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ABSTRACT

In the Western Anatolian region, NE-SW, E-W directional basins were developed which were
limited to the extension-related faults beginning in the late Oligocene to early Miocene. The
fillings of these basins consist of fluvial — lacustrine deposits containing volcanic and volcaniclastic
intercalations. These deposits include intensive local unconformities and soft sediment deformation
structures. The filling of the Bigadic Neogene Basin which is one of these basins, constitute base
limestone unit, lower tuff unit, lower borate unit, upper tuff unit and upper borate unit. The base
limestone unit composed of claystone, marl, limestone, dolomitic limestone facies was deposited
in the deep lacustrine environment. The soft sediment deformation structures were defined in the
base limestone unit, which outcroped in the south of Bigadic. These are: slumps, rock falls, chaotic
structures, clastic dykes, synsedimentary faults and breccia limestone. Deformation mechanisms
are related essentially to the increase of slopes of layers, liquidization and fluidization. In the study
area; regional tectonics, sedimentological data, and deformation structures are evaluated together, it
Received Date: 26.12.2016 IS concluded that these structures are formed by tectonic and seismic (earthquakes related to tectonic
Accepted Date: 14.09.2017  origin and syndepositional magmatic activities).
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1. Introduction Okay and Satir, 2000; Jolivet et al., 2013). These
basins, which contain volcano sedimentary deposits,
were developed by detachment faults defined in the

Menderes massive. In the period during which the

The extension that began in late Oligocene-
early Miocene, the latter periods of the continuing

collision following the closure of the northern branch
of the Neotethys in the Western Anatolia region, has
continued until today (Altunkaynak and Yilmaz,
1998; Westaway, 2006). This extensional tectonism
has caused the development of metamorphic core
complexes, the fault controlled NE-SW and E-W
directional sedimentary basins (Figure 1) and
the settlements of magmatic rocks (Savas¢in and
Guleg, 1990; Seyitoglu and Scott, 1994; Seyitoglu,
1997; Altinkaynak and Yilmaz, 1998; Yilmaz et
al., 2001). The extension, which was formed in
Neogene in the Western Anatolia region, mainly
affected the Menderes massive (Harris et al., 1994;

extensional tectonism is affective the NE directional
Soma, Bigadi¢, Demirci, Gordes and Selendi basins
developed (Kogyigit et al., 1999; Yilmaz et al., 2000;
Bozkurt, 2000, 2003; Isik et al., 2003; Bozkurt and
Sozbilir, 2004). The fillings of these basins, which
unconformably overlie the pre Miocene basement,
are represented by the fluvial-lacustrine deposits
containing volcanic and volcanoclastic intercalations
(Erkdl and Tatar Erkal, 2010). These are generally
the multi-staged basins (Sozbilir, 2007). The first
stage, which represents the Oligocene- early Miocene
period, constitutes the opening (formation) period of
basins. However; the second stage (20-7 my) is the
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Figure 1- a) Main structural characteristics in Turkey; NAF: North Anatolian Fault; IAESZ:
Izmir-Ankara-Erzincan Suture Zone; BSZ: Bitlis Suture Zone; EAF: East Anatolian
Fault; DSF: Dead Sea Fault, b) Neogene basins in the Western Anatolia (modified

from Garcia-Veigas and Helvaci, 2013).

period in which fillings of basins have developed.
During the infilling of basins, the normal and slip
faults in different angles have also accompanied to
the sedimentation. In the last stage; E-W directional,
normal and strike-slip faults have developed (Sézbilir,
2007). The Bigadi¢ Neogene basin, which was opened
at the beginning of Late Oligocene-early Miocene,
has been filled until the end of Early Miocene.
During the sedimentation that controls this basin the
tectonic events stated above have been effective and
their traces have been observed in it. Besides; the
locations and geometries of NE-SW directional slip
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faults (Figure 2), which cut basin infillings after the
sedimentation, show that these are the continuation of
faults that control the basin. The deposits here contain
local stratigraphic unconformities associated with
the tectonism controlling the basin (intra-formational
unconformities). The dips of the upper tuff beds and
overlying upper borate unit reach up to 80 degrees
in some places. The radiometric age data obtained
from volcanic rocks varying from basalt to rhyolite
show that these basins have been under the effect of
volcanism during early-middle Miocene (Erkil and
Tatar Erkul, 2010). The unconformity and deformation



