
www.
ompama.
o.usb.ve

Bull. Comput. Appl. Math., Vol.6, No.1, 2018

ISSN 2244-8659

New results on the stability,

integrability and boundedness in

Volterra integro-di�erential equations

Cemil Tunç

1
, Osman Tunç

2
.

CompAMa Vol.6, No.1, pp.41-58, 2018 - A

epted November 2, 2017

Abstra
t

The authors of this arti
le deal with a �rst order non-linear Volterra integro-

di�erential equation (NVIDE). To this end, the 
onditions are obtained whi
h are

su�
ient for stability (S), boundedness (B), and for every solution x of (NVIDE)

is integrable. For properties of solutions of (NVIDE) 
onsidered three new theo-

rems on (S), (B) and integrability properties of solutions are proved. The methods

of the proofs involve 
onstru
ting of a suitable Lyapunov fun
tional (LF) whi
h

gives meaningful results for the problems to be investigated. The 
onditions to be

given involve nonlinear improvement and extensions of those 
onditions found in

the literature. An example is provided to illustrate the e�e
tiveness of the pro-

posed results. The results obtained are new and 
omplements that found in the

literature.

Keywords: �rst order; (S); (B); integrability; (LF).

1 Introdu
tion

The linear and non-linear (VIDEs) models in their di�erent aspe
ts attra
ted

many authors that investigated them from many sides (see, for example,
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[17℄, Furumo
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Hino and Murakami [29℄, Islam et al. [30℄, Jin and Luo [31℄, Lakshmikantham

and Rama Mohan Rao ([32℄, [33℄), Mahfoud ([34℄, [35℄, [36℄), Martinez [37℄,

Miller [38℄, Murakami [39℄, Napoles Valdes [40℄, Pes
hel and Mende [41℄,

Ra�oul ([42℄, [43℄, [44℄), Rama Mohana Rao and Raghavendra [45℄, Rama

Mohana Rao and Srinivas [46℄, Sta�ans [47℄, Talpalaru [48℄, Tunç ([49℄, [50℄,
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When we look at the works just mentioned, in generally, the (S), (B),

instability, L1[0,∞), L2[0,∞), et
., properties of the solutions for (LVIDE)
or (NLVIDE) are investigated by employing �xed point theory, perturbation

methods, integral inequalities, the Lyapunov's fun
tion(al)s, the Lyapunov-

Razumikhin's fun
tion(al)s, the variations of parameters formulas, et
..

However, when we look at the related literature, it 
an be seen that nearly

all of these results were proved by employing of the Lyapunov's fun
tion(al)s.

That is, to the best of our knowledge, only in the proofs of a few results

the �xed point theory, perturbation methods, the variations of parameters

formulas, et
., are used to verify the problems therein. This 
ase 
an be


he
ked and seen by studying the 
ontext of the mentioned works and those

found in the referen
es of these arti
les and books. Indeed, this information

shows the e�e
tiveness of the (LFs) in the resear
hes and appli
ations raised

is s
ien
es and engineering. Here, we would not like to state the details of

the appli
ations of these methods.

Xu [65℄ studied the uniform asymptoti
 (S) of the trivial solution of the

s
alar (LVIDE):

x′ = a(t)x+

∫ t

−∞

D(t, s)x(s)ds. (1)

Xu [65℄ has used (LFs) to give su�
ient 
onditions for the (S) of solutions

of (LVIDE) (1). However, to the best of our information, it seems that the
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theory of (LVIDE) (1) has not been developed further. One of the aim and

novelty of this arti
le is to develop this fa
t further.

In this arti
le, we treat (NVIDE) of the type of

x′ = −A(t)G1(x) +

∫ t

−∞

D(t, s)G2(s, x(s))ds+ P1(t, x), (2)

where x ∈ ℜ, A(t) : ℜ → (0,∞), G1 : ℜ → ℜ, G1(0) = 0 and G2, P1 :
ℜ × ℜ → ℜ with G2(s, 0) = 0 and D : ℜ × ℜ → ℜ with s ≤ t < ∞ are


ontinuous fun
tions.

In the sequel we shall let that there is a fun
tion G0 : ℜ → ℜ whi
h is


ontinuously di�erentiable and de�ned by

G0(x) =

{

G1(x)
x

, x 6= 0
G′

1(0), x = 0.

