
The Pharmaceutical and Chemical Journal, 2018, 5(2):144-166 
 

         The Pharmaceutical and Chemical Journal 

144 

 

 Available online www.tpcj.org 
 

 

 

 

 

    

 
Research Article 

ISSN: 2349-7092 

CODEN(USA): PCJHBA  

    

 

Diffusion Influenced Non-equilibrium Gating Processes of a Voltage-gated Potassium Ion 

Channel 
 

Biswajit Das, Gangopadhyay
 

 

S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata-700098, India. 

 
Abstract Here we have studied the kinetics as well as the energetics of a diffusion influenced nonequilibrium gating 

process of a voltage-gated K-channel for a oscillatory voltage through the master equation description. A diffusion-

influenced five-state Hodgkin-Huxley type voltage-gated scheme is proposed on the basis of the established findings 

that the K-ions can diffuse through a mutated voltage sensing domain even if the channel protein remains in the 

closed conformation. At moderate frequencies of the oscillatory voltage, the dynamic hysteresis behaviour shown by 

the kinetic and thermodynamic response properties of this channel protein are annihilated by the diffusion of K-ions 

at diffusion controlled limit. Moreover, for oscillating voltage the diffusion time scale interferes with the intrinsic 

time scale of the ion-channel producing a beating phenomenon in the current signal whose modulation depth 

depends on the diffusion rate. At reaction-controlled limit, the time periodic oscillation of the total entropy 

production rate shows the symmetric behaviour over the two half cycles at extreme high frequencies, but at 

diffusion-controlled limit such symmetry is destroyed. 

Keywords Voltage gated K channel; mutated voltage sensing domain; diffusion influenced gating; nonequilibrium 

thermodynamics; dynamical hysteresis 

Introduction 

Study of the kinetics as well as the energetics of a single voltage-gated potassium ion channel(VGKC) is gaining 

increasing attention in neurobiology as it plays an important role in the generation and propagation of the action 

potential, the nerve impulse, in the living excitable cells e.g., neurons or muscle cells [1, 2, 3, 4, 5]. A VGKC is a 

trans-membrane electrical sensitive tetrameric protein, where each monomer is composed of six transmembrane 

segments (TS), designated as S1-S6, which form two structurally and functionally different parts [6, 7, 8, 9, 10, 11, 

12]. The first four TS (S1-S4) form the voltage-sensing domain (VSD), positioned at the periphery of the channel 

within the lipid membrane and the others two, S5-S6 make the pore-forming domain (PFD), which are located in the 

channel centre [7, 8, 9]. The VSD and PFD are structurally coupled by the S4-S5 linker [7, 8, 9]. The PFD includes 

a channel gate (CG) along with a selectivity filter (SF), which make the ion conducting pathway with a central ion 

conducting pore (CICP) through which the K-ions diffuse from inside to outside of the cell membrane down through 

an electro-chemical gradient near diffusion limited rates (10
7
 ions channel

-1
 sec

-1
) [8, 9]. At equilibrium resting 

membrane potential, the four PFDs of four monomers remain in such a conformation which does not allow the 

diffusion of K-ions through the CICP [7, 8, 9, 10, 11]. However, upon sensing the membrane potential difference in 

an independent way, the four VSDs of four monomers change their structural conformation, which accelerates in 

changing the conformation of the PFDs so that the K-ions can diffuse through the CICP [7, 8, 9, 10, 11]. 

In living cell, the working of a VGKC is initiated during depolarisation of the cell, which is basically a non-

equilibrium phenomenon with respect to cell’s resting equilibrium state [1, 2, 13]. To explore the non-equilibrium 
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working principle of a VGKC, recently, non-equilibrium response spectroscopy is being used extensively [14, 15, 

16, 17]. In this technique, an externally modulated continuous voltage pulse is supplied to a VGKC so that the 

channel protein shows its far from equilibrium response [14, 15, 16, 17]. The motivations of these non-equilibrium 

studies lie in exploring the proper mechanism of voltage-gating of a single VGKC, along with the exploration of 

gating-dynamics from kinetic and energetic view point [13, 14, 15, 16, 17]. For pursuing the study on gating-

dynamics, till now, several Markov models have been proposed.  

However, at non-equilibrium environment, the most useful gating-model is the five-state Hodgkin-Huxley type 

gating-scheme (HHGS) [16], where five dynamical states of a VGKC are considered on the basis of the counting of 

the number of monomers remaining in the active or ion-conducting conformational state at any instant of time [13, 

12, 18, 19]. In this gating scheme, it is assumed that each monomer of a VGKC has two conformations, active (ion-

conducting) and inactive (non-conducting) conformational states. Each monomer works independently, and the 

conformational change of a monomer is a stochastic event [18, 13, 19]. The corresponding gating-dynamics are 

described through HHGS in terms of the one-dimensional random walk motion in the conformational state space of 

a VGKC, where the transition probabilities between two successive Markov states are considered as a function of 

voltage [18, 13, 16, 19]. In this circumstance a natural question arises: Why the transition probabilities in HHGS are 

only function of voltage? Does the other physiological factors, such as the diffusive motion of K-ions influence the 

transition probabilities in HHGS? 

The influential possibility of the diffusion of K-ions on the gating-dynamics also comes in our mind after studying 

the recent work of Khalili-Araghi  et al., [11], where it is observed that the mutation of first gating arginine (R1) on 

the S4 segment to smaller uncharged amino acids such as serine or asparagine will turn the VSD into an ion channel, 

which allows the permeation of cations including K-ions through the helical bundle even if the CICP remains closed 

[11]. They have also reported that the diffusion of K-ions through the VSD produces the omega current, which is 

totally different from the K ionic-current [11].  

In this aspect, our question is that if the gating dynamics is studied for the mutated VGKC, then does the diffusion of 

K-ions influence the transition probabilities of the gating mechanism? Secondly, if the diffusive motion of K-ions 

can influence the gating dynamics, then the other question is that how can we theoretically study the diffusion 

influenced gating process of a mutated VGKC through the HHGS at non-equilibrium? To search in this direction 

here we have proposed a diffusion influenced HHGS for a mutated VGKC and the corresponding method is 

developed to study the diffusion influenced gating-dynamics. In our theory, the transitions between two successive 

Markov states are not only function of voltage, rather they are function of the applied voltage along with the 

diffusion of K-ions. To understand the effect of the diffusion on the gating dynamics, here the kinetics as well as the 

non-equilibrium energetics have been studied in presence of the external oscillating voltage through the master 

equation approach. Our study reveals several diffusion influenced biophysical properties of the gating dynamics of a 

single VGKC at non-equilibrium environment. 

The paper is organized as follows. In section 2, we have proposed a diffusion influenced five-state Hodgkin Huxley 

type gating-scheme. The corresponding model to describe the non-equilibrium diffusion influenced VGKC-

dynamics as well as the corresponding energetics through the master equation description are discussed in section 3. 