Bull. Min. Res. Exp. (2018) 156: 67-86

|:’ alluvium and scree deposits

oo angular unconformity
m Upper Miocene-Pliocene

continental deposits

~oomo angular unconformity
Kayirlar volcanic unit
(andesite-trachyandesite)
Galcik basalt
(olivine basalt)
lacustrine sedimentary rocks (lower
limestone, lower borate urat, upper borate wnit)

@
5 E upper tuff unit
2

lower tuff unit

Sindirg: voleanic unit
(undifferentited felsic lavas and pyroclastic rocksi

[v % ] Kocaiskan voleanic unit
Lv v] (andesite)
oo nonconformity

E pre-Miocene basement
sinistral and dextral strike-slip faults
m (defined-inferred)
uncharacterised faults
{defined-inferred)
kt Kayahdere measured section

L]
- N

=
-
E
l s angular unconformity

Figure 2- The geological map of the study area and its vicinity (modified from Erkul, 2006).

structures in these deposits can be associated with
detachment faults controlling the development of
basins. The deformation structures formed by the
earthquake induced vibrations that are caused by these
faults are defined as seismites (Seilacher, 1969). The
seismites have been observed in many environments
too (in fluvial, delta, lacustrine, etc.) (Owen, 1995;
Gibert et al., 2005; Moretti and Sabato, 2007; Kog-
Tasgin and Tiarkmen, 2009; Mastrogiacomo et al.,
2012). The soft sediment deformation structures have
been developed in the lacustrine environment in this
study. The lacustrine environments are depositional
environments, which most clearly reflect the results of
seismic and tectonic activity during sedimentation as
the deformation structure.

The purpose of this study is to define the soft
sediment deformation structures, which were observed
within the basal limestone unit located in the Bigadi¢
volcano sedimentary deposit in the Bigadic basin, and
interpret the formation mechanism.

2. Stratigraphy

The outcropping rock in the vicinity of the study
area is the deformed Late Cretaceous- Paleocene
flysch zone which is formed by big olistolith and

ophiolitic blocks within chaotic sediments (Okay et
al., 1996, 2001; Erkil et al., 2005a) (Figures 2 and
3). This unit is unconformably overlain by the early
Miocene Kocaiskan volcanics, the Bigadi¢ volcano
sedimentary deposit, the late Miocene-Pliocene
terrigenous deposits and Quaternary sediments (Erkul
et al., 2005a and b). The Kocaiskan volcanics cover an
area of more than 800 km? and are the earliest products
of the early Miocene volcanic activity in the Bigadic
region. In previous studies, it has been defined as the
basal volcanic (Gundogdu et al., 1989; Helvaci, 1995).
The unit is formed by andesitic intrusions, pyroclastic
rocks and volcanic origin sedimentary rocks (Erkul et
al., 2005a).

Sindirgr  volcanics, Golcik basalts, Kayirlar
volcanics and Sahinkaya volcanics constitute the
volcanic units of the Bigadi¢c volcano-sedimentary
deposit. However; the lacustrine units of this unit
is composed by basal limestone, lower tuff, lower
borate, upper tuff and upper borate units (Figure
2). Sindirgl volcanics are composed of dacitic and
rhyolitic intrusions, massive and autobrecciated lava
flows and pyroclastic deposits. Dacitic and rhyolitic
rocks cover large areas in the eastern and southern
parts of Bigadic. Golciik basalts spread out between

