ob(C) = {A,Z}, and Hom[A,A] = {iA}, Hom[Z,Z] = {iZ},
Hom[A,Z] = {h}, Hom[Z, A] = ∅;

(2) Ob(D) = {N,Z}, and Hom[N,N] = {iN}, Hom[Z,Z] = {iZ},
Hom[Z,N] = {f} , Hom[N,Z] = ∅;

(3) Ob(E) = {N,Z}, and Hom[N,N] = {iN}, Hom[Z,Z] = {iZ},
Hom[Z,N] = {g} , Hom[N,Z] = ∅.

In the above, we denote the identity mapping on a set X as iX . Now,

we see that the 
omposition arrow f ◦ h = g ◦ h be
omes an arrow of
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(C∪̃D)∩ (C∪̃E) but this arrow does not belongs to the 
ategory C∪̃(D∩
E). Hen
e, we showed that the equality in the above theorem does not

hold always.

Theorem 7. If C, D and E are three 
ategories, then (C ∩D)∪̃(C ∩ E) is
a full sub
ategory of C ∩ (D∪̃E).

Proof. We �rst observe that

Ob(C ∩ (D∪̃E)) = Ob(C ∩ (D ∪ E))
= Ob((C ∪D) ∩ (C ∪ E))
= Ob((C∪̃D) ∩ ∪̃(C∪̃E)).

Now, let us 
onsider an arrow of h in (C ∩ D)∪̃(C ∩ E). Then, by the

de�nition, the following 
ases are to be 
onsidered:

Case 1. If h is an arrow of (C ∩ D), then it is an arrow of both C and

D∪̃E. So h is an arrow of C ∩ (D∪̃E).
Case 2. If h is an arrow of (C ∩ E), then it is an arrow of both C and

D∪̃E. So h is an arrow of C ∩ (D∪̃E).
Case 3. If h is neither an arrow of C ∩ D nor an arrow of C ∩ E, then

there are arrows f in C ∩D and g in C ∩E su
h that h = f ◦ g or h = g ◦ f .
In both 
ases the 
omposition be
omes arrows of both C and D∪̃E. Hen
e
h is an arrow of C ∩ (D∪̃E).

Therefore, the proof is 
ompleted.

The following example shows that the equality does not hold always in

the above theorem.

First we 
onsider A, Z, N, f , h and f ◦ h as in the previous example.

Now, we 
onstru
t three 
ategories C, D and E as follows:

(1) Ob(C) = {A,N}, and Hom[A,A] = {iA}, Hom[N,N] = {iN},
Hom[A,N] = {f ◦ h}, Hom[N, A] = ∅;

(2) Ob(D) = {A,Z}, and Hom[A,A] = {iA}, Hom[Z,Z] = {iZ},
Hom[A,Z] = {h}, Hom[Z, A] = ∅;

(3) Ob(E) = {N,Z}, and Hom[N,N] = {iN}, Hom[Z,Z] = {iZ},
Hom[Z,N] = {f}, Hom[N,Z] = ∅.

In the above, we denote the identity mapping on a set X as iX . Now, we

see that the arrow f ◦ h be
omes an arrow of C ∩ (D∪̃E) but this arrow
does not belongs to the 
ategory (C ∩D)∪̃(C ∩ E). Hen
e, we 
on
lude
that the equality in the above theorem does not hold always.
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4 Algebrai
 operations in soft 
ategories

In this se
tion, we introdu
e the notion of AND, OR, interse
tion, union and

produ
t of two soft 
ategories. Also, we present some results involving them.

De�nition 11. Let (F,A) over C and (G,B) over D be two soft 
ate-

gories. Then, �(F,A) AND (G,B)�, denoted by (F,A)∧̃(G,B), is de�ned

by (F,A)∧̃(G,B) = (H,A×B) where H(x, y) = F (x)∩G(y) for all (x, y) ∈
A× B.

We see that, (F,A)∧̃(G,B) is again a soft 
ategory over C∪̃D.