In section 4, the numerical analysis are carried out to study the diffusion influenced kinetic and thermodynamic 

properties of a VGKC. Finally, the paper is concluded in section 5. 

2. Diffusion influenced voltage-gating scheme of a VGKC 

In this section, the five-state Hodgkin Huxley type voltage-gated scheme is discussed in terms of the functional 

activities of PFD and VSD for the non-mutated and mutated VGKC. The word ‘mutated VGKC’ signifies that the 

VSDs of a VGKC are mutated. Here we the non-mutated case is considered for understanding the necessity of the 

consideration of the mutated case to describe the diffusion influenced gating dynamics of a VGKC. 

Now, before going into the detailed description of the gating-schemes for the non-mutated and mutated cases, here, 

at first, we have briefly discussed the structural and functional connectivity between the PFDs and VSDs for 

understanding their role in governing the gating process. For this purpose, in Fig.1, a cartoon is drawn where the 
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activity of two monomers of a VGKC are depicted from the lateral view point for these two cases, where each 

monomer is depicted in the combination of one VSD and one PFD. The structural and functional studies of VGKC 

reveal that a PFD and a VSD possess several conformations during the voltage-dependent activation of a VGKC, 

however, for simplicity, here it is considered that the PFD has two conformations, inactive or non-conducting state 

and active or conducting state, whereas for VSD, they are the non-voltage sensing and the voltage-sensing 

conformations.  

 
Figure  1: In figure (I) and (II), we have depicted the conformational changing of the PFDs from inactive to active 

conformational states for two monomers due to changing in the conformation of VSDs. Two figures are drawn for 

brief understanding about the activity of a normal or non-mutated VGKC where VSD’s working only depends on the 

applied voltage. However, in (III) and (IV) we have described the same conformational changing phenomena for 

PFDs and VSDs when the VSDs are mutated. In this case, the K-ion permeation is possible through the VSDs when 

the PFDs remain inactive as well as in active state. In this case, the working of VSDs depend on the voltage and the 

diffusion of K-ions. For simplicity we consider only the diffusion of K-ions through the mutated VSDs. Here, we 

have considered that the conformation of VSDs for mutated and non-mutated cases are different, although the 

conformation remains the same for PFDs. 

 

Figure  2: In (I), we have described the five state Hodgkin Huxley type voltage-gated scheme, where the transitions 

between two successive Markov states, )(tKi  and )(tK i  with 1,...,4=i  depend only on the voltage. However, 

in (II) the transitions between the two Markov states, )(ti  and )(ti  with 1,...,4=i  depend on the voltage as 

well as the diffusion of K-ions through the mutated VSD. In (I) and (II), the gating mechanism is operated due to 
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conformational change of VSDs, which is already described in the previous figure, Fig1. The colours used to 

designate the conformations for VSDs and PFDs in mutated and non-mutated cases are the same like in Fig1. 

In Fig.1 (I) and (II), we have described the conformational changing of VSDs and PFDs when VSDs are non-

mutated. In Fig.1(I) it is depicted that the two PFDs of two monomers remain in the inactive conformational state 

which hinders the diffusion of K-ions. However, upon sensing a voltage pulse, VSDs change their conformations 

from non-voltage sensing to voltage sensing conformation, which accelerates the conformational changing of PFDs 

from inactive to active state. Consequently, the K-ions can diffuse freely through the ion-conducting pathway, which 

is shown in Fig.1 (II). In these two figures, (Fig.1 (I) and (II)), no diffusive motion of K-ions is considered through 

the non-mutated VSDs, and that consideration is relevant with the functional activity of VSD at normal 

physiological condition[6, 7, 8, 9, 10, 11]. In this respect, we want to mention that for simplicity, in Fig.1 (II) we 

have shown that two PFDs goes to active conformation simultaneously for changing the conformations of two 

VSDs. Although, for constructing the gating scheme, here it is considered that at any instant of time two PFDs can’t 

change their conformations simultaneously. But this consideration in Fig.1(II) does not affect in understanding the 

structural and functional connectivity between VSD and PFD in the gating process. Similar consideration is also 

taken in the case of mutated VGKC which is depicted in Fig.1 (III) and (IV). Moreover, the single molecule study of 

a VGKC infers that the conformational changing of a PFD and a VSD are a stochastic event and each monomer 

works in an independent way[12]. On the basis of this fact, in Fig.2(I), the five-state Hodgkin Huxley type Markov 

scheme is constructed for the non-mutated case, where the dynamical states are designated as nC  with 1,..,4=n  

which represent the number of PFDs are in the active or conducting state at any instant of time. Here the activity of 

four PFDs and four VSDs are shown from the top view point, and the colour of the conformations of VSDs and 

PFDs remain same as in Fig.1 (I) and (II). In this scheme we can observe that due to changing the conformation of a 

VSD of a monomer, the conformation of the related PFD is changed, which results the transition from one Markov 

state to its adjacent states. Hence the transitions between the Markov states are governed mainly by the activity of 

the VSDs, and as in the normal physiological condition, the working of a VSD depends only on the voltage, so the 

transition probabilities )(tK n  in the gating scheme in Fig.2(I) should be the function of the voltage value, )(tV  at 

time t . For notational simplicity, here ))(( tVK n  are represented as )(tK n , where )(tKn  represents the 

forward transition probabilities, whereas the backward transition probability is designated as )(tK n  with 

1,...,4=n . 

From the discussion related to the gating scheme for the non-mutated case, we can infer that the influential 

possibility of the K-ionic diffusion on the gating dynamics may arise if the K-ions can permeate through the VSDs. 

Recent study of Khalili-Araghi  et al. [11] infers that the mutation in the amino acid sequence in VSDs allows the 

permeation of K-ions through the VSD. Based on this findings, here we have proposed a diffusion influenced 

gating-scheme, where we have assumed that upon sensing the voltage difference, a mutated VSD can also change its 

conformation, which accelerates the conformational changing of the PFD from inactive to active state as like in the 

non-mutated case. In Fig.1 (III), the mutated VSD is in the non-voltage-sensing conformation, whereas, Fig.1 (IV), 

represents the voltage-sensing conformation of a VSD. As mutation is carried out only in the VSDs, so in Fig.1 (III) 

and (IV), the conformations of a VSD are represented in different colours for mutated and non-mutated cases, 

whereas, in both cases, the conformations of a PFD remain same. The five-state gating scheme for the mutated 

VGKC is constructed by taking the similar consideration, as it is taken for the non-mutated case, and the diffusion-

influenced gating scheme is shown in Fig.2 (II). The main difference between these two gating schemes is that in the 

mutated case, the transition probabilities between two Markov states are the function of both voltage as well as the 

diffusive motion of K-ions, whereas for non-mutated case, the transition probabilities are only dependent on the 

voltage. Hence in the mutated case, the forward and backward transition probabilities are designated as )(tn  and 

)(tn , respectively where n  runs from 0  to 4 . Moreover, in the mutated gating scheme, K-ions can diffuse 
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through the CICP as well as the VSDs at 4C  Markov state, whereas, in non-mutated case, diffusion of K-ions 

occurs only through CICP when the channel protein remains in that Markov state. 