Hen
e, (NVIDE) (2) yields that

x′ = −A(t)G0(x)x+

∫ t

−∞

D(t, s)G2(s, x(s))ds+ P1(t, x),

where x represents x(t) and through the paper when we need it is assumed

the same representation.

It is 
lear that (NVIDE) (2) involves (LVIDE) (1). In fa
t, when we take

A(t) = −a(t), G1(x) = x, G2(s, x(s)) = x(s) and P1(t, x) = 0, then (NVIDE)
(2) redu
es to (LVIDE) (1) dis
ussed by Xu [65℄. This information yields one

of the other novelty of this paper.

We treat the (S) of trivial solution and integrabilty of solutions of (NVIDE)

(2) when P1(t, x) = 0 and the (B) of solutions of (NVIDE) (2) when P1(t, x) 6=
0 by de�ning a suitable (LF), whi
h gives meaningful new results. The use of

auxiliary (LF) allows us to dedu
e inequalities su
h that all solutions must

satisfy them. Hen
e, from whi
h we dedu
e the (S), (B) of solutions and the

solution x(t) is integrable. The manner in whi
h a non-positive (LF) 
an be

used for (B) and integrabilty is one of the main and new further novelty of

the paper.

We begin with the following notations, (S) and (B) de�nitions.

For any t0 ≥ 0 and φ ∈ (α, t0), −∞ < α ≤ t0, where φ is initial fun
tion,

let x(t) = x(t, t0, φ) denote the solution of (NVIDE) (2) on (−∞,∞) su
h
that x(t) = φ(t) on (α, t0].



Stability, integrability and boundedness in Volterra int-di� eqs 44

Here, the set of all 
ontinuous and real-valued fun
tions on (α, t0] and
[t0,∞) are shown by C(α, t0] and C[t0,∞), respe
tively.

For φ ∈ C(α, t0], let us assume that |φ|t0 = sup{φ(t)| : −∞ < α ≤ t0}.
De�nition 1. The trivial solution of (NVIDE) (2) is said stable if for

ea
h ε > 0 and ea
h t0 ≥ 0 there exists a δ = δ(ε, t0) su
h that φ ∈ C(α, t0]
with |φ(t)|t0 < δ implies that |x(t, t0, φ)| < ε for all t ≥ t0.

De�nition 2. The solutions of (NVIDE) (2) are said bounded if for ea
h

K > 0 there exists T > 0 su
h that

t0 ≥ 0, φ ∈ C(α, t0], |φ(t)|t0 < T and t ≥ t0 imply |x(t)| ≤ K.

2 Main results

Let P1(t, x) = 0.

A. Assumptions

(A1) There exists a positive 
onstant g0 su
h that

|G2(t, x)| ≤ g0|x|

for t, x ∈ ℜ, where the fun
tion G2(.) with G2(s, 0) = 0 is 
ontinuous for the
arguments displayed expli
itly.

(A2)

A(t)G0(x)−

∫ t

−∞

g0|D(t, s)|ds ≥ 0

for t, x ∈ ℜ, where the fun
tions A(.) and D(.) are 
ontinuous and the

fun
tionG0(.) withG1(0) = 0 is 
ontinuously di�erentiable for the arguments

displayed expli
itly.

(A3)

∫ t

−∞

∫ ∞

0

g0|D(u, s)|duds ≤ L

for some 
onstant L, L > 0 and t ∈ ℜ.
We �rst give a boundedness and stability result for the solutions of

(NVIDE) (2).

Theorem 1. If hypotheses (A1)-(A3) are satis�ed, then all solutions of

(NVIDE) (2) are bounded and the trivial solution of (NVIDE) (2) is (S).
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Remark 1. It is well-known from the stability theory of the ordinary or

fun
tional di�erential and integro-di�erential equations that if we �nd a Lya-

punov fun
tional, whi
h is positive de�nite and its time derivative along the

solutions of the 
onsidered ordinary or fun
tional di�erential and integro-

di�erential equation(s) is negative semide�nite or negative de�nite, then we


an guarantee the stability and uniformly asymptoti
ally stability of the zero

solution of that equation(s), respe
tively. In addition, by applying the Gron-

wall's inequality to the results of the time derivative of possible Lyapunov

fun
tional(s), we 
an 
on
lude the boundedness and integrability of the so-

lutions for the 
onsidered equation(s). In this paper, when we do 
al
ulation

through the proofs of our main results, we will have these ideas in our mind.

