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Abstract

The authors of this article deal with a first order non-linear Volterra integro-
differential equation (NVIDE). To this end, the conditions are obtained which are
sufficient for stability (S), boundedness (B), and for every solution z of (NVIDE)
is integrable. For properties of solutions of (NVIDE) considered three new theo-
rems on (S), (B) and integrability properties of solutions are proved. The methods
of the proofs involve constructing of a suitable Lyapunov functional (LF) which
gives meaningful results for the problems to be investigated. The conditions to be
given involve nonlinear improvement and extensions of those conditions found in
the literature. An example is provided to illustrate the effectiveness of the pro-
posed results. The results obtained are new and complements that found in the
literature.

Keywords: first order; (S); (B); integrability; (LF).

1 Introduction

The linear and non-linear (VIDEs) models in their different aspects attracted
many authors that investigated them from many sides (see, for example,
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Adivar and Raffoul [1], Becker ([2],[3],[4]), Burton ([5],[6],[7]), Burton and
Haddock [8], Burton and Mahfoud (|9], [10], [11]), Chang and Wang [12],
Corduneanu [13]|, Dung [14], Eloe et al. [15], Engler [16]|, Funakubo et al.
[17], Furumochi and Matsuoka [18]|, Grace and Akin [19], Graef, and Tung
[20], Graef et al. [21], Grimmer and Seifert [22], Grimmer and Zeman [23],
Gripenberg et al. [24], Grossman and Miller [25], Hara et al. ([26], [27], [28]),
Hino and Murakami [29], Islam et al. [30], Jin and Luo [31], Lakshmikantham
and Rama Mohan Rao (|32], [33]), Mahfoud (|34], [35], [36]), Martinez [37],
Miller [38], Murakami [39], Napoles Valdes [40]|, Peschel and Mende [41],
Raffoul ([42], [43], [44]), Rama Mohana Rao and Raghavendra [45], Rama
Mohana Rao and Srinivas [46], Staffans [47], Talpalaru [48], Tung ([49], [50],
[51], [52], [53]), Tung and Ayhan [54], Tun¢ and Mohammed ([55], [56]),
Tung and Tung [57|, Vanualailai [58],Vanualailai and Nakagiri [59], Wang
(160], [61]), Wang et al. [62], Wazwaz 63|, Xu (|64], [65]), Zhang (|66], [67]),
Da Zhang [68], the references ([69], [70], [71]), and many relative papers or
books in references of these works).

When we look at the works just mentioned, in generally, the (S), (B),
instability, L'[0,00), L?[0, ), etc., properties of the solutions for (LVIDE)
or (NLVIDE) are investigated by employing fixed point theory, perturbation
methods, integral inequalities, the Lyapunov’s function(al)s, the Lyapunov-
Razumikhin’s function(al)s, the variations of parameters formulas, etc..

However, when we look at the related literature, it can be seen that nearly
all of these results were proved by employing of the Lyapunov’s function(al)s.
That is, to the best of our knowledge, only in the proofs of a few results
the fixed point theory, perturbation methods, the variations of parameters
formulas, etc., are used to verify the problems therein. This case can be
checked and seen by studying the context of the mentioned works and those
found in the references of these articles and books. Indeed, this information
shows the effectiveness of the (LFs) in the researches and applications raised
is sciences and engineering. Here, we would not like to state the details of
the applications of these methods.

Xu [65] studied the uniform asymptotic (S) of the trivial solution of the
scalar (LVIDE):

¥ =a(t)r + /_ D(t, s)x(s)ds. (1)

Xu [65] has used (LFs) to give sufficient conditions for the (S) of solutions
of (LVIDE) (1). However, to the best of our information, it seems that the
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theory of (LVIDE) (1) has not been developed further. One of the aim and
novelty of this article is to develop this fact further.
In this article, we treat (NVIDE) of the type of

¥ = — ARG (x) + / D(t, $)Ga(s, 2(s))ds + Po(t, 7). (2)

where z € R, A(t) : ® — (0,00), G; : R — R,G1(0) = 0 and Go, P, :
R xR — R with G3(s,0) =0and D : R x R — R with s <t < oo are
continuous functions.