 

3. Diffusion influenced Kinetics  

Here we have described the diffusion influenced dynamics as well as the energetics of a single voltage-gated 

potassium ion channel through the master equation description for constant as well as for oscillating voltage. For 

constant voltage case, the connection between the master equation with the familiar Hodgkin-Huxley equation is 

discussed. The time-dependent solution of the ion-conducting state probability is then given for the low and high 

frequency values of the oscillating voltage which is derived from the master equation for the diffusion influenced 

VGKC-gating dynamics. Then the non-equilibrium energetics is described in terms of the system, medium and total 

entropy production rates. Finally, an energetic analysis is carried out to study whether the diffusion influenced 

VGKC dynamics is entropy or free-energy driven. 

 

3.1. Master equation without Diffusion 

For completeness of our study, here, at first, we have described the master equation for the voltage dependent 

gating-process of a single non-mutated VGKC, described in Fig.2 (I). For this five state Markov model, the master 

equation can be written as  

 )],())(|()())(|([=
)(

)(

1=

tPtnnwtPtnnw
dt

tdP
nn

n




  



  (1) 

 where   is the stoichiometric coefficient of the  -th reaction and 1=1  for forward process and 1=1   for 

backward process. )(tPn  is the probability of having n number of subunits in active state at time t where n runs 

from 0  to Tn . Here Tn  is the total number of subunits with 4=Tn . Here the forward transition probability, 

)(=))(|1(1 tKtnnw n  and the backward transition probability, )(=)1)(|(1 tKtnnw n   in HHGS scheme 

describe in Fig.2 (I) are defined as  

 1)),())(((=)(=))(|1( 11  nntVktKtnnw Tn  

and  

 ,))((=)(=)1)(|( 11 ntVktKtnnw n    (2) 

 where 1,....,4=n  with 












Tk

tVq
expktVk

B

)(
(0)=))(( 11  and .

)(
(0)=))(( 11 














Tk

tVq
expktVk

B

 
q  

designates the gating charges associated with each forward and backward transition, respectively. (0)1k  and 

(0)1k  are the forward and backward rate constants at zero voltage, T   is the absolute temperature and Bk  is the 

Boltzmann constant. Now putting the transition probabilities in Eq.(1) we obtain the simplified form of the master 

equation as  

 )(1)))((()(1)))(((=
)(

1111 tPntVktPnntVk
dt

tdP
nnT

n
   

 

 ).())(()()))((( 11 tnPtVktPnntVk nnT   (3) 

 In this master equation, the transition probabilities are only governed by the externally applied voltage, )(tV . 

There is no influence of the diffusion of K-ions on the transition probabilities. By using this master equation, we can 

study the dynamics and energetics of a VGKC, where the gating-dynamics is governed in response of the voltage 

difference between the inside and outside of the cell. 
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3.2. Master equation with Diffusion 

Following the classical work of Collins and Kimball(CK)[20] as well as the studies of Szabo and co-workers [21, 

22], here, we have constructed the master equation for the diffusion influenced gating-process of a mutated-VGKC 

by considering the model described in Fig.2(2), and in this case, the master equation described in Eq.3 can be 

written as  

 ),())()(()()()()(=
)(

1111 tPtttPttPt
dt

tdP
nnnnnnn

n     (4) 

 where the diffusion-influenced forward transition probability, )(tn  is  

 ,
))(()(

))(()(
=)(

1

1

tVknnk

tVknnk
t

TD

TD
n




  (5) 

 and the diffusion-influenced backward transition probability, )(tn  is  

 ,
)(()(

))((
=)(

1

1

tVknnk

tVnkk
t

TD

D
n



  (6) 

 with DRkD 4= . R  and D  are the radius and the diffusion constant of a K-ion. Here it is considered that 

)(tn  and )(tn  are related such a way so that at any instant of time, they follow the microscopic reversibility 

condition,  

 ,
))((1)(

))(()(
=

)(

)(
=

)(

)(

1

11

1 tVkn

tVknn

t

t

t

t T

n

n

n

n





 










 (7) 

 where )(tn  is the invariant probability distribution, which can be expressed as  

 ,
))](([1

))](([

=)(
T

n

nT

n
tV

tV
n

n

t
















 (8) 

 with, 








 ))((

))((
=))((

1

1

tVk

tVk
tV . The expression of )(tn  and )(tn  given in Eq.5 and Eq.6 are the diffusion 

controlled forward and backward transition probabilities of a gating process of VGKC. However, when D   

i.e., Dk , it becomes the reaction controlled situation. In this case, the second term of the denominator 

))(()( 1 tVknnT   of )(tn  and )(tn  becomes negligible compare to the first one, Dk . Therefore, at the 

reaction controlled limit, the expression of )(tn  and )(tn  become  

 )))(((=
))(()(

=)( 1
1 nntVk

k

tVknnk
t T

D

TD
n 


  

 

 .))((=
))((

=)( 1
1 ntVk

k

tVnkk
t

D

D
n 

  (9) 

 Therefore, in this case )(tn  and )(tn  both becomes independent of Dk  and they are similar to the expressions 

of the transition probabilities for the normal voltage-gated gating processes of VGKC, which are described in Eq.2 

in the previous section 3.1. 
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3.3. Constant voltage case in presence of diffusion: an approximate solution 

Traditionally the ion channel kinetics is studied using the voltage clamp technique where the voltage is varied, say 

from one holding potential to another by matching the voltage value to a variable control voltage[23, 24, 25]. 

Thereby the ion channel conductance relaxes towards its new equilibrium under a certain voltage value, say V . In 

the expression of n , as in Eq. 5, n  in the denominator is replaced by en  (equilibrium value of n ). So n  

becomes  

 ))((= 1 nnVk T

'

n   (10) 

 where .
)()(

)(
=)(

1

1
1

Vknnk

Vkk
Vk

eTD

D'


 Similarly, n  is given by  

 1))((= 1  nVk '

n  (11) 

 where 
)()(

)(
=)(

1

1
1

Vknnk

Vkk
Vk

eTD

D'




 . 