Proof. We 
onstru
t an auxiliary (LF) v = v(t) = v(t, x(t)) by

v = |x|+

∫ t

−∞

∫ ∞

0

g0|D(u, s)||x(s)|duds.

Hen
e, we get

v(t, 0) = 0

and

v(t) = v(t, x) ≥ |x|. (3)

Thus, the auxiliary (LF) is 
learly positive de�nite. Di�erentiating the aux-

iliary fun
tional along the solutions of (NVIDE) (2), we get

v′ = −
x

|x|
[A(t)G1(x(t))−

∫ t

−∞

D(t, s)G2(s, x(s))ds]

+

∫ ∞

t

g0|D(u, t)|du|x(t)| −

∫ t

−∞

g0|D(t, s)||x(s)|ds

≤ −A(t)G0(x)|x| +

∫ t

−∞

|D(t, s)||G2(s, x(s)|ds

+

∫ ∞

t

g0|D(u, t)|du|x(t)| −

∫ t

∞

g0|D(t, s)||x(s)|ds

≤ −A(t)G0(x)|x| +

∫ t

−∞

g0|D(t, s)||x(s)|ds

+

∫ ∞

t

g0|D(u, t)|du|x(t)| −

∫ t

∞

g0|D(t, s)||x(s)|ds

= −A(t)G0(x)|x| +

∫ ∞

t

g0|D(u, s)|du|x(t)|.
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Using assumptions (A1) and (A2), that is,

|G2(t, x)| ≤ g0|x|

and

A(t)G0(x)−

∫ t

−∞

g0|D(u, t)|du ≥ 0,

we have

v′(t) ≤ −[A(t)G0(x)−

∫ t

−∞

g0|D(t, s)ds]|x| ≤ 0. (4)

Integrating inequality (4) from t0 to t, we get

v(t) ≤ v(t0) for all t ≥ t0. (5)

Then, in view of (3) and (5), it follows that

|x(t)| ≤ v(t) ≤ v(t0) (6)

for all t ≥ t0. From (6), we 
an get that all solutions of (NVIDE) (2) are

bounded.

Now, from the above estimate, assumption (A3) and the fa
t that

v(t0) = |φ(t0)|+

∫ t0

−∞

∫ ∞

0

g0|D(u, s)||φ(s)|duds≤ |φ|t0L0,

where

L0 = 1 +

∫ t0

−∞

∫ ∞

0

g0|D(u, s)|duds,

we get

|x(t)| ≤ |φ|t0L0

for all t ∈ ℜ. It immediately follows that the trivial solution of (NVIDE)

(2) is stable, that is, for any ε > 0, let δ = ε
L0

, and so for φ ∈ (α, t0],
−∞ < α ≤ t0, with |φ|t0 ≤ δ, we have

|x(t)| ≤ δL0 = ε.
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Hen
e, we 
an 
on
lude that the trivial solution of (NVIDE) (2) is stable.

Hen
e, we 
an rea
h the desired result of Theorem 1.

In our 
oming theorem, Theorem 2, we show that all solutions of (NVIDE)

(2) are integrable.

B. Assumptions

(H1) There exists a positive 
onstant δ0 su
h that

A(t)G0(x)−

∫ t

−∞

g0|D(t, s)||x(s)|ds ≥ δ0

for t ≥ t1 and x ∈ ℜ, where the fun
tions A(.) and D(.) are 
ontinuous

and the fun
tion G0(.) with G1(0) = 0 is 
ontinuously di�erentiable for the

arguments displayed expli
itly.

Theorem 2. In addition to assumptions (A1) and (A3), if assume assump-

tion (H1) holds, then every solution of (NVIDE) (2) is integrable.

Proof. From Theorem 1, any solution of (NVIDE) (2) is bounded and

satis�es (4) and (6). If assumption (H1) holds, then from (4) we get

v′(t) ≤ −δ0|x| for t ≥ t1.

Integrating the last estimate from t1 to t, we �nd

v(t)− v(t1) ≤ −δ0

∫ t

t1

|x(s)|ds

so that

δ0

∫ t

t1

|x(s)|ds ≤ v(t1)− v(t) ≤ v(t1),

i.e.,

δ0

∫ t

t1

|x(s)|ds ≤ v(t1).