In the sequel we shall let that there is a function Gy : 8 — R which is
continuously differentiable and defined by

Gl—(gc),x#()
Gol) = { Gl0), 2 = 0.

Hence, (NVIDE) (2) yields that
t
¥ = —A(t)Go(x)x +/ D(t,s)Ga(s, z(s))ds + Pyi(t, z),

where x represents x(t) and through the paper when we need it is assumed
the same representation.

It is clear that (NVIDE) (2) involves (LVIDE) (1). In fact, when we take
A(t) = —a(t), Gi(x) = x, Go(s,x(s)) = x(s) and Py (t,z) = 0, then (NVIDE)
(2) reduces to (LVIDE) (1) discussed by Xu [65]. This information yields one
of the other novelty of this paper.

We treat the (S) of trivial solution and integrabilty of solutions of (NVIDE)
(2) when P;(t,z) = 0 and the (B) of solutions of (NVIDE) (2) when P (¢, z) #
0 by defining a suitable (LF), which gives meaningful new results. The use of
auxiliary (LF) allows us to deduce inequalities such that all solutions must
satisfy them. Hence, from which we deduce the (S), (B) of solutions and the
solution x(t) is integrable. The manner in which a non-positive (LF) can be
used for (B) and integrabilty is one of the main and new further novelty of
the paper.

We begin with the following notations, (S) and (B) definitions.

For any to > 0 and ¢ € («,tg), —00 < o < tg, where ¢ is initial function,
let x(t) = x(t,to, ») denote the solution of (NVIDE) (2) on (—o0,00) such
that z(t) = ¢(t) on («, to).
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Here, the set of all continuous and real-valued functions on («,to] and
[to, 00) are shown by C(a,ty] and Clty, 00), respectively.

For ¢ € C(a,tp], let us assume that |¢|,, = sup{o(t)| : —oo0 < o < tp}.

Definition 1. The trivial solution of (NVIDE) (2) is said stable if for
each € > 0 and each ¢y > 0 there exists a 6 = (e, ty) such that ¢ € C(a, 1)
with |¢(t)]s, < 0 implies that |z (¢, o, ¢)| < € for all t > .

Definition 2. The solutions of (NVIDE) (2) are said bounded if for each
K > 0 there exists 7" > 0 such that

to > 0,0 € Cla,to], o), <T and t >ty imply |z(t)] < K.

2 Main results

Let P(t,z) = 0.

A. Assumptions
(A1) There exists a positive constant go such that

|Ga(t, 7)| < golw|

for t,x € R, where the function G5(.) with G1(s,0) = 0 is continuous for the
arguments displayed explicitly.
(A2)

t

A(t)Go(x)—/ ol D(t,$)ds > 0

—0o0

for t,2 € R, where the functions A(.) and D(.) are continuous and the
function Go(.) with G1(0) = 0 is continuously differentiable for the arguments

displayed explicitly.
t o]
/ / go|D(u, s)|duds < L
—o0 JO

(A3)
for some constant L, L > 0 and t € R.

We first give a boundedness and stability result for the solutions of
(NVIDE) (2).
Theorem 1. If hypotheses (A1)-(A3) are satisfied, then all solutions of
(NVIDE) (2) are bounded and the trivial solution of (NVIDE) (2) is (S).
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Remark 1. It is well-known from the stability theory of the ordinary or
functional differential and integro-differential equations that if we find a Lya-
punov functional, which is positive definite and its time derivative along the
solutions of the considered ordinary or functional differential and integro-
differential equation(s) is negative semidefinite or negative definite, then we
can guarantee the stability and uniformly asymptotically stability of the zero
solution of that equation(s), respectively. In addition, by applying the Gron-
wall’s inequality to the results of the time derivative of possible Lyapunov
functional(s), we can conclude the boundedness and integrability of the so-
lutions for the considered equation(s). In this paper, when we do calculation
through the proofs of our main results, we will have these ideas in our mind.
Proof. We construct an auxiliary (LF) v = v(t) = v(t, z(¢)) by

v=|z|+ /t /000 go|D(u, s)||z(s)|duds.
Hence, we get
v(t,0) =0
and
v(t) =v(t,z) > |x|. (3)
Thus, the auxiliary (LF) is clearly positive definite. Differentiating the aux-
iliary functional along the solutions of (NVIDE) (2), we get