In the constant voltage case, the solution of the master equation described in Eq.(4) is carried out by considering the 

detailed balance condition  i.e., )()(=)()( 11 tPVtPV nnnn   , and it becomes a binomial probability distribution 

function[13, 18] given as  

 ,)]([)]([
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 and  

 .
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 For the solution of )(tPn  for V, we assume that initially all the subunits are in inactive state, 0C   i.e, the 0=n  

state. Here the time dependent expression of )(tPn  in Eq.(12) reveals the information about the relaxation of )(tPn  

with t  to a equilibrium related with the voltage V . In this case, the steady state should be equilibrium, and the 

expression of )(tPn  at equilibrium would be,  

 ,][][
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The average number of subunits in active state is expressed as )(=)( tXntn DT  and the average number of 

subunits in inactive state is )(=)( tYntnn DTT  . The parameter )(X tD  satisfies the differential equation[3, 

18]  

 )).()(())()(1(=
dt

(t)dX
11

D tXVktXVk D

'

D

'

  (16) 
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 This equation is similar to the equation for the open state probability, originally introduced by Hodgkin and Huxley 

to model the potassium ion channel conductance [3, 18, 13], Here we have re-established this expression for the 

diffusion influenced gating processes of a VGKC. However, the equilibrium probability of the ion-conducting 

state[23] does not change for the diffusion influenced and without diffusion influenced cases, and appears as the 

Boltzmann distribution of power Tn ,  

 ,
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B

eq
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 with )(=q  qq  and (0)Keq  is the equilibrium constant defined as 



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




(0)

(0)
=(0)K

1

1

k

k
eq , which is 

independent of diffusion constant. 

 

3.4. Effect of Diffusion for continuous time-periodic voltage 

Here we describe the kinetics of a single mutated VGKC for continuous time periodic voltage based on the diffusion 

influenced gating scheme depicted in Fig.2 (2). To get some analytical understanding, we have expressed the overall 

VGKC-dynamics in terms of the open state probability )(4 tP , and the rate-expression can be written from Eq.(4) as  

 ).()()()(=
)(

4433
4 tPttPt
dt

tdP
   (18) 

 By using the normalization condition 1=)(
4

0=n
tPn , we can rewritten Eq.(18) as  
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 where  )}()()({1=)( 2103 tPtPtPtD   and  43=)(K  tD . Here )(tn  and )(tn  depends on 

the diffusion coefficient as defined in Eq. (5) and (6). This ensures that in the low frequency limit )(P )(

4 tss
 in Eq.48 

becomes  

 ,
)(

)(
=)(P )(

4
tK

t
t

D

Dss 
 (20) 

 and in high frequency limit, it becomes in Eq.(52) as  

 .
)(

)(
=)(P )(

4




tK

t
t

D

Dss 
 (21) 

 For more detailed understanding see Appendix. Here the superscript (SS) indicates the time-periodic steady state. 

One must also note that although the equations (20) and (21) give the steady state ion-conducting probability, 

)(P )(

4 tss
 in compact form, it is not possible to evaluate analytically as )(t  depends on )(),(P 10 tPt  and )(P2 t . 

To determine these probabilities, we resort to numerical solution of the master equation described in Eq.(4) with 

time-dependent transition probabilities for oscillating voltage. The numerically determined time-dependent 

probabilities, )(P tn  are used to obtain the ionic current and entropy production rates for further studies. 

 

3.5. Entropy production rates as nonequilibrium response characteristics 
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Here we discuss the isothermal nonequilibrium energetics of a mutated VGKC through the various entropy 

production rates. Starting from the definition of the entropy of a system in terms of the Gibbs entropy 

 ),(l)(=)(s tnPtPktS nn

n

Bys   (22) 

 we get the system entropy production rate (epr) as  

   ,
)(

)(
l)()()()(=)( 1

11 







 


tP

tP
ntPttPttS

n

n
nnnn

n

sys   (23) 

 where the entropy production is given in the unit of Boltzmann constant, Bk . Here the system should be the gating-

dynamics of a VGKC. The voltage-dependent transition probabilities are function of time due to the explicit time-

dependence of the voltage. The system epr can be split as  

 ),()(=)( tStStS mtotsys
   (24) 

 where the first term in the r.h.s. of Eq.(24) gives the total epr and the second term denotes the medium epr due to 

the entropy flux into the surroundings. The expression of the total and medium eprs can be expressed as  

   ,
)()(

)()(
l)()()()(=)( 11

11 







 


tPt

tPt
ntPttPttS

nn

nn
nnnn

n

tot



  (25) 

 and  

   ,
)(

)(
l,)()()()(=)( 1

11 







 


t

t
ntPttPttS

n

n
nnnn

n

m



  (26) 

 where we have considered the boundary conditions 0=1nP  for 0=n  and 0=1nP  for Tnn = . For constant 

voltage, )(tn  and )(tn  should be a function of a fixed voltage value, V , whereas, for oscillating voltage, the 

transition probabilities should be dependent on the time periodic voltage value, )(tV  at time t . The expressions of 

)(tStot
 , )(tSm

  and )(tSsys
  help us in explaining the diffusion influenced non-equilibrium energetics of a VGKC 

at constant as well as the oscillating voltage cases, which we will thoroughly discuss in the numerical section. 

 

3.6. Factors governing the nonequilibrium dynamics of a VGKC: an energetic view point 

To study whether the diffusion-influenced non-equilibrium VGKC-dynamics is free-energy or entropy driven, here 

we have calculated the change of total internal energy )(tU , the free energy change, )(tF , and the change of 

system entropy )(tSsys . The changing of these thermodynamic quantities have been measured with respect to 

their equilibrium values at any instant of time t . For pursuing our analysis, we have considered the total internal 

energy of the non-equilibrium VGKC-dynamics at time t as  

 ),(ln)(=)( ttPTtU ii

i

  (27) 

 the system entropy production,  

 ),(ln)(=)( tPtPtS ii

i

sys   (28) 

 and thereby the free energy as  

 .
)(

)(
ln)(=)()(=)( 










 

t

tP
tPTtTStUtF

i

i
i

i 
 (29) 
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 Here, )(ti  is the invariant probability distribution, which obeys the microscopic reversibility condition at any 

time t . In this time-dependent non-equilibrium thermodynamics, this reversibility condition provides the 

equilibrium information of the system corresponding to the voltage value, )(tV  at time t . With changing time from 

'tt  , the voltage value will be changed from )()( 'tVtV  . As a consequence, the equilibrium information 

would be changed as the system will attain a new equilibrium state corresponding the voltage value )( 'tV  at time 

.'t  Now we have defined 
T

tU )(
, 

T

tF )(
 S  as,  

 )(ln))()((=
)()(

= tttP
T

tU

T

tU

T

U
iii

i

e




  (30) 

 where  

 ).(ln)(= ttTU ii

i

e   (31) 

 Similarly we can write,  

 














)(

)(
ln)(=
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=
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=

t

tP
tP

T

tF

T

tF

T

F

T

F

i

i
i

i

e


 (32) 

 and  

 .=
T

F

T

U
S





  (33) 

This analysis will help us in understanding how much internal energy, free-energy or system entropy would be 

changed if a system goes from the equilibrium to the non-equilibrium state due to an external time-dependent 

perturbation. In this system, the external time-dependent perturbation is the time-periodic oscillating voltage. Here 

we choose these three thermodynamic quantities as all of them are the state function. 