69



Bull. Min. Res. Exp. (2018) 156: 67-86

L i e 5 a
2 Th'fll;’;ess Lithology Description
&
E
g alluvium and slope deposits
2 angular unconformity
2. continental deposits:
285 intercalation of sandstone and conglomerate
E-a'% - angular unconformity
£ 5 g / Bigadic¢ volcano-sedimentary succession
- L Sahinkaya volcanites:
_basaltic andestic intrusions, associated lava flows and autobreccia
(K/Ar age: 17.8 + 0.4 Ma) Kayarlar volcanites:
5 T - . andesitic, trachyandesitic
upper borate unit evaporitic-lacustrine ; : x
sediments altemating with  * Symscmistary MEusons
acidic volcaniclastic rocks: aﬁ? :rﬁxla;]déa I%gnﬁs
upper tuff unit claystone, siltstone, marl ( age:s oV (fiMa)
=4 borate horizons Eﬁi?{;zgﬁzg‘:ﬁ?r;’;;me Golciik basalt:
_w(mainly colemanite 2 olivine basalt intrusions
and ulexite) and volcanic sandstone o |- 1k Haws
¢ alternations (Ar/Arage: 19.7 + 0.4 Ma
N lower borate unit - K/Arage: 20.5+ 0.1 Ma
= borate minerals :
g within clay-dominated Sindirg: volcanites:
2 layers (mainly dacitic rhyolitic
= | lower tuff unit colemanite and ulexite intrusions, lava flows and
= ¥| pyroclastic rocks (K/Ar age
5 lower limestone dacite: 19.0+ 0.4 1:13
- _ 1l basal conglomerate | S ]
= - . angular unconformity ————
Kocaiskan volcanites
® late-stage andesitic intrusions and lawa flows
& intercalation of volcanic breccia-conglomerate-sandstone
(mainly andesite lava and minor pyroclastic clasts) @
™ andesitic autobreccia 2
———®andesitic pyroclastic deposits .E
|y early-stage andesitic intursions and lava flows g
(K/Ar age: 23.0+ 2.8 Ma) B . g
angular unconformity —— g
@
E Bornova Flysch Zone:
é Mesozoic limestone olistolith, minor
b ultramafic and chert blocks within
- [ PP, TSR e .
Figure 3- Generalized stratigraphic section of the study area (modified from Erkiil, 2005b).
Golcuk and Babakdy, and are composed of olivine limestone, dolomitic limestone, claystone, marl

basalt dykes and volcanic domes in NE direction. It
also spreads around Camkdy. Kayirlar volcanics are
made up of trachyandesitic dykes, massive and auto
brecciated lava flows in Dogangam and Kayirlar
regions. Sahinkaya volcanics are basaltic and andesitic
dykes, and are composed of lavas intercalating with
dykes and auto brecciated pyroclastic rocks (Erkdl et
al., 2005a).

Lacustrine units were divided into 5 units and
studied by Helvaci (1995). The same classification
was followed in this study too. These units from
bottom to top are; the units of basal limestone, lower
tuff, lower borate, upper tuff and upper borate. The
unit, which is represented by the intercalation of
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and tuff, was named as the “Basal Limestone” and
constitutes the main topic of this study. The unit
unconformably overlies the Kocaiskan volcanics and
is also conformably overlain by the lower tuff unit. The
lower tuff unit a wide spread unit between Bigadi¢ and
Cagis, is represented by coarse grained, thick layered
(25 cm) or thickly bedded gray-white tuffs,which is
up to 150 m thick. Economically important lower
borate unit in the study area is composed of limestone,
cherty limestone, tuffite, claystone and marls. The
upper tuff unit is represented by “zeolitic” tuffs in
the lower layers and as fine grained tuffs in the upper
layers. The upper borate unit is represented by boron-
claystone-limestone-tuff intercalation in the lower
layers; claystone-limestone-tuff intercalation with
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organic material in the middle layers and by medium
to fine grained laminated sandstone in the uppermost
layers. In the same layers of the unit, the slumps and
associated syn-sedimentary faults were developed.

The terrestrial deposits unconformably overlie
the Miocene volcano-sedimentary deposits. The
Upper Miocene-Pliocene red and beige sandstone and
conglomerate layers of fluvial origin outcrops around
Kocaiskan. These are unconformably overlain by
unconsolidated clastic sediments of Quaternary age.

3. Sedimentological Characteristics of the Basal
Limestone Unit

The basal limestone unit is represented by the
intercalation of limestone, dolomitic limestone,
claystone, marl and tuff. The measured thickness of the
unit in this study is nearly 200 m (Figure 4). Mention
the attitude of beds at proper positions in this paragraph.
The deposit begins with dolomitic limestones that have
much fractured and jointed structures and passes into
banded tuff- cleavaged limestone-marl intercalation
in the upper layers, and into claystone-limestone-tuff
intercalation in the uppermost layers. The limestones
are generally bedded and occasionally massive in
character. The bedding thickness of cream to beige
colored limestones is approximately 10 cm. They also
have 2-3 cm thickness in some places and intercalate
with tuffs. The marls are gray to green in color and
observed as intercalating with tuff and limestone
layers. They occasionally have the characteristics of
conchoidal cleavage and consist of volcanic clastics in
sand and pebble (1 cm) sizes. The medium to coarse
silt size tuffs commonly exhibits lamination while at
places they exhibit bedded nature also fractures and
cracks in tuffs are filled with calcite.