, T

Vo= —[A(t)Gl(x(t))—/_ D(t,s)Gay(s,z(s))ds]

|z]

. /t”go\mu,t)ydu\x(t)\_ | mlDte.s)lats)lds

—0o0
t

< —AWGo@)al + [ D(E)]IGals.a(s)lds

—0o0

N / ™ ol D, Dl dul(t)] — / ol D(t, )] |(s)|ds

00
t

< —A®)Go(x)]z] + / gl D(t, 5)||(s)]ds

—00

+ / " g0l Dw, )| du (1)) — / g0l D(t, )| |(5)]ds

o0

= —AW)Go(z)|z| + /too gol D (u, s)|dulx(t)].
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Using assumptions (Al) and (A2), that is,
|Ga(t, z)| < go|z|
and
t
A(t)Go(z) —/ go|D(u,t)|du > 0,
we have
t
v'(t) < —[A(t)Go(x) —/ 90| D(t, s)ds]|z| < 0. (4)
Integrating inequality (4) from ¢, to t, we get
v(t) <w(ty) for all t>t. (5)
Then, in view of (3) and (5), it follows that
()] < v(t) < v(to) (6)

for all ¢ > to. From (6), we can get that all solutions of (NVIDE) (2) are

bounded.

Now, from the above estimate, assumption (A3) and the fact that

olto) = [6ta)l + | [ Il liots)lduds < [0l Lo,

where

to 0
Ly=1 +/ / go|D(u, s)|duds,
—o0 JO
we get

[2(t)] < [¢lt Lo

for all t € R. It immediately follows that the trivial solution of (NVIDE)
(2) is stable, that is, for any ¢ > 0, let 6 = =, and so for ¢ € (a,to,

Lo
—00 < a < tg, with |@ly, < 0, we have

2 (t)] < 6Lo = <.
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Hence, we can conclude that the trivial solution of (NVIDE) (2) is stable.
Hence, we can reach the desired result of Theorem 1.

In our coming theorem, Theorem 2, we show that all solutions of (NVIDE)
(2) are integrable.

B. Assumptions
(H1) There exists a positive constant dy such that

t

A(t)Go(z) — / g0l D(t, ) |2(5)|ds > b,

—00

for t > t; and © € R, where the functions A(.) and D(.) are continuous
and the function Go(.) with G1(0) = 0 is continuously differentiable for the
arguments displayed explicitly.

Theorem 2. In addition to assumptions (A1) and (A3), if assume assump-
tion (H1) holds, then every solution of (NVIDE) (2) is integrable.

Proof. From Theorem 1, any solution of (NVIDE) (2) is bounded and
satisfies (4) and (6). If assumption (H1) holds, then from (4) we get

V'(t) < =dglx| for t>t.
Integrating the last estimate from ¢; to ¢, we find
t
o) — v(ty) < —50/ l(s)|ds
t1
so that
t
50/ 2(s)lds < v(tr) — v(t) < v(tr),
t1

ie.,

(50/t lz(s)|ds < v(tq).

Hence, we see that the solution x(t) of (NVIDE) (2) is integrable. The former
inequality implies the desired idea of Theorem 2.
Finally, we give a boundedness theorem for solutions of (NVIDE) (2).
Let Pl(t,l') 7é 0.
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C. Assumptions

(C1) There exists a positive constant M such that

|Pi(t,z)| < (M +|z|)|Q(t)| and |Q(t)] is an integrable function for ¢ > ¢,
ie, f;o |Q(s)|ds < 0.
Theorem 3. In addition to assumptions (A1) and (A2) if we assume that
assumption (C1) holds, then all solutions of (NVIDE) (2) are bounded.
Proof. From Theorem 1, any solution of (NVIDE) (2) satisfies the estimate
(4). To complete the proof of this theorem, we benefit from the functional
v =12(t) = v(t,z(t)) just used in the proof of Theorem 1.