 

4. Numerical study of Kinetics and Thermodynamics with diffusion 

In this section, we have numerically studied the effect of diffusion on the mutated VGKC-dynamics as well as its 

energetics for the constant and time-dependent oscillating voltage. We have considered the rate parameters[16] on 

the  Shaker potassium ion channel expressed in mammalian cells, tsA 201. The rate constants at zero voltage are 

1

1 124.8=(0)k s  and 
1

1 4.74=(0)k 

 s . The gating charges associated with each forward and backward 

transitions rates are e0.66=q
 and e0.64=q 

, respectively at temperature C021 . 

Now, before going into the details about our numerical illustrations, we want to clarify that in our numerical 

analysis, the K-ionic current is designated the current, whose origin is due to the diffusion of K-ions through the 

CICP, opened when all the sub-units remain in the active conformation. Generally, the K-ionic current is calculated 

as  

 ),())(())((=)(I 40 tPVtVtVggt r  (34) 

 where 0g  is the overall scaling factor representing the cell expression rate[16, 17] taken as 1.013=g0  and the 

functional form of the nonlinear conductance [17], ))((g tV  (in microSiemens, S ) is taken as 

.104.470))((103.35))((107.30))((101.340=))((g 352839   tVtVtVtV  mVr 90=V   is 

the reversal potential at which no K-ionic current would be obtained. In our study, we have not calculated any  -

current which can be obtained due to diffusion of the K-ions through the mutated VSD. Here our interest lies in 
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studying the effect of K-ionic diffusion on the gating-mechanism of a VGKC, and for that, we have proposed our 

diffusion influenced gating scheme described in Fig.2(2). 

 

4.1. Constant voltage Case 

In constant voltage case, we have provided the kinetic description in terms of the K-ionic current, )(I t  which is 

calculated according to the Eq.(34), where )(tV  is not a function of time, rather it becomes a fixed voltage value, 

V .  

 

Figure  3: (A),(B),(C) Ionic current, )(I t  in nanoAmpere(nA) is plotted against time (in s) at constant depolarizing 

voltages, V=-15,-30 and -45 mV, respectively for 00,505000,500,1=Dk  . In (D), (E) and (F), the total entropy 

production rate(epr), )(tStot
  or )(tSt

 is plotted as a function of time at depolarizing voltages, V=-15, V=-30 and -

45 mV, respectively for 00,505000,500,1=Dk . 

Now to study the effect of Dk  (diffusion) on the ionic current, here in Fig. 3(A),(B),(C) we have plotted )(tI  as a 

function of time for three constant voltage values 15= V , 30= V  and 45= V , respectively. The common 

trend among all of these curves is that I(t) first increases with time and then saturates at a constant value. However, 

the magnitude of I(t) increases with increase in the constant (depolarizing) voltage value. In each of these figures, 

we have varied the values of Dk  from 5000 to 50. When 5000=Dk , it is the reaction controlled limit where 

diffusion has no influence on the gating mechanism. But as Dk  decreases from 500 to 50, the effect of Dk  is more 

pronounced, where the ionic current )(tI  reaches its saturation value at a much later time as the value of Dk  

decreases. The result indicates that the diffusion of K-ions through VSD delays the gating-mechanism in opening the 

K-channel pore. 

To investigate the thermodynamics of the diffusion-influenced gating-mechanism at constant voltage, we have 

calculated the total entropy production rate, )(tStot
 . Substituting the time-dependent probability value, )(tPn  from 

Eq.(12), we obtain  

   .
)()(

)()(
)()()()(=)(

1

1
11t 













tXVk

tYVk
lntnVktnnVktS

D

D
Tot

  (35) 
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 In Fig.3(D),(E),(F) we have plotted )(tStot
  as a function of time for different Dk  values at 15= V , 30  and 

mV45 , respectively. The value of )(tStot
  at a particular time is higher for higher value of V . For a particular 

value of V , the value of )(tStot
  at earlier times becomes lower as the value of Dk  decreases from 5000 to 50. 

After a certain time there is a crossover after which the curve for lower Dk  has higher value and goes to zero at a 

much later time indicating that the gating-dynamics reaches equilibrium. Mathematically, we can also understand 

that why )(tStot
  becomes zero at equilibrium for constant voltage. This can be shown if we use the steady state 

(equilibrium) values of )(tX D  and )(tYD , 








  )()(

)(
=X

11

1)(

VkVk

Vkeq
 and 









 



)()(

)(
=Y

11

1)(

VkVk

Vkeq
, 

respectively (see section 3.3 ) into Eq.(35) , then we can observe that )(t tS ot
  becomes zero at equilibrium for a 

constant external voltage. 

 

4.2. Effect of Diffusion on Dynamic hysteresis behaviour for oscillating Voltage 

For pursuing our study, here, we have considered a time-dependent sinusoidal voltage variation, 

tsinVVtV a 0=)(  with mean 0V , amplitude aV  and frequency  . We numerically solve the master equation 

in Eq.4 to get the probabilities of all the Markov states in the diffusion influenced five-state Hodgkin Huxley type 

gating scheme, depicted in Fig.2(2). The ionic current, )(tI  and various entropy production rates are then 

determined by using these probability values. In Fig.4, we observe that for oscillating external voltage, the ionic 

current, )(tI  as well as total epr, )(tStot
  reaches a time-periodic steady value. The time periodic steady values of 

)(tI  and )(tStot
  are designated as )()( tI ss

 and )()( tS ss

tot
 , respectively. Here we observe that the steady state of 

the diffusion influenced gating process is actually a nonequilibrium steady state(NESS), characterized by the non-

zero values of )(tStot
 . Moreover, In Fig. 4(A),(B) and (C), )(tI  is plotted as a function of time for several values 

of Dk  for low ( Hz0.1=/2 ), medium ( 100=/2  Hz), and high ( 5000=/2  Hz) frequency values. 

We observe that as the value of Dk  decreases, the current reaches its saturation value at a much later time indicating 

the diffusion influenced delayed in the conduction of K-ions due to decreasing the probability of opening the central 

ion conducting pore (CICP). This observation is similar for the constant voltage cases. Furthermore, we can also 

observe that as Dk  decreases, the depth of oscillation in the current curve decreases significantly for 100=/2  

and 5000  Hz at extreme diffusion limit ( 50=Dk ). However, at low frequency, 0.1=/2  Hz, this 

phenomenon is absent. Similarly, to investigate whether such phenomenon is present in the thermodynamic 

quantities or not, here, in Fig.4 (D),(E) and (F), the total epr is plotted for these three frequency values. We observe 

that the decreasing of the depth of oscillation is not so pronounced for )(tStot
  like in )(tI  for these medium and 

high frequency values for 50=Dk . Moreover, in this case, we observe that for a particular frequency, the value of 

)(tStot
  is lower for lower value of Dk  at transient times, however, after a certain time there is a cross over for the 

curves of )(tStot
  and the curves go to zero at much later time for lower Dk  values.  
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Figure  4:  The ionic current, )(tI  and entropy production rate, )(tStot
  or )(tSt

  are plotted as a function of time 

for 05000,500,5=Dk . 