The organic, laminated facies with carbonate
clastics are composed of micritic carbonates, silt size
clastic material and the intercalation of organic rich
layers. It is considered that these were formed at the
bottom sections of a less energetic, cold lake, which
is not much saline, and presents seasonal bedding
(Donovan, 1980). Similar facies (marl/limestone
and mudstone/marl laminites) were interpreted as
the perennial lacustrine deposits (Tanner, 2002). In
these facies there were not encountered any evidence
indicating shore (palustrine) or shallow regions (caliche
for palustrine environments, desiccation cracks, wave
origin structures for shallow environments, fossil
diversity).

Sedimentological data obtained in this study
indicate that the unit has sometimes been affected from
the volcanism and deposited in deep lake environment.
According to its relationship with volcanic units, the
age of the unit was given as the Lower Miocene (Erkdl
et al., 2005a). Helvaci and Alaca (1991) detected the
age of unit as the Lower Miocene according to its
stratigraphic relationship with units at the bottom
and top. Even though the washed samples of Basal
Limestone unit yielded limited number of shells it was
not possible to date and hence Lower Miocene age
asigned by previous workers is followed in this study.

4, Soft Sediment Deformation Structures

Soft sediment deformation is a term used for the
variation of fabric and layers of recently deposited
sediments (Nichols, 2009). It is generally formed
in granular sediments of which soft-sediment
deformation structures are saturated with water. This
strength loss is related with the liquefaction and/or
fluidity of the water which develops as a result of
the pore water pressure (Allen, 1982; Owen, 1987).
In addition; the soft sediment deformation structures
were also observed in carbonate rock deposits
(Demicco and Hardie, 1994) and defined as seismite
by some researchers (Weaver and Jeffcoat, 1978; Pratt,
1998, 2002; Kahle, 2002; Jewell and Ettenshon, 2004;
André et al., 2004; McLaughlin and Brett, 2004).

Such structures were encountered in lakes (Sims,
1973; Hempton and Dewey, 1983; Scott and Price,
1988; Karling and Abella, 1992; Alfaro et al., 1997;
Jones and Omoto, 2000; Rodriguez-Pascua et al.,
2000; Moretti and Sabato, 2007; Kog-Tasgin and
Tirkmen, 2009), in deltaic environments (Gibert et
al., 2005; Owen and Moretti, 2008), in shallow marine
and tidal environments (Johnson, 1977; Bhattacharya
and Bandyopadhyay, 1998; Molina et al., 1998;
Rossetti, 1999; Rossetti et al., 2000; Rossetti and
Goes, 2000; Moretti et al., 2001; Spalluto et al., 2007;
Mastrogiacomo et al., 2012; Chen and Suk Lee, 2013)
and in fan delta deposits (Postma, 1983). Besides; there
are experimental studies related with the formation of
these structures (Kuenen, 1958; Nichols et al., 1994;
Owen, 1996; Moretti et al., 1999).

Within basal limestone unit the soft sediment
deformation structures in different types were defined
in many layers of the Kayalidere section (Figure 4).
These structures are explained below in detail.
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Figure 4- Kayalidere measured section. Deformation structures are marked on the section. S: Slump Features, CS: Chaotic Structures, RF:

Rock Fall, CDS: Clastic Dyke and Sills, SF: Syn-sedimentary Faults, BL: Brecciated Limestone.

4.1. Slump Structures

Slump structures were observed and defined along
the road cuts around the Kayalidere village where Basal
Limestone units are well exposed (Figures 4-6). The
structures,which are encountered at different levels of
the unit, especially have affected bedded limestones.
It has sometimes affected the thin bedded limestones
and dolomitic limestone layers and sometimes tuff
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and marl layers, and formed slump structures of
different dimensions. The size of small scale slump
structures varies in between 20-100 cm. Also, the
syn-sedimentary faults were formed towards the end
portions of folds related with slump structures (Figure
5D). The slip amounts of these faults, which have the
characteristics of inverse fault, are approximately 10
cm. These structures were observed in depth intervals
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T AL e

Figure 5- Small scale slump structures. These structures were developed in; a) dolomitic limestones b) bedded limestones and c) marl-
limestone intercalation. d) syn-sedimentary inverse faults associated with slump structures.