Obviously, we have

v(t) > |z|.
Next, in the light of the assumptions (A1), (A2) and (C1), the time derivative
)

of the auxiliary functional v = v(t) = v(t, z(t)) can be re-revised as

/
v

|Pi(t, )]
(M + [z)|Q(?)]

MIQ()| +v()|Q)]-

Integrating the last estimate from ¢, to ¢, we have

IA AN A

o(t) < vlto) + M / 1Q(s)lds + / o(5)|Q(s)]ds.

t1

Hence, applying the Gronwall’s inequality, we can obtain

o) <ot < K el [ 1Q(s)1ds)

t1

where
K =v(ty) + M/OO |Q(s)|ds.
t1

Consequently, one can arrive at the desirable result that every solution of
(NVIDE) (2) is bounded.

Example 1. We consider the following scalar (NVIDE) of first order

v =2 +/_ D(t,s)f(x(s))ds (7)
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with

/ m@ﬂ@<L/|D@ﬂEEMmL
0 t

|f(z)] < alz]’,0 < a <1,

(see, also, Burton |[6]).
Define the auxiliary functional by

v =|z| +/ / (u, s)||x(s)|*duds.

Hence, the time derivative of this functional along the solutions of (NVIDE)
(7) gives

Vo= —m[a: -/ D(t,s)f(z(s))ds]
o [ oladaoP - [ bl

< Pt / ID(t, )| (a(s))lds
N /twmet)\dura:P— / D, )||(s)ds

—0o0

t
< o' +a [ ID(5) o) s

—00

o [ Dol - [ (D 9latsPas

—00

. / "D, 1) dul |
_Blap

IN

IN

for some 3 > 0.

In view of the discussion made, we can conclude that the zero solution
of (NVIDE) (7) is stable. In addition, we can say that the zero solution of
(NVIDE) (7) is also uniformly asymptotically stable.
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3 Conclusion

We consider a functional (NVIDE) of first order. The (S), (B) and integrabil-
ity features of solutions of the functional (NVIDE) considered are investigated
by constructing a suitable (LF). We aim to fulfill the (S) problems obtained
for (LVIDEs) to (NVIDES) for (S), in addition, (B) and integrabilty of the
solutions. The results obtained have a contribution to the literature, and
they improve and generalize the results of Xu |65, and that can be found in
the related literature.

Acknowledgements

The authors of this paper would like to thank the main editor and anonymous
referees for their valuable comments and suggestions leading to improvement
of this paper.

References

[1] M. Adivar and Y.N. Raffoul. Inequalities and exponential stability and
instability in finite delay volterra integro-differential equations. Rend.
Circ. Mat. Palermo, 61(3):321-330, 2012. doi: 10.1007/s12215-012-
0092-4.

[2] L.C. Becker. Principal matrix solutions and variation of parameters for
a volterra integro-differential equation and its adjoint. Electron. J. Qual.
Theory Differ. Equ., 14:1-22, 2006.
http://www.math.u-szeged.hu/ejqtde/p252.pdf.

[3] L.C. Becker. Function bounds for solutions of volterra equations and
exponential asymptotic stability. Nonlinear Anal., 67(2):382-397, 2007.
doi: 10.1016/j.na.2006.05.016.

[4] L.C. Becker. Uniformly continuous [* solutions of volterra equations and
global asymptotic stability. Cubo, 11(3):1-24, 2009.
http://www.dmat.ufpe.br/CUBO /files/v11n3/N01_v11n3.pdf.

[5] T.A. Burton. Boundedness and periodicity in integral and integro-
differential equations. Differential Equations Dynam. Systems, 1(2):161—
172, 1993. http://lagrange.math.siu.edu/Burton/papers/bu-bpiie.pdf.



ol

Tung, Tung

(6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

T.A. Burton. Volterra integral and differential equations, Second edition,
volume 202 of Mathematics in Science and Engineering. Elsevier B. V.,
Amsterdam, 2005. ISBN: 978-0080459554.

T.A. Burton. A liapunov functional for a linear integral equation. Elec-
tron. J. Qual. Theory Differ. Equ., 10:1-10, 2010.
http://lagrange.math.siu.edu/Burton /papers/ ALFFALIEN.pdf.