Hen
e, we see that the solution x(t) of (NVIDE) (2) is integrable. The former

inequality implies the desired idea of Theorem 2.

Finally, we give a boundedness theorem for solutions of (NVIDE) (2).

Let P1(t, x) 6= 0.
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C. Assumptions

(C1) There exists a positive 
onstant M su
h that

|P1(t, x)| ≤ (M + |x|)|Q(t)| and |Q(t)| is an integrable fun
tion for t ≥ t1,

i.e,

∫∞

t1
|Q(s)|ds < ∞.

Theorem 3. In addition to assumptions (A1) and (A2) if we assume that

assumption (C1) holds, then all solutions of (NVIDE) (2) are bounded.

Proof. From Theorem 1, any solution of (NVIDE) (2) satis�es the estimate

(4). To 
omplete the proof of this theorem, we bene�t from the fun
tional

v = v(t) = v(t, x(t)) just used in the proof of Theorem 1.

Obviously, we have

v(t) ≥ |x|.

Next, in the light of the assumptions (A1), (A2) and (C1), the time derivative

of the auxiliary fun
tional v = v(t) = v(t, x(t)) 
an be re-revised as

v′ ≤ |P1(t, x)|

≤ (M + |x|)|Q(t)|

≤ M |Q(t)|+ v(t)|Q(t)|.

Integrating the last estimate from t1 to t, we have

v(t) ≤ v(t0) +M

∫ t

t1

|Q(s)|ds+

∫ t

t1

v(s)|Q(s)|ds.

Hen
e, applying the Gronwall's inequality, we 
an obtain

|x(t)| ≤ v(t) ≤ K exp[

∫ ∞

t1

|Q(s)|ds],

where

K = v(t0) +M

∫ ∞

t1

|Q(s)|ds.

Consequently, one 
an arrive at the desirable result that every solution of

(NVIDE) (2) is bounded.

Example 1. We 
onsider the following s
alar (NVIDE) of �rst order

x′ = −x3 +

∫ t

−∞

D(t, s)f(x(s))ds (7)
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with

∫ ∞

0

|D(t, s)|ds < 1,

∫ ∞

t

|D(t, s)| ∈ L1[0,∞),

|f(x)| ≤ α|x|3, 0 ≤ α ≤ 1,

(see, also, Burton [6℄).

De�ne the auxiliary fun
tional by

v = |x|+

∫ t

−∞

∫ ∞

t

|D(u, s)||x(s)|3duds.

Hen
e, the time derivative of this fun
tional along the solutions of (NVIDE)

(7) gives

v′ = −
x

|x|
[x3 −

∫ t

−∞

D(t, s)f(x(s))ds]

+

∫ ∞

t

|D(u, t)|du|x(t)|3 −

∫ t

−∞

|D(t, s)||x(s)|3ds

≤ −|x|3 +

∫ t

−∞

|D(t, s)||f(x(s))|ds

+

∫ ∞

t

|D(u, t)|du|x|3 −

∫ t

−∞

|D(t, s)||x(s)|3ds

≤ −|x|3 + α

∫ t

−∞

|D(t, s)||x(s)|3ds

+

∫ ∞

t

|D(u, t)|du|x|3 −

∫ t

−∞

|D(t, s)||x(s)|3ds

≤ −[1 −

∫ ∞

t

|D(u, t)|du]|x|3

≤ −β|x|3

for some β > 0.
In view of the dis
ussion made, we 
an 
on
lude that the zero solution

of (NVIDE) (7) is stable. In addition, we 
an say that the zero solution of

(NVIDE) (7) is also uniformly asymptoti
ally stable.
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3 Con
lusion

We 
onsider a fun
tional (NVIDE) of �rst order. The (S), (B) and integrabil-

ity features of solutions of the fun
tional (NVIDE) 
onsidered are investigated

by 
onstru
ting a suitable (LF). We aim to ful�ll the (S) problems obtained

for (LVIDEs) to (NVIDES) for (S), in addition, (B) and integrabilty of the

solutions. The results obtained have a 
ontribution to the literature, and

they improve and generalize the results of Xu [65℄, and that 
an be found in

the related literature.
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