Figure 6- Large scale slump structures; a) and b) claystone, marl, limestone and tuff layers, c) tuff layers associated with limestones,
d) slump structures observed in bedded limestones.
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of 142-155 m, 174-179 m, 193-198.5 m and 240-301
m in the Kayalidere measured section (Figure 4). The
slump structures detected in limestones between of
142-147 meter are associated with chaotic sediments
(tuff blocks and volcanic rock clastics). The layers are
observed as bended and folded in different directions.
The sediments here moved generally in the direction
of SW (220°).

Interpretation: Slump structures develop due to
the downward slip of the mass of sediment from the
slope. These structures are characterized by inverse
faults, isolated or continuous folds in the ends and
by extensional structures over the head (Martinsen,
1994; Spalluto et al., 2007; Owen et al., 2011; Alsop
and Marco, 2011, 2013). Slump structures are formed
by steepening of slopes due to excess loading (due to
rapid sedimentation), deposition (accumulation) and
by earthquakes (Allen, 1982; Mills, 1983; Keefer,
1984; Owen, 1987; Van Loon and Brodzikowski,
1987; Moretti, 1996; Shanmugam, 2017). They may
also occur due to the sloping of layers related with
tectonic activities (faulting etc.) (Maltman, 1994a,
1994b; Siegenthaler et al., 1987; Mastrogiacomo et
al., 2012; Perucca et al., 2014).

4.2. Chaotic Structures

Chaotic structures, which are observed in a couple
of layers within the Basal Limestone unit (especially
in the upper layers), are seen in the mixed form of
slump structures and rock falls (Figures 4-7). The
slump structures observed here have mostly moved in
the direction of SW (210°-220°) and occasionally in
the direction of NE (40°-45°). The planes of fold axes

are horizontal, sub-horizontal and vertical. Slump
structures influenced bedded limestones and tuff layers
intercalating with them, and formed chaotic folds. The
limestones consist of agglomerate and tuff blocks
with sizes even reaching 3 m. The long axes of these
blocks are both horizontal and vertical. These chaotic
structures are either bounded by calcarous cement or
tuffaceous material. It is also seen that these structures
are occasionally associated with normal faults.

Interpretation: The complex or chaotic soft
sediment deformation structures may occur in layers
which have been affected by a couple of deformation
phase. These deformation phases should have been
repeated in short intervals. The deformation phase
or phases, which follow the complexities formed
by the main deformation phase (e.g. such as the
aftershocks following an earthquake), could make the
succession more complex (Mazumder et al., 2016).
In the formation of chaotic sediments here, the faults
controlling the basin and syn-tectonic activities such
as volcanic and seismic activites associated with these
faults should have been effective (Basilone et al.,
2014).

4.3. Rock Falls

These generally occurs in pebble, fragment
(mention size) and large blocks (mention dimension)
of varying lithologies that recurs at different levels
within the Basal limestone unit (Figures 4, 8 and 9).
It is seen that these rock fragments are sometimes
related with slumps and sometimes with chaotic
sediments. There are also observed floating rock
blocks within limestone. Within marl and limestone,

Figure 7- Chaotic structures, a) geological cross section showing chaotic structures, b) agglomerate blocks and slump structures, ¢) slump
structures affecting the bedded limestones and tuff clastics, d) tuff block and slump structures.
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the fragments and blocks of tuff and volcanic rock
fragments (10-15 cm) take place. The size of tuff
fragments vary between 20 and 100 cm. The size
of agglomerate blocks observed in tuff reaches 6 m
(Figure 7). Commonly the limestone beds below such
agglomeratic blocks are observed to be deformed /
buckled and sunken down/downwarped, similar to
blocks (Figure 8a, b).

Interpretation: Rock falls are the most frequently
seen mass movements associated with earthquakes.

These movements occur on slopes at angles more than
40° (Keefer, 1984). They accumulate as colluvial or
in tens of meters ahead the bottom section of steep
slopes (Keefer, 1999). According to Montenant et al.
(2007), the rock falls are gravity associated events
originating from earthquakes. These rock fall deposits
that reaches couple of meters in thickness could have
been developed because of seismic event related
with block faulting and extension effective in basin
(Bozkurt and Sozbilir, 2004; Sozbilir, 2007; Erkil and
Tatar Erkiil, 2010).