T.A. Burton and J.R. Haddock. Qualitative properties of solutions
of integral equations. Nonlinear Anal., 71(11):5712-5723, 2009. doi:
10.1016/j.na.2009.04.047.

T.A. Burton and W.E. Mahfoud. Stability criteria for volterra equations.
Trans. Amer. Math. Soc., 279(1):143-174, 1983. doi: 10.2307/1999376.

T.A. Burton and W.E. Mahfoud. Instability and stability in Volterra
equations, volume 90 of Trends in theory and practice of nonlinear

differential equations, Lecture Notes in Pure and Appl. Math. Dekker,
New York, 1984. ISBN: 978-0824771300.

T.A. Burton and W.E. Mahfoud. Stability by decompositions for
volterra equations. Tohoku Math. J., 37(4):489-511, 1985.
https://projecteuclid.org/download /pdf 1/euclid.tmj/1178228590.

X. Chang and R. Wang. Stability of perturbed n-dimensional volterra
differential equations. Nonlinear Anal., 74(5):1672-1675, 2011. doi:
10.1016/j.na.2010.10.038.

C. Corduneanu. Principles of differential and integral equations. Chelsea
Publishing Series, Chelsea scientific books. Chelsea Publishing Co.,
Bronx, N.Y., 1977. ISBN: 978-0828402958.

N.T. Dung. On exponential stability of linear levin-nohel integro-
differential equations. J. Math. Phys., 56(2):1-9, 2015.  doi:
10.1063/1.4906811.

P. Eloe, M. Islam, and B. Zhang. Uniform asymptotic stability in lin-
ear volterra integro-differential equations with application to delay sys-
tems. Dynam. Systems Appl., 9(3):331-344, 2000. doi: 10.1016/S0898-
1221(03)00081-6.



Stability, integrability and boundedness in Volterra int-diff eqs 52

[16]

[17]

18]

[19]

20]

21]

22]

23]

[24]

H. Engler. Asymptotic properties of solutions of nonlinear volterra
integro-differential equations. Resultate Math., 13(1-2):65-80, 1988. doi:
10.1007/BF03323396.

M. Funakubo, T. Hara, and S. Sakata. On the uniform asymptotic sta-
bility for a linear integro-differential equation of volterra type. J. Math.
Anal. Appl., 324(2):1036-1049, 2006. doi: 10.1016/j.jmaa.2005.12.053.

T. Furumochi and S. Matsuoka. Stability and boundedness in volterra
integro-differential equations. Mem. Fac. Sci. Eng. Shimane Univ. Ser.
B Math. Sci., 32:25-40, 1999.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.511.6992&
rep=repl&type=pdf.

S. Grace and E. Akin. Asymptotic behavior of certain integro-differential
equations. Discrete Dyn. Nat. Soc., 2016(Art. ID 4231050):1-6, 2016.
doi: 10.1155/2016/4231050.

J.R. Graef and C. Tun¢. Continuability and boundedness of multi-delay
functional integro-differential equations of the second order. Rev. R.
Acad. Cienc. Ezactas Fis. Nat. Ser. A Math. (RACSAM), 109(1):169—-
173, 2015. doi: 10.1007/s13398-014-0175-5.

J.R. Graef, C. Tung, and S. Sevgin. Behavior of solutions of non-linear
functional voltera integro-differential equations with multiple delays.
Dynam. Systems Appl., 25(1-2):39-46, 2016.
http://www.dynamicpublishers.com/DSA /dsa2016pdf/DSA

R. Grimmer and G. Seifert. Stability properties of volterra integrodif-
ferential equations. J. Differential Fquations, 19(1):142-166, 1975. doi:
10.1016,/0022-0396(75)90025-X.

R. Grimmer and M. Zeman. Nonlinear volterra integro-differential equa-
tions in a banach space. Israel J. Math, 42(1-2):162-176, 1982. doi:
10.1007/BF02765018.

G. Gripenberg, S.Q. Londen, and O. Staffans. Volterra integral and
functional equations, volume 34 of Encyclopedia of Mathematics and its
Applications. Cambridge University Press, Cambridge, 1990. ISBN:
978-0521372893.