For more understanding about the consequences of the decreasing of the depth of oscillation, )()( tI ss
 vs voltage 

and )()(

4 tP ss
 vs voltage are plotted for low, medium and high frequency values of the external voltage at steady 

state over a period. The dynamic hysteresis phenomena is observed where the hysteresis loop area tends to vanish at 

very low and at very high frequencies. This phenomena has been already reported in our previous study[13]. 

However, here, our main motivation is to describe the effect of diffusion on that hysteresis loop area. For that, in 

Fig.5(A),(B),(C) we have plotted )()( tI ss
 as a function of voltage for different Dk  values. At very low frequency 

0.1)=/2(   Hz the effect of Dk  is almost negligible. However, at medium frequency, 100)=/2(   Hz the 

effect of Dk  is more pronounced. When the value of Dk  is 5000  i.e., at reaction controlled limit, the hysteresis 

loop area is maximum. But with decreasing the value of Dk  the loop area also decreases, until Dk  value goes to 

below 50. At high frequency 5000)=/2(  , the loop is not noticeable, but the effect of Dk  is observed for the 

significant changing in magnitude of )()( tI ss
. The change of the magnitude is nonlinear and deceases with 

decreasing in the value of Dk . Now, the dynamic hysteresis is a non-equilibrium phenomena which signifies the 

memory developed due to dynamics of a system. From this curves, we can conclude that in the non-equilibrium 

VGKC-dynamics, the diffusion of K-ions through VSD try to destroy the memory, which is developed due to the K-

ionic conduction through the CICP at frequency 100)=/2(   Hz. As ionic current, )(tI  mainly depends on the 

open state probability, )(4 tP , so for finding out the origin about this phenomena, here, in Fig.5 (D), (E), (F) we 

have plotted )()(

4 tP ss
 vs voltage for low , medium and high frequency values to study the effect of Dk . From the 

observation of these curves we can conclude that )()(

4 tP ss
 is mainly responsible for which )()( tI ss

 shows this type 

of behaviour. 
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Figure  5:  In figures (A),(B) and (C), ionic current, )()( tI ss
, is plotted against oscillating voltage (sinusoidal) with 

frequency 0.1,100.0=/2  and 5000.0  Hz, respectively at NESS over a time period for 05000,500,5=Dk

. In figures (D),(E) and (F) probability of ion conducting state, )()(

4 tP ss
, is plotted against oscillating voltage 

(sinusoidal) with frequency 0.1,100.0=/2  and 5000.0  Hz, respectively at NESS over a time period for 

55000,500,2=Dk . 

 

Figure  6:  In figures (A),(B) and (C), medium entropy production rate, )()( tS ss

m
  is plotted against oscillating 

voltage (sinusoidal) with frequency 0.1,100.0=/2  and 5000.0  Hz, respectively at NESS over a time period 

for 005000,500,1=Dk . In figures (D), (E) and (F) system entropy production rate, )()( tS ss

sys
  is plotted against 

oscillating voltage (sinusoidal) with frequency 0.1,100.0=/2  and 5000.0  Hz, respectively at NESS over a 

time period for 005000,500,1=Dk . 

Next we have investigated such behaviour in the non-equilibrium thermodynamic properties of a VGKC-dynamics. 

For pursuing our analysis, )()( tS ss

m
  vs )(tV  is plotted in Fig.6(A),(B) and (C) for the frequency values 



Das B & Gangopadhyay                                                             The Pharmaceutical and Chemical Journal, 2018, 5(2):144-166 

 

        The Pharmaceutical and Chemical Journal 

158 

 

0.1,100=/2  and 5000  Hz, respectively. The similar type of plots have been carried out for )()( tS ss

sys
  vs 

)(tV  for these three frequency values, which are depicted in Fig.6(D),(E) and (F). The other thermodynamic 

quantity, )()( tS ss

tot
  is also plotted as a function of )(tV  for the low, medium and high frequencies in Fig.7 (a), (b) 

and (C). These curves infer that at 100=/2  Hz, the dynamic hysteresis loop area of )()( tS ss

m
  vs )(tV , 

)()( tS ss

sys
  vs )(tV  and )()( tS ss

tot
  vs )(tV  curves are annihilated in the influence of the diffusion of K-ions, which is 

similar with the results obtained from the plot of 
))(( tssI  versus )(tV  in Fig.5. Therefore, from the study of the 

kinetic and thermodynamic properties of the VGKC-dynamics, we can make a conclusion that the diffusive motion 

of the K-ions through a mutated VGKC has a natural tendency in destroying the dynamic hysteresis behaviour of a 

VGKC at non-equilibrium. 

 

Figure  7:  Total entropy production rate, )()( tS ss

tot
  or )(tSt

 is plotted against oscillating voltage, )(tV  at low, 

medium and high frequency values at steady state over a time period which are depicted in figures (A), (B) and (C), 

respectively for 005000,500,1=Dk . 

 

Figure  8: In figures (A),(B),(C) Average entropy production rate over a period,  )()( tS ss

tot
  or )(tSt

  is plotted 

against frequency, /2  with amplitude, 15,30,45=aV  mV for 005000,500,1=Dk . In figures (D),(E),(F) 
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 sc

ss tI )]([ )(
 indicates the ionic current over a period scaled with )(vg  and is plotted against frequency, /2  

with the same amplitudes. With increasing the amplitude values and Dk  values. 

Then the average total epr over a time period,  )()( tS ss

tot
  is shown at NESS as a function of the frequency of the 

external voltage. Here the average is defined as dttS
T

tS ss

tot

T
ss

tot )(
1

=)( )(

0

)(   . One can see that the average total epr 

increases steadily from zero at very low frequency and saturates at high frequency values. Therefore, the 

nonequilibrium steady state reached by the system is infinitesimally close to equilibrium at the 0  limit 

whereas it is farthest from equilibrium at the   limit for the given parameters of the model system and the 

amplitude of the external voltage. In Fig.8(A),(B),(C) we have plotted  )()( tS ss

tot
  against frequency for three 

different values of amplitude. As the value of Dk  decreases, the magnitude of  )()( tS ss

tot
  decreases in all the three 

cases. The nature of the curve remains same essentially, however, the value of  )()( tS ss

tot
  increases for the higher 

values of the amplitude of )(tV  

The average current over a period,  sc

ss tI )]([ )(
 are then studied as a function of frequency at different voltage 

amplitudes. Here the ‘sc’ superscript indicates that the ionic current is scaled with the nonlinear conductance, g(V). 