De�nition 12. Let (F,A) over C and (G,B) over D be two soft 
ate-

gories. Then, �(F,A) OR (G,B)�, denoted by (F,A)∨̃(G,B), is de�ned by

(F,A)∨̃(G,B) = (H,A × B) where H(x, y) = F (x)∪̃G(y) for all (x, y) ∈
A× B.

We see that, (F,A)∨̃(G,B) is also a soft 
ategory over C∪̃D.

De�nition 13. Let (F,A) over C and (G,B) over D be two soft 
ate-

gories su
h that A ∩ B 6= ∅. Then,the interse
tion of these two soft 
ate-

gories,denoted by (F,A)∩ (G,B), is de�ned by (F,A)∩ (G,B) = (H,A∩B)
where H(e) = F (e) ∩G(e) for all e ∈ A ∩B.

De�nition 14. Let (F,A) over C and (G,B) over D be two soft 
ate-

gories. Then, the extended interse
tion of these two soft 
ategories,denoted

by (F,A) ∩E (G,B), is de�ned by (F,A) ∩E (G,B) = (H,A ∪ B), where

H(e) =







F (e) if e ∈ A− B

G(e) if e ∈ B − A

F (e) ∩G(e) if e ∈ A ∩ B.

De�nition 15. Let (F,A) over C and (G,B) over D be two soft 
ategories.

Then, the union of these two soft 
ategories, denoted by (F,A)∪̃(G,B), is
de�ned by (F,A)∪̃(G,B) = (H,A ∪B), where

H(e) =







F (e) if e ∈ A− B

G(e) if e ∈ B − A

F (e)∪̃G(e) if e ∈ A ∩ B.
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De�nition 16. Let (F,A) over C and (G,B) over D be two soft 
ategories

su
h that A ∩ B 6= ∅. Then, the restri
ted union of these two soft 
ate-

gories,denoted by (F,A)∪̃R(G,B), is de�ned by (F,A)∪̃R(G,B) = (H,A∩B)
where H(e) = F (e)∪̃G(e) for all e ∈ A ∩ B.

We observe that interse
tion, extended interse
tion, union, restri
ted

union, de�ned above, are soft 
ategories over C∪̃D.

De�nition 17. Let (F,A) over C and (G,B) over D be two soft 
ategories.

Then, the produ
t of these two soft 
ategories, denoted by (F,A)× (G,B), is
de�ned by (F,A) × (G,B) = (H,A × B) where H(x, y) = F (x) × G(y) for
all (x, y) ∈ A× B.

Eventually this produ
t of soft 
ategories be
omes a soft 
ategory over

C ×D.

Now, we observe some properties of these operations.

Throughout this part of this se
tion, we 
onsider (F1, A1), (F2, A2), (F3, A3)
are soft 
ategories over C, D and E.

Theorem 8. We have

(F1, A1) ∩ ((F2, A2) ∩ (F3, A3)) = ((F1, A1) ∩ (F2, A2)) ∩ (F3, A3).

Proof. Indeed, we have

(F1, A1) ∩ ((F2, A2) ∩ (F3, A3))
= (F1, A1) ∩ (F4, A2 ∩ A3),

where F4(e) = F2(e) ∩ F3(e), for e ∈ A2 ∩ A3

= (F5, A1 ∩ (A2 ∩ A3)),
where F5(e) = F1(e) ∩ (F2(e) ∩ F3(e)), for e ∈ A1 ∩ (A2 ∩A3)
Applying Theorem 2 we get,

= (F5, (A1 ∩ A2) ∩ A3),
= (F6, A1 ∩ A2) ∩ (F3, A3),

where F6(e) = F1(e) ∩ F2(e), for e ∈ A1 ∩ A2

= ((F1, A1) ∩ (F2, A2)) ∩ (F3, A3).

Theorem 9. We have

(F1, A1) ∩E ((F2, A2) ∩E (F3, A3)) = ((F1, A1) ∩E (F2, A2)) ∩E (F3, A3).
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Proof. The proof is similar to the proof of Theorem 8.