23

Tung, Tung

[25]

[26]

27]

28]

29]

[30]

[31]

32]

33]

S.I. Grossman and R.K. Miller. Perturbation theory for volterra integro-
differential systems. J. Differential Equations, 8:457-474, 1970. doi:
10.1016,/0022-0396(70)90018-5.

T. Hara, T. Yoneyama, and T. Itoh. On the characterization of stability
concepts of volterra integro-differential equations. J. Math. Anal. Appl.,
142(2):558-572, 1989. doi: 10.1016/0022-247X(89)90020-6.

T. Hara, T. Yoneyama, and T. Itoh. Asymptotic stability criteria
for nonlinear volterra integro-differential equations. Funkcial. Fkvac.,
33(1):39-57, 1990.
http://fe.math.kobe-u.ac.jp/FE/FE_pdf with bookmark/FE31-34-
en KML/fe33-039-057 /fe33-039-057.pdf.

T. Hara, T. Yoneyama, and R. Miyazaki. Volterra integro-differential
inequality and asymptotic criteria. Differential Integral FEquations,
5(1):201-212, 1992. https://projecteuclid.org/euclid.die/1371086991.

Y. Hino and S. Murakami. Stability properties of linear volterra integro-
differential equations in a banach space. Funkcial. Ekvac., 48(3):367—
392, 2005.
https://www.jstage.jst.go.jp/article/fesi/48/3/48 3 367/ _pdf.

M.N. Islam, M.M. Mia, and G. Al-Eid. Boundedness and stability in
nonlinear volterra integro-differential equations. PanAmerican Mathe-
matical Journal, 14(3):49-63, 2004.

http://www.internationalpubls.com/Journals/index.PanAmerican.pdf.

C. Jin and J. Luo. Stability of an integro-differential equation. Comput.
Math. Appl., 7(3):1080-1088, 2009. doi: 10.1016/j.camwa.2009.01.006.

V. Lakshmikantham and M. Rama Mohan Rao. Stability in variation for
nonlinear integro-differential equations. Applicable Analysis, 24(3):165—
173, 1987. doi: 10.1080/00036818708339661.

V. Lakshmikantham and M. Rama Mohan Rao. Theory of integro-
differential equations, volume 1 of Stability and Control: Theory, Meth-

ods and Applications. Gordon and Breach Science Publishers, Lausanne,
1995. ISBN: 978-2884490009.



Stability, integrability and boundedness in Volterra int-diff eqs 54

[34]

[35]

[36]

137]

[38]

[39]

[40]

[41]

42]

W.E. Mahfoud. Stability theorems for an integro-differential equation.
Arabian J. Sci. Engrg., 9(2):119-123, 1984.
https://www.researchgate.net /publication /267126521 Stability theor
ems_for an _integro-differential equation.

W.E. Mahfoud. Stability criteria for linear integro-differential equations.
In Ordinary and partial differential equations, Proceedings of the Eighth
Conference held at Dundee, Scotland, June 25-29, 1984, Sleeman, Brian
D., Jarvis, Richard J. (Eds.), ISBN: 978-3-540-39640-6, pages 243-251,
1985. http://www.springer.com/la/book/9783540156949.

W.E. Mahfoud. Boundedness properties in volterra integro-differential
systems. Proc. Amer. Math. Soc., 100(1):37-45, 1987.
http://www.jstor.org/stable/2046116.

C. Martinez. Bounded solutions of a forced nonlinear integro-differential
equation. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.,
0(1):35-42, 2002.

http://online.watsci.org/abstract _pdf/2002v9/v9nla-pdf/4.pdf.

K. Miller. Asymptotic stability properties of linear volterra integro-
differential equations. J. Differential Equations, 10(3):485-506, 1971.
doi: 10.1016/0022-0396(71)90008-8.

S. Murakami. Exponential asymptotic stability for scalar linear
volterra equations. J. Differential Fquations, 10(3):485-506, 1991.
https://projecteuclid.org/euclid.die/1372700426.

J.E. Napoles Valdes. A note on the boundedness of an integro-differential
equation. Journal Quaestiones Mathematicae, 24(2):213-216, 2001. doi:
10.1080/16073606.2001.9639209.