The functional form of )(Vg  is generally an experimentally determined equation that can vary from experiment to 

experiment. So to obtain the general behavior of the ionic current we have calculated the scaled current. It is 

observed that the average ionic current,  sc

ss tI )]([ )(
 increases to saturation with increase in the frequency value. 

In the high frequency limit,  sc

ss tI )]([ )(
 becomes almost independent of amplitude. But as the value of Dk  

decreases, the trend is reversed. For values of Dk  lower than 100 the ionic current  sc

ss tI )]([ )(
 decreases with 

increasing frequency and becomes constant for higher frequencies. The trend remains same for all the three values 

of amplitude. 

 

Figure  9: In figures (A),(B) and (C), average Ionic current over a period at steady state,  sc

ss tI )]([ )(
 is plotted 

against square of the amplitude, 
2

aV  at low ( 0.1=/2  Hz), medium ( 10=/2  Hz) and high frequency (
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1000=/2  Hz), respectively for different values of Dk . Average entropy production rate over a period at 

steady state,  )()( tS ss

tot
  or )(tSt

  is plotted against 
2

aV  with the same frequency values which are depicted in 

(D),(E) and (F), respectively. 

To understand the amplitude dependence of  sc

ss tI )]([ )(
 and  )()( tS ss

tot
  for the mutated VGKC-dynamics, here 

these two quantities are plotted as a function of 
2

aV  for low, medium and high frequency values at NESS shown in 

Fig.9. For oscillating voltage, 
2

aV  is proportional to the energy supplied to the system and )(tStot
  is a measure of 

the dissipative flux from the system. In Fig.9 (A) and (D),  sc

ss tI )]([ )(
 and  )()( tS ss

tot
  are plotted as a function of 

2

aV  at low frequencies 0.1=/2  Hz, where we observe that in Fig.9 (A),  sc

ss tI )]([ )(
 increases with 

increasing the value of 
2

aV  after passing through a minimum. Such behavior is generated due to the determination 

of the current from Eq.(34). In this case, Dk  has no effect on  sc

ss tI )]([ )(
, whereas with increasing the value of 

2

aV ,  )()( tS ss

tot
  first increases and then reaches a saturated value which is shown in Fig.9 (D). In this case, 

 )()( tS ss

tot
  increases with decreasing the values of Dk . At medium frequency limit, 10=/2  Hz, the tendency 

of  sc

ss tI )]([ )(
 in passing through a minimum, vanishes. In this case, we observe that at reaction controlled limit 

5000=Dk ,  sc

ss tI )]([ )(
 increases slightly with increasing the values of 

2

aV , but with decreasing the values of 

Dk   i.e., at diffusion controlled limit,  sc

ss tI )]([ )(
 decreases with Dk  until it reaches a steady value at higher aV  

which is shown in Fig.9(B). For  )()( tS ss

tot
 , we see that at 10=/2  Hz, its values as a function of 

2

aV  first 

increases and then get saturated which is shown in Fig.9(E). Here, with decreasing the values of Dk ,  )()( tS ss

tot
  

increase at higher values of 
2

aV . At high frequency, 1000=/2  Hz,  sc

ss tI )]([ )(
 remains constant with the 

variation of 
2

aV  at reaction controlled limit ( 5000=Dk ), but with decreasing the values of Dk ,  sc

ss tI )]([ )(
 

decreases nonlinearly with 
2

aV , which is depicted in Fig.9(C). In this case,  sc

ss tI )]([ )(
 decreases more rapidly 

with 
2

aV  compare to the trend observed in Fig.9(B). However, in this frequency range ( 1000=/2  Hz), 

 )()( tS ss

tot
  increases exponentially with 

2

aV  at reaction controlled limit, and the trend of the variation of  )()( tS ss

tot
  

as a function of 
2

aV  with Dk  is totally reverse in comparison with the low and medium frequency cases, where in 

the high frequency, we observe that  )()( tS ss

tot
  decreases with decreasing the values of Dk  which is shown in 

Fig.9(F). Now from the above discussion, we can find a inverse relation between the variation of  sc

ss tI )]([ )(
 and 

 )()( tS ss

tot
  with 

2

aV  at reaction controlled limit. We observe that with increasing the frequency values, 

 sc

ss tI )]([ )(
 gets saturation, and becomes independent of 

2

aV  i.e., the input energy, whereas,  )()( tS ss

tot
  increases 

non-linearly with 
2

aV . However, diffusion destroy such relation between  sc

ss tI )]([ )(
 and  )()( tS ss

tot
 . 
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Figure  10: The ionic current, )()( tI ss
, total entropy production rate, )()( tS ss

tot
  or )(tSt

  and oscillating voltage, 

)(tV  are plotted with time at Hz5000=/2  over an oscillation period at NESS. Time required to complete an 

oscillation cycle is same for )()( tI ss
 but half for )()( tS ss

tot
  compared to that of voltage )(tV .  

Next, we report an another intriguing observation in Fig.10. Here, the ionic current, )()( tI ss
, the total entropy 

production rate, )()( tS ss

tot
  and )(tV  are plotted at high frequency, Hz5000=/2  over a period at steady state 

in Fig.10 (A), (B) and (C), respectively. It is observed that in the high frequency regime, )()( tS ss

tot
  oscillates with a 

time period which is half of the external voltage, )(tV . However, the time period of ionic current, )()( tI ss
 is the 

same as that of the external voltage. Hence at the high frequency limit, the total epr at NESS oscillates with a 

frequency which is double of that of the external voltage. For the )()( tI ss
 plot the value of ionic current decreases 

with the decrease in value of Dk . The nature of the curve remains unchanged. For the plot of )()( tS ss

tot
  , the 

symmetry of the curve is lost due to the effect of Dk . The magnitude of the curve decreases with the decrease in 

value of Dk . The centre of the curve also shifts to the right. 

In Fig.11(A), (B) and (C), the change in free energy 
T

F
, internal energy 

T

U
 and entropy S  are plotted 

against time for 5000,500=Dk  and 50 , respectively for a constant voltage 15= V  mV. The same plot has 

been carried out in Fig.12 for an oscillating voltage )(tV . In both cases,  i.e., constant and oscillating voltage cases, 

it is observed that for low value of 50=Dk   i.e., at diffusion controlled limit, the reaction is entropy driven 

initially as well as finally. However, at diffusion controlled limit,  i.e., 5000=Dk , the reaction is initially entropy 

driven and finally it becomes internal energy driven. Intermediate behaviour is seen for intermediate values of Dk . 
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Figure  11: The change in free energy 
T

F
, internal energy 

T

U
 and entropy S  is plotted against time for 

05000,500,5=Dk , for a constant voltage 15= V . 