Figure 8- a) and b) agglomerate blocks observed within limestones. Limestone layers under the block are deformed.
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Figure 9- Rock falls in small scale, a) and b) tuff clastics, c) volcanic rock fragments.

4.4. Clastic Dykes and Sills

The clastic dykes observed in the study area
occur between clayey limestone and fine to medium
grained tuff. The deformation in question continues
tens of meters laterally (Figure 10). The fine grained
tuffs located in lower layers deformed limestones
by intruding into them. The vertical length of dykes
reaches 30 cm occasionally and that at places dike
intrude through both limestone and medium grained
tuff and intrudes in to the coarse grained tuff. Dyke
formation began in the lower layer in the form of a very
thin fracture and reached 7 cm thickness in maximum
in the upper layers. The sills, which are the product
of tuffs, show lateral continuity within limestones as
connected with dykes.

Interpretation: The best indicator of liquefaction
and fluidization as the soft sediment deformation
structure is the water escape structures. For example;
the dish and column structures, sand volcanoes, clastic
dyke and sills (Mills, 1983). Dykes are generally
formed by the upward transportation of sediments
with pore water (Lowe, 1975, Owen et al., 2011,
Mazumder et al., 2016; Onorato et al., 2016). The
water escape structures are formed by the liquefaction
and fluidization of the water in sands restricted by low
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permeable layers (Owen, 1987; Moretti and Sabato,
2007). Such clastic dykes could also be formed as a
result of the upward movement of liquefied sediment
under the pressure of upper layers (Daley, 1971;
Rossetti, 1999; Montenant et al., 2007). Dykes and
sills observed in the study area should have developed
as being associated with the upward and lateral
movement of tuffs as a result of liquefaction and
fluidization (Rodriguez-Pascua et al., 2000).

4.5. Syn-sedimentary Faults

The syn-sedimentary fault, which is observed in
the Basal Limestone unit especially affected tuff-
limestone-marl facies, (Figure 11) and are generally
in the characteristics of steeply inclined normal
fault. Normal faults, which affect the deep lacustrine
deposits, have formed horst and grabens in occasions.
Over the layers of horst portions the breakdowns and
detachments were developed. The net slip amount of
the faults vary between 30 cm to 1 m.

Interpretation: The brittle deformation is associated
with cohesive behavior of the sediment. When the
pore water pressure in sediments increases and it is not
strong enough to liquefy the sediment pressure then
the brittle deformation occurs (Owen, 1987; Vanneste
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Figure 10- Clastic dyke and sills. Dyke and sills formed by the fine grained tuffs
affected clayey limestones and medium to coarse grained tuffs.

Figure 11- Syn-sedimentary normal faults affecting the claystone, marl, limestone and tuff layers.
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et al. 1999). Rosetti and Goes (2000) emphasize that
these structures are associated with unconsolidated
or poorly consolidated sediments. The structures
investigated in the study area have developed after the
partial consolidation of sediment.

4.6. Brecciated Limestones

The brecciation is observed in bedded limestones
and partly in massive limestones (Figure 12). It has
also affected limestone blocks which are observed in
the form of rock fall. In brecciated layers, occasionally
the angular limestone pebbles with sizes reaching 15
cm are observed. There were also observed brecciated
limestone fragments within tuffs. These are generally
grain supported.

Interpretation: The liquefactions, which are
formed by the increasing pressure of entrapped water
in pores of the early calcite cemented carbonate
sediments cause brecciation (Clukey et al., 1985).
Breccias defined in this study area associated with
the liquefaction and some of the breccias observed in
limestone blocks within tuffs should have developed
during the transportation.

5. Triggering Mechanism

In order to detect the triggering mechanism, it is
necessary to discuss all triggering mechanisms in the
light of paleo-environmental analyses.