M. Peschel and W. Mende. The predator-prey model: do we live in a
Volterra world? Springer-Verlag, Vienna, 1986. ISBN: 978-3211818480.

Y. Raffoul. Boundedness in nonlinear functional differential equations
with applications to volterra integro-differential equations. J. Integral
Equations Appl., 16(4):375-388, 2004.
http://www.jstor.org/stable/26163427.



25

Tung, Tung

[43]

|44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

Y. Raffoul.  Construction of lyapunov functionals in functional
differential equations with applications to exponential stability in
volterra integro-differential equations. Aust. J. Math. Anal. Appl.,
4(2):Art.9, 2007.
https://www.researchgate.net /publication /265507358 _Construction of
_Lyapunov_ functionals in_functional differential equations with
applications_to exponential stability in_Volterra integro-differen
tial equations.

Y. Raffoul. Exponential analysis of solutions of functional differential
equations with unbounded terms. Banach J. Math. Anal., 3(2):28-41,
2009. https://www.emis.de/journals/BJMA /abs v3 n2 ad.pdf.

M. Rama Mohana Rao and V. Raghavendra. Asymptotic stability prop-
erties of volterra integro-differential equations. Nonlinear Analysis: The-
ory, Methods € Applications, 11(4):475-480, 1987. doi: 10.1016/0362-
546X (87)90065-4.

M. Rama Mohana Rao and P. Srinivas. Asymptotic behavior of solu-
tions of volterra integro-differential equations. Proc. Amer. Math. Soc.,
94(1):55-60, 1985. doi: 10.2307,/2044951.

O.J. Staffans. A direct lyapunov approach to volterra integro-
differential equations. SIAM J. Math. Anal., 19(4):879-901, 1988. doi:
10.1137/0519061.

P. Talpalaru. Stability criteria for volterra integro-differential equations.
An. Stiint. Univ. Al. I. Cuza lagi. Mat. (N.S.), 46(2):349-358, 2000.
http://www.math.uaic.ro/ annalsmath /pdf-uri

C. Tung. A note on the qualitative behaviors of non-linear volterra
integro-differential equation. J. Egyptian Math. Soc., 24(2):187-192,
2016. doi: 10.1016/j.joems.2014.12.010.

C. Tung. New stability and boundedness results to volterra integro-
differential equations with delay. J. Egyptian Math. Soc., 24(2):210-213,
2016. doi: 10.1016/j.joems.2015.08.001.

C. Tung. Properties of solutions to volterra integro-differential equa-
tions with delay. Appl. Math. Inf. Sci., 10(5):1775-1780, 2016. doi:
10.18576 /amis/100518.



Stability, integrability and boundedness in Volterra int-diff eqs 56

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

C. Tung. Qualitative properties in nonlinear volterra integro-differential
equations with delay.  Journal of Taibah University for Science,
11(2):309-314, 2017. doi: 10.1016/j.jtusci.2015.12.009.

C. Tung. Asymptotic stability and boundedness criteria for nonlinear
retarded volterra integro-differential equations. Journal of King Saud
University - Science, 2017. doi: 10.1016/j.jksus.2017.05.003.

C. Tung and T. Ayhan. On the global existence and boundedness
of solutions to a nonlinear integro-differential equations of second or-
der. J. Interpolat. Approz. Sci. Comput., 2015(1):1-14, 2015. doi:
10.5899/2015 /jiasc-00083.

C. Tung and S.A. Mohammed. On the stability and instability of func-
tional volterra integro-differential equations of first order. Bull. Math.
Anal. Appl., 9(1):151-160, 2017.

http://bmathaa.org/repository /docs/BMAA9-1-14.pdf.

C. Tung and S.A. Mohammed. A remark on the stability and bounded-
ness criteria in retarded volterra integro-differential equations. J. Egyp-
tian Math. Soc., 25(4):363-368, 2017. doi: 10.1016/j.joems.2017.05.001.

C. Tung and O. Tung. On the exponential study of solutions of volterra
integro-differential equations with time lag. Flectron. J. Math. Anal.
Appl., 6(1):253-265, 2018.

http://fcag-egypt.com /journals/ejmaa/Vol6(1) Papers/23 EJMAA
Vol6(1) Jan 2018 pp 253-265.pdf.