 

Figure  12: The change in free energy 
T

F
, internal energy 

T

U
 and entropy S  is plotted against time for 

05000,500,5=Dk , for an oscillating voltage )(tV .  

5. Conclusion 

Here we have studied the diffusion influenced non-equilibrium dynamics as well as its energetics of a single VGKC. 

To understand how the diffusion of the K-ions affect the VGKC- dynamics, here we have proposed a diffusion 

influenced five-state Hodgkin-Huxley type gating scheme where it is considered that the K-ions can also diffuse 

through the voltage-sensing domain. The important points of the work are given below. 

(1) We have incorporated this idea of the permeation of K-ions through VSD according to the molecular-

dynamic study of Khalili-Araghi  et al., where they have shown that even when the central ion-conducting pore 

remains closed, the diffusion of K-ions is possible through a mutated VSD, which results the  -current. 
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(2) To study the diffusion influenced dynamics as well as the energetics of the non-equilibrium VGKC-

gating, here we have constructed the corresponding master equation where it is considered that the channel protein is 

continuously excited by the oscillating voltage so that the channel protein is compelled to show its non-equilibrium 

response far away from equilibrium. 

(3) For complete study, we have pursued our analysis for constant voltage case, where it is shown that the 

single parameter Hodgkin Huxley equation is related to the master equation for the transition between the five 

conformational states even in presence of diffusion. 

(4) Both for constant and oscillating voltage, we have observed that at diffusion controlled limit, the gating 

process becomes delayed and as a consequence, the ionic current takes more time to reach its steady value compared 

to that of the reaction controlled limit. 

(5) At the medium frequency range of the oscillating voltage, it is observed that the diffusion of the K-ions 

diminishes the dynamic hysteresis loop areas, shown in the plots of the ionic current as well as total, medium and 

system entropy production rates with the voltage. 

(6) Moreover, for oscillating voltage the diffusion time scale interferes with the intrinsic time scale of the 

ion-channel producing a beating phenomenon in the current signal whose modulation depth depends on the diffusion 

rate. This modulation of interference beat can be utilized dynamically to control over any other time scale, for 

example, drug binding rate or other externally controlled rate process. 

(7) At reaction controlled limit, the ionic current and the total entropy production rate i.e., the total 

dissipation rate obeys the inverse relation with the square of the amplitude, of the oscillating voltage, however, at 

diffusion controlled limit, such relation is broken down. 

(8) Another intriguing observation is that at extreme high frequency, the time period of oscillation of the 

total entropy production rate appears as half of the external frequency, but diffusion tends to destroy such symmetry 

over the two half cycles. 

 

Appendix 

6.  Solution of probability for oscillating voltage case under diffusion 

The solution of the above equation can be written as  

 .])([)(])([)(=)(P '''

'

'

0

''

0
044 dtdttKexptdttKexptPt D

t

t
D

t

t
D

t

t



    (36) 

 Using Eq.(36) one can write )(P4 t  for TmtT 1)(<<m   as[26]  

 ,])([)(])([)(=)(P '''

'

'''

44 dtdttKexptdttKexpmTPtmT D

t

t

t

mT
D

t

mT



    (37) 

 where T is the time period of the oscillating voltage and m ( 0,1,2,....= ) is the index of oscillation period. Now, 

using Eq.(36), one can write a recursion formula connecting the probabilities )(P4 mT  and )1)((P4 Tm  as  

 ,)(=)1)((P 044  mTPTm   (38) 

 where   and 0  are given by  

 




  dttKexp D

T

)(=
0

  (39) 

 and  

 .)()(= '''

'

'

0
0 dtdttKexpt D

T

t

T









   (40) 

 Above recursion relation gives the value of )(P4 mT  as  
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 ,
1

1
(0)=)(P 044 











m
mPmT  (41) 

 where (0)P4  is the initial probability of the ion-conducting state. When m , the probability )(P4 mT  

approaches its asymptotic value,  

 .
1

=)(Pl 0
4




 mTimm  (42) 

 By substituting the above equation into Eq.(37) and taking the asymptotic long time limit of the probability, 

)(P4 tmT   which is denoted as )(P )(

4 tss
, we obtain  

 .
1

)(
=)(P=)(P 4

)(

4





t
tmTlimt m

ss
 (43) 

 Here the function )(t  is given by  

 .)()(=)( '''

'

' dtdttKexptt D

Tt

t

Tt

t 








   (44) 

 

At very low frequency limit when T ,   defined in Eq.(39) vanishes. Therefore, )(P )(

4 tss
 in Eq.(43) can be 

written as  

 .])([)(=)(P '''
'

0

'

0

)(

4 dtdtttKexpttt D

t

D

T
ss 

    (45) 

 As )( 'tD  and )(K 'tD  are slowly varying functions in the low frequency limit, we can take the following 

approximation  

 )()()(K),()()( '''''' 
 tKttKttttttt DDDDDD

  

and  
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2

1
1])([e '2'''
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0
ttKexpttKdtttKxp DDD
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











   (46) 

 Neglecting the term proportional to the product )()( tKt D , we obtain  

 ,
)(

)(
)()(P )(

4
tK

tQ
tQt

D

ss


  (47) 

 where 
)(

)(
=)(Q

tK

t
t

D

D
. Then for slowly varying voltage, )(P )(

4 tss
 finally becomes  

 .
)(

)(
=)(P )(

4
tK

t
t

D

Dss 
 (48) 

 

Similarly, in the high frequency limit when 0T  ,   defined in Eq.(39) can be written as  

 .1=  DKT  (49) 

 Here dttf
T

f
T

)(
1

=
0  where f  can be )(tD  or )(K tD . Hence )(P )(

4 tss
 in Eq.(43) takes the form  



Das B & Gangopadhyay                                                             The Pharmaceutical and Chemical Journal, 2018, 5(2):144-166 

 

         The Pharmaceutical and Chemical Journal 

165 

 

 .)()(
1

=)(P '''

'

')(

4 dtdttKexpt
KT

t D

Tt

t
D

Tt

t
D

ss












   (50) 

 In the high frequency limit we can take the following approximation  
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 Using this approximation, Eq.(50) can be written as  

 
''

''''''

)(

4

)(

)()()(
=)(P

dttK

dttKdttdtt
t

D

Tt

t

D

Tt

t
D

Tt

t
D

Tt

tss













 
 

 

 ).(
)(

)(
= t

tK

t

D

D 






 (52) 

 Here we define 
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't  varies in 

the range, Ttt  't  and 
't

 varies in the range, Ttt 

''t . In the double integration,   in the limit of 

0T  , one can approximate ))(( '' 
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  and consequently 0)( t  in the high frequency limit. 
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