The presence of steeply inclined slopes is
important for the formation of slump structures. The
facies analyses carried out in the succession during
the study indicate that the depositional environment
is flat or sub-flat. Though it is considered that steep

slopes are the main factors for the formation of slump
structures, these may also occur at low angle slopes
(even at degree of 1°) (Shepard, 1955; Field et al.,
1982; Mills, 1983). It is stated that these structures,
which occur on flat areas, are generally associated
with paleoseismic activities (Bhattacharya and
Bandyopadhyay, 1998; Rossetti and Santos, 2003;
Spalluto et al., 2007; Garcia-Tortosa et al., 2011).
Slump structures may occur due to excess load
(related to the rapid sedimentation) (Allen, 1982). The
entrapped waters among grains cause the increase in
pore water pressure in next periods and the grains to
become weak during rapid sedimentation. There was
not observed any sudden coarse grained facies entrance
in the study area. In poorly consolidated sediments,
the most probable reason for the formation of slump
structures is the increase in slope angles (steepening).
Slump structures are formed when the bedded layers
are inclined enough to exceed the stability limit.
The slope increase in layers develops due to the
deposition and tectonic movements. At the same time;
the erosions, which are formed by water flows or
turbiditic currents, may cause the increase in the slope
angle (Mills, 1983). The facies characteristics and
environmental data of the study area indicate that the
deposition and current activities are not effective in
the development of structures here. Slump structures
here should have been formed as a result of increase
in slope angle with the effect of seismic activities.
The tremors, which occurred as a result of seismic
shocks and/or volcanic activities, might have caused
the decrease in the cohesion of sediments in inclined
layers and sliding.

The formation of deformation structures such
as chaotic sediments and rock falls are associated

Figure 12- Brecciated limestones.
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with seismic and tectonic activities (Keefer, 1999;
Montenant et al., 2007). The normal faults, which
affected the basin during sedimentation, caused
topographic reliefs in the basin. These rises caused
rock falls in block and fragment sizes belonging to
basal volcanics.

The liquefaction of buried layers begins with
seismic activity (Clague et al., 1992) and the
groundwater movements can cause these layers to
be fluent (Guhman and Pederson, 1992). However;
the hydraulic tension, which develops depending on
the instant periods of the groundwater, widely causes
the formation of local structures in young sediments.
The dykes defined in this study show continuity in
tens of meters. The rapid sedimentation may cause
the formation of sand dykes (Parize and Fries, 2003).
Facies overlying the dykes in this study show that these
are not related with the rapid sedimentation. The sand
dykes may also be formed by big storm waves (Martel
and Gibling, 1993). However; the probability of big
storm movements to be effective is weak in relatively
deep lacustrine environments. The periodical tensions
that are formed by seismic waves cause the pore water
pressure to increase and the liquefaction (Owen and
Moretti, 2011). The mechanism, which initiates the
formation of sand dykes here, may be associated
with seismic shocks (Mills, 1983; Audemard and
De Santis, 1991; Obermeier et al., 1993; Obermeier,
1996; Rodriguez- Pascua et al., 2000) and/or tremors
caused by the volcanic activities. The tremors, which
are related to volcanic activities and frequently control
the basin, should have initiated the liquefaction and
fluidization event (Samaila et al., 2006; Tian et al.,
2014; Zhou et al., 2017).

The sedimentological characteristics of deposits,
their abundances and relationships with other
deformation structures, which were formed by small
scale normal faults show that these are developed
based on the seismic activities (Vanneste et al., 1999).
The normal faults known in the study area indicate
that the region is controlled by an extensional tectonic
movement. Syn-sedimentary faults with normal
character are compatible with the regional tectonism.
In other words; the syn sedimentary faults in the study
area should have developed as associated with seismic
movements due to the extensional tectonic activity in
the region.

The breccias observed in limestones deposited in
marine environments were developed by big storm
movements (Seguret et al., 2001; Chen and Lee,

2013). The limestones deposited in the lacustrine
environment have weak probability to get influenced
from big storm movements. The observation of
brecciation in footwall blocks in places indicates
that these are associated with both transportation and
seismic activity.