Theorem 10. We have

(F1, A1)∪̃R((F2, A2)∪̃R(F3, A3)) = ((F1, A1)∪̃R(F2, A2))∪̃R(F3, A3).

Proof. Indeed, we have

(F1, A1)∪̃R((F2, A2)∪̃R(F3, A3))
= (F1, A1)∪̃R(F4, A2 ∩A3),

where F4(e) = F2(e)∪̃F3(e), for e ∈ A2 ∩A3

= (F5, A1 ∩ (A2 ∩A3)),
where F5(e) = F1(e)∪̃(F2(e)∪̃F3(e)), for e ∈ A1 ∩ (A2 ∩A3)
Applying Theorem 2 we get,

= (F5, (A1 ∩A2) ∩A3),
= (F6, A1 ∩A2)∪̃R(F3, A3),

where F6(e) = F1(e)∪̃F2(e), for e ∈ A1 ∩A2

= ((F1, A1)∪̃R(F2, A2))∪̃R(F3, A3).

Theorem 11. We have

(F1, A1)∪̃((F2, A2)∪̃(F3, A3)) = ((F1, A1)∪̃(F2, A2))∪̃(F3, A3).

Proof. The proof is similar to the proof of Theorem 10.

Theorem 12. We have

(F1, A1)× ((F2, A2)∩ (F3, A3)) = ((F1, A1)× (F2, A2))∩ ((F1, A1)× (F3, A3)).

Proof. Indeed, we have

(F1, A1)× ((F2, A2) ∩ (F3, A3))
= (F1, A1)× (F4, A2 ∩A3),

where F4(e) = F2(e) ∩ F3(e), for e ∈ A2 ∩ A3

= (F5, A1 × (A2 ∩ A3)),
where F5((e, h)) = F1(e)× (F2(h) ∩ F3(h)), for (e, h) ∈ A1 × (A2 ∩ A3)
Applying Theorem 4 we get,

= (F5, (A1 × A2) ∩ (A1 ×A3)),
= (F6, A1 × A2) ∩ (F7, A1 ×A3),

where F6((e, h)) = F1(e)× F2(h), for (e, h) ∈ A1 ×A2

and F7((e, h)) = F1(e)× F3(h), for (e, h) ∈ A1 × A3

= ((F1, A1)× (F2, A2)) ∩ ((F1, A1)× (F3, A3)).
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Theorem 13. We have

(F1, A1)×((F2, A2)∩E(F3, A3)) = ((F1, A1)×(F2, A2))∩E((F1, A1)×(F3, A3)).

Proof. The proof is similar to the proof of Theorem 12.

Theorem 14. We have

(F1, A1)×((F2, A2)∪̃R(F3, A3)) = ((F1, A1)×(F2, A2))∪̃R((F1, A1)×(F3, A3)).

Proof. Indeed, we have

(F1, A1)× ((F2, A2)∪̃R(F3, A3))
= (F1, A1)× (F4, A2 ∩ A3),

where F4(e) = F2(e)∪̃F3(e), for e ∈ A2 ∩A3

= (F5, A1 × (A2 ∩ A3)),
where F5((e, h)) = F1(e)× (F2(h)∪̃F3(h)), for (e, h) ∈ A1 × (A2 ∩ A3)
Applying Theorem 5 we get,

= (F5, (A1 ×A2) ∩ (A1 × A3)),
= (F6, A1 ×A2)∪̃R(F7, A1 × A3),

where F6((e, h)) = F1(e)× F2(h), for (e, h) ∈ A1 × A2

and F7((e, h)) = F1(e)× F3(h), for (e, h) ∈ A1 ×A3

= ((F1, A1)× (F2, A2))∪̃R((F1, A1)× (F3, A3)).

Theorem 15. We have

(F1, A1)× ((F2, A2)∪̃(F3, A3)) = ((F1, A1)× (F2, A2))∪̃((F1, A1)× (F3, A3)).

Proof. The proof is similar to the proof of Theorem 14.