J. Vanualailai. Some stability and boundedness criteria for a class of
volterra integro-differential systems. FElectron. J. Qual. Theory Differ.
Equ., 2002(12):1-20, 2002.
https://www.emis.de/journals/EJQTDE /p96.pdf.

J. Vanualailai and S. Nakagiri. Stability of a system of volterra integro-
differential equations. J. Math. Anal. Appl., 281(2):602-619, 2003. doi:
10.1016/S0022-247X(03)00171-9.

K. Wang. Uniform asymptotic stability in functional-differential equa-
tions with infinite delay. Ann. Differential Equations, 9(3):325-335,
1993.



o7

Tung, Tung

[61]

62]

63]

[64]

[65]

[66]

[67]

68]

https://mathscinet.ams.org/mathscinet /search /publications.html?pgl=
[SST&s1=128028.

Q. Wang. The stability of a class of functional differential equations
with infinite delays. Ann. Differential Equations, 16(1):89-97, 2000.
http://caod.oriprobe.com /articles/21801439/the _stability _of a_ class
_of functional differential equations with inf.htm.

72.C. Wang, 7Z.X. Li, and J.H. Wu. Stability properties of solutions of lin-
ear volterra integro-differential equations. Tohoku Math. J., 37(4):455—
462, 1985.
https://projecteuclid.org/download /pdf 1 /euclid.tmj/1178228588.

AM. Wazwaz. Linear and nonlinear integral equations. Methods and
applications. Higher Education Press. Springer-Verlag Berlin Heidelberg,
2011. ISBN: 978-3-642-21449-3.

AS. Xu. Uniform asymptotic stability of solutions to
functional-differential equations with infinite delay in a fad-
ing memory space.  Sichuan Dazue Xuebao, 35(1):20-24, 1998.
http://science.ijournals.cn /jsunature en/ch/index.aspx.

X. Anshi. Uniform asymptotic stability in functional-differential equa-
tions with infinite delay. Chinese Sci. Bull., 43(12):1000-1003, 1998.
doi: 10.1007/BF02884634.

Bo Z. Uniform asymptotic stability in functional-differential equations
with infinite delay. Comparison methods and stability theory, volume
162 of Lecture Notes in Pure and Appl. Math. CRC Press, 1994. ISBN:
978-0824792701.

Bo Z. Necessary and sufficient conditions for stability in volterra equa-
tions of non-convolution type. Dynam. Systems Appl., 14(3-4):525-549,
2005. http://faculty.uncfsu.edu/bzhang/publications/bzhang-paper00-
05/05-BZhang-paper-pdf/05-BZang-DSA.pdf.

Z. Zong Da. Asymptotic stability of volterra integro-differential
equations. J. Harbin Inst. Tech., 1990(4):11-19, 1990.
https://mathscinet.ams.org/mathscinet /search /publications.html?pgl=
[SSI&s1=104497.



Stability, integrability and boundedness in Volterra int-diff eqs 58

[69]

[70]

[71]

S. Ahmad and .M. Stamova. Lotka-Volterra and related systems. Re-
cent developments in population dynamics. Recent developments in pop-

ulation dynamics. Mathematics and Life Sciences 2. De Gruyter, 2013.
ISBN: 978-3-11-026984-0.

G. Da Prato and M. lannelli. Volterra integrodifferential equations in Ba-
nach spaces and applications, Papers from the conference held in Trento,
February 2-7, 1987, volume 190 of Pitman Research Notes in Mathe-
matics Series. Longman Scientific Technical, Harlow, copublished in
the United States with John Wiley Sons, Inc., New York, 1989. ISBN:
978-0582028821.

C. Corduneanu and I.W. Sandberg. Volterra equations and applications.
Papers from the Volterra Centennial Symposium held at the University
of Texas, Arlington, TX, May 23-25, 1996, volume 10 of Stability and
Control: Theory, Methods and Applications. Gordon and Breach Science
Publishers, Amsterdam, 1996. ISBN: 978-9056991715.