The liquefaction can be initiated depending on
several factors. These factors affect the deposition
environment both externally (allogenically) and
internally (autogenically). The allogenic factors are
tectonic movements and earthquakes. The factor
affecting the depositional environment internally
are autogenic in character, and these are; the wave
motions, strikes due to the breaking of waves, stormy
pressure vibrations in strong water flows, shear tension
due to tsunami and tidal movements, rapid sediment
rise, glacial melting in badly drained sediments or the
groundwater movements (Owen and Moretti, 2011).
There was not detected any evidence supporting
autogenic factors that could initiate the formation
of soft sediment deformation structures in the Basal
Limestone unit. In other words; it seems quite
difficult to associate these deformation structures,
which developed in the lacustrine environment, with
the triggering mechanism such as the shear tension
related to wave motions, tsunami. So; in this case,
the allogenic factors (tectonic movements, volcanism
and earthquakes) should have been effective in the
formation of deformation structures observed in the
study area.

Itis known that the faults associated with extension,
which began in late Oligocene-early Miocene in the
Western Anatolia region, are very effective during
the formation of NE-SW and E-W directional basins
and the deposition of volcano-sedimentary deposit.
The sedimentation in the Bigadi¢c Neogene basin was
controlled by tectonism and volcanism (Helvaci and
Alaca, 1984, 1991). There are many and significantly
large faults in the region. The step faulting system
constitutes one part of these faults (Giindogdu, 1982,
1984; Yilmaz et al., 1982; Baysal et al., 1985, 1986).
During the sedimentation in the Bigadi¢ Neogene
Basin, the NE-SW directional oblique slip, normal
faults, strike slip faults and anticlines/synclines have
developed (Erkdl et al., 2005a). When the locations
of faults and the characteristics of the basin fill
are studied, it is seen that these faults are the basic
structures controlling the development of the basin
and one part of these continue their functions as syn
sedimentary faults (Figure 13) (Baysal et al., 1986;
Erkil et al., 2005a).1t is seen that the sedimentation
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in the basin, which developed in trans-tensional
zone, is intensively accompanied by volcanism in
addition to the faulting. During the sedimentation, the
volcanism and dykes 100 m in width 2 km in length
developed in the region together with intrusions
(Erkal et al., 2005a). Accordingly; the earthquakes,
which were formed as a result of magmatic activities
synchronously with tectonics and deposition, should
have been effective in addition to the tectonism, which
is the main mechanism triggering the development of
deformation structures here.

Seismic shocks may cause liquefaction and/or
fluidization in unconsolidated sediments (Seilacher,
1969; Lowe, 1975; Sims, 1975). The tendency of
seismic activities to form in the basin, which is
restricted by fault, is higher (Mastalerz and Wojewoda,
1993; Bhattacharya and Bandyopadhyay, 1998; Kog-
Tasgin and Tarkmen, 2009; Kog-Tasgin, 2011; Kog-
Tasgin et al., 2011). For the formation of liquefaction,
the magnitude of the smallest earthquake should be
greater than 5 (Audemard and De Santis, 1991). So;
the earthquakes with magnitudes greater than 5 should
have been effective during deposition in the region.
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6. Results

In this study, the morphological characteristics of
soft sediment deformation structures observed in the
Early Miocene basal limestone unit around Bigadic
were established and formation mechanism was
interpreted. In the lake, where the basal limestone
was deposited, it was seen that both the tectonism
and volcanism accompanied the sedimentation.
Generally; tuffs and agglomerate levels in fewer
amounts developed as being associated with the
volcanism. Tectonic activities effective in the basin and
earthquakes associated with tectonic and magmatic
activities caused the formation of deformation
structures.

The deformation structures restricted with
undeformed layers from lower and upper layers and
show lateral continuity in tens of meters (clastic
dykes) indicate that these were developed in response
to seismic activities. The structures defined in the
study area show resemblance to seismic and tectonic
origin deformation structures, which were defined by
Seilacher, (1969); Moretti et al. (1999); Rodriguez-
Pascua et al. (2000); Rossetti and Gdes, (2000);
Moretti and Sabato, (2007); Mastrogiacomo et al.
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(2012) and experimentally approved by Kuenen,
(1958) and Owen, (1996) in previous studies. It was
determined that other factors (the shear tension due
to wave motions, tsunami and tidal movements, rapid
sedimentation, and groundwater movements), which
could form deformation, were not effective in the
study area.

In and around the study area, the soft sediment
deformation structures were intensely observed in the
Early Miocene lower and upper borate unit (Glinen
and Varol, 2004; Kog-Tasgin and Turkmen, 2014).
This situation indicates that tectonic, seismic and
associated magmatic activities in the region (Erkul et
al., 2005a and b) have continued during periods when
these sediments had been deposited.
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