Theorem 16. We have

((F1, A1) ∩ (F2, A2))
op = (F1, A1)

op ∩ (F2, A2)
op.

Proof. Indeed, we have

((F1, A1) ∩ (F2, A2))
op

= (F3, A1 ∩ A2)
op, where F3(e) = F1(e) ∩ F2(e), for e ∈ A1 ∩A2

= (F op
3 , A1 ∩A2),
Applying Theorem 3 we get,

= (F op
3 , A1 ∩A2),

= (F op
1 , A1) ∩ (F op

2 , A2)
= (F1, A1)

op ∩ (F2, A2)
op.
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Theorem 17. We have

((F1, A1) ∩E (F2, A2))
op = (F1, A1)

op ∩E (F2, A2)
op.

Proof. The proof is similar to the proof of Theorem 16.

Theorem 18. We have

((F1, A1)∪̃R(F2, A2))
op = (F1, A1)

op∪̃R(F2, A2)
op.

Proof. Indeed, we have

((F1, A1)∪̃R(F2, A2))
op

= (F3, A1 ∩A2)
op, where F3(e) = F1(e)∪̃F2(e), for e ∈ A1 ∩A2

= (F op
3 , A1 ∩A2),
Applying Theorem 3 we get,

= (F op
3 , A1 ∩A2),

= (F op
1 , A1)∪̃R(F

op
2 , A2)

= (F1, A1)
op∪̃R(F2, A2)

op.

Theorem 19. We have

((F1, A1)∪̃(F2, A2))
op = (F1, A1)

op∪̃(F2, A2)
op.

Proof. The proof is similar to the proof of Theorem 18.

Theorem 20. We have

((F1, A1)× (F2, A2))
op = (F1, A1)

op × (F2, A2)
op.

Proof. Indeed, we have

((F1, A1)× (F2, A2))
op

= (F3, A1 ×A2)
op, where F3((e, h)) = F1(e)× F2(h), for (e, h) ∈ A1 ×A2

= (F op
3 , A1 × A2),

= (F op
1 , A1)× (F op

2 , A2)
= (F1, A1)

op × (F2, A2)
op.
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Theorem 21. (F1, A1)∪̃R((F2, A2) ∩ (F3, A3)) is a full soft sub
ategory of

((F1, A1) ∪̃R (F2, A2)) ∩ ((F1, A1)∪̃R(F3, A3)).

Proof. We have

(F1, A1)∪̃R((F2, A2) ∩ (F3, A3))
= (F1, A1)∪̃R(F4, A2 ∩ A3), where F4(e) = F2(e) ∩ F3(e), for e ∈ A2 ∩ A3

= (F5, A1 ∩ A2 ∩A3),

where F5(e) = F1(e)∪̃(F2(e) ∩ F3(e)), for e ∈ A1 ∩ A2 ∩A3.

Also, we have

((F1, A1)∪̃R(F2, A2)) ∩ ((F1, A1)∪̃R(F3, A3))
= (F6, A1 ∩A2) ∩ (F7, A1 ∩A3),

where F6(e) = F1(e)∪̃F2(e), for e ∈ A1 ∩A2

and F7(e) = F1(e)∪̃F3(e), for e ∈ A1 ∩ A3

= (F8, A1 ∩A2 ∩ A3),

where F8(e) = (F1(e)∪̃F2(e)) ∩ (F1(e)∪̃F3(e)), for e ∈ A1 ∩ A2 ∩ A3.

From Theorem 6, we 
on
lude that F5(e) is a full sub
ategory of F8(e)
for all e ∈ A1 ∩A2 ∩ A3. Hen
e, the result follows.

Theorem 22. We have

(1) (F1, A1)∪̃((F2, A2) ∩ (F3, A3)) is a full soft sub
ategory of

((F1, A1) ∪̃ (F2, A2)) ∩ ((F1, A1)∪̃(F3, A3)).

(2) (F1, A1)∪̃((F2, A2) ∩E (F3, A3)) is a full soft sub
ategory of

((F1, A1)∪̃(F2, A2)) ∩E ((F1, A1) ∪̃ (F3, A3)).

(3) (F1, A1)∪̃R((F2, A2) ∩E (F3, A3)) is a full soft sub
ategory of

((F1, A1)∪̃R(F2, A2)) ∩E ((F1, A1)∪̃R(F3, A3)).

Proof. We skip the proof as it is similar to the proof of Theorem 21.

Theorem 23. ((F1, A1) ∩ (F2, A2))∪̃R((F1, A1) ∩ (F3, A3)) is a full soft sub-


ategory of (F1, A1) ∩ ((F2, A2)∪̃R(F3, A3)).

Proof. We have

((F1, A1) ∩ (F2, A2))∪̃R((F1, A1) ∩ (F3, A3))
= (F4, A1 ∩A2)∪̃R(F5, A1 ∩A3),

where F4(e) = F1(e) ∩ F2(e), for e ∈ A1 ∩ A2

and F5(e) = F1(e) ∩ F3(e), for e ∈ A1 ∩A3

= (F6, A1 ∩A2 ∩ A3),
where F6(e) = (F1(e) ∩ F2(e))∪̃(F1(e) ∩ F3(e)), for e ∈ A1 ∩ A2 ∩ A3.
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Also, we have

(F1, A1) ∩ ((F2, A2)∪̃R(F3, A3))
= (F1, A1) ∩ (F7, A2 ∩ A3), where F4(e) = F7(e)∪̃F3(e), for e ∈ A2 ∩A3

= (F8, A1 ∩A2 ∩ A3),

where F8(e) = F1(e) ∩ (F2(e)∪̃F3(e)), for e ∈ A1 ∩A2 ∩A3.

From Theorem 7, we 
on
lude that F6(e) is a full sub
ategory of F8(e)
for all e ∈ A1 ∩ A2 ∩A3. Hen
e, the result follows.

Theorem 24. We have

(1) ((F1, A1) ∩ (F2, A2))∪̃((F1, A1) ∩ (F3, A3)) is a full soft sub
ategory of

(F1, A1) ∩ ((F2, A2)∪̃(F3, A3)).

(2) ((F1, A1) ∩E (F2, A2))∪̃((F1, A1) ∩E (F3, A3)) is a full soft sub
ategory

of (F1, A1) ∩E ((F2, A2)∪̃(F3, A3)).

(3) ((F1, A1)∩E (F2, A2))∪̃R((F1, A1)∩E (F3, A3)) is a full soft sub
ategory

of (F1, A1) ∩E ((F2, A2)∪̃R(F3, A3)).

Proof. We skip the proof sin
e it is similar to the proof of Theorem 23.

Theorem 25. We have

((F1, A1) AND (F2, A2))
op = (F1, A1)

op AND (F2, A2)
op.

Proof. Indeed, we have

((F1, A1) AND (F2, A2))
op

= (F3, A1 × A2)
op, where F3((e, h)) = F1(e) ∩ F2(h), for (e, h) ∈ A1 × A2

= (F op
3 , A1 × A2),

= (F op
1 , A1) AND (F op

2 , A2)
= (F1, A1)

op AND (F2, A2)
op.

Theorem 26. We have

((F1, A1) OR (F2, A2))
op = (F1, A1)

op OR (F2, A2)
op.



Fundamentals of soft 
ategory theory 78

Proof. We have

((F1, A1) OR (F2, A2))
op

= (F3, A1 ×A2)
op, where F3((e, h)) = F1(e) ∪ F2(h), for (e, h) ∈ A1 × A2

= (F op
3 , A1 ×A2),

= (F op
1 , A1) OR (F op

2 , A2)
= (F1, A1)

op OR (F2, A2)
op.

Note that the operations union, restri
ted union, interse
tion, extended

interse
tion, AND, OR in soft 
ategory are just the generalizations of union,

restri
ted union, restri
ted interse
tion, extended interse
tion, AND, OR in

soft set respe
tively. So the theorems above on these operations are also

generalization of the 
orresponding theorems of soft set.

5 Composition of soft fun
tors

In this se
tion, we introdu
e the notion of 
omposition of soft fun
tors and

form the 
ategory of all soft 
ategories.

Let (F1, A1), (F2, A2) and (F3, A3) are soft 
ategories over the 
ategories
C1, C2 and C3 respe
tively. Let (K1, g1) and (K2, g2) be soft fun
tors from

(F1, A1) to (F2, A2) and (F2, A2) to (F3, A3), respe
tively. Then, (K, g) is said
to be the 
omposition of these soft fun
tors and de�ned to be (K2◦K1, g2◦g1).

Now, we show that (K, g) is a soft fun
tor from (F1, A1) to (F3, A3). First
of all we observe that, being 
omposition of two full fun
tors, K is a full soft

fun
tor from C1 to C3. Se
ondly, it is 
lear from the 
ontext that g is a

surje
tion from A1 to A3. And last but not the least, we see that,

K(F1(x)) = (K2 ◦K1)(F1(x))
= K2(K1(F1(x)))
= K2(F2(g1(x))), as (K1, g1) is a soft functor,
= F3(g2(g1(x))), as (K2, g2) is a soft functor,
= F3((g2 ◦ g1)(x))
= F3(g(x)).

Hen
e, the 
omposition of two soft fun
tors is again a soft fun
tor.

Furthermore, we observe that, for ea
h soft 
ategory (F,A) over C there

exists an `identity' soft fun
tor, namely (IC , iA), where IC is the identity
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fun
tor on the 
ategory C and iA is the identity fun
tion on the set A, in the

sense that given any soft 
ategory (G,B) over D and a soft fun
tor (K, g)
from (F,A) to (G,B) or from (G,B) to (F,A), (IC , iA) ◦ (K, g) = (K, g) or
(K, g) ◦ (IC , iA) = (K, g), respe
tively.

Now, we are going to prove that, asso
iativity holds for 
omposition of

soft fun
tors. Let (F1, A1), (F2, A2), (F3, A3) and (F4, A4) are soft 
ategories
over the 
ategories C1, C2, C3 and C4, respe
tively. Let (K1, g1), (K2, g2)
and (K3, g3) be soft fun
tors from (F1, A1) to (F2, A2), (F2, A2) to (F3, A3)
and (F3, A3) to (F4, A4), respe
tively. Then,

((K3, g3) ◦ (K2, g2)) ◦ (K1, g1) = (K3 ◦K2, g3 ◦ g2) ◦ (K1, g1)
= ((K3 ◦K2) ◦K1, (g3 ◦ g2) ◦ g1)
= (K3 ◦ (K2 ◦K1), g3 ◦ (g2 ◦ g1))
= (K3, g3) ◦ (K2 ◦K1, g2 ◦ g1)
= (K3, g3) ◦ ((K2, g2) ◦ (K1, g1)).

All the results, we proved above, implies that the 
lass of all soft 
ategories

along with the soft fun
tors form a 
ategory whi
h we denote by SCAT . It

is also worthy to note that, for a given 
ategory C, all soft 
ategories over C

is a full sub
ategory of SCAT whi
h we denote by C − SCAT .

6 Con
lusion

Both the 
ategory theory and soft set theory play vital roles in several areas

like engineering, medi
al s
ien
es, supply 
hain management et
. Category

theory is ideal for reasoning about stru
ture, abstra
ting away from details,

and automation. Many bran
hes like type theory, programming language

semanti
s, topos theory et
 have strong 
ategori
al theoreti
al ba
kground.

On the other hand, soft set theory, as a tool of soft 
omputing, individually or

in integrated manner, is turning out to be a strong 
andidate for performing

tasks in the area of data mining, de
ision support systems, supply 
hain

management, medi
ine, data 
ompression et
. So, in the light of this paper,

one 
an �nd some useful appli
ation using this new algebrai
 stru
ture of

soft 
ategory. Also, one 
an try to de�ne more operations in soft 
ategory

and �nd relationship between them.
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