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Abstract 

In this paper we outline the European interest rate swaption pricing formula from 
first principles using the Martingale Representation Theorem and the annuity 
measure. This leads to an expression that allows us to apply the generalized Black-
Scholes result. We show that a swaption pricing formula is nothing more than the 
Black-76 formula scaled by the underlying swap annuity factor. 

Firstly, we review the Martingale Representation Theorem for pricing options, 
which allows us to price options under a numeraire of our choice. We also 
highlight and consider European call and put option pricing payoffs. Next, we 
discuss how to evaluate and price an interest swap, which is the swaption 
underlying instrument. We proceed to examine how to price interest rate 
swaptions using the martingale representation theorem with the annuity measure 
to simplify the calculation. Finally, applying the Radon-Nikodym derivative to 
change measure from the annuity measure to the savings account measure we 
arrive at the swaption pricing formula expressed in terms of the Black-76 formula. 
We also provide a full derivation of the generalized Black-Scholes formula for 
completeness. 
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Representation Theorem; Radon-Nikodym Derivative; Generalized Black-Scholes 
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Notations 

The notation in table 1 will be used for pricing formulae. 

Table 1. Notations 

Notation Definition 
𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  The swap fixed leg annuity scaled by the swap notional 

𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  The swap float leg annuity scaled by the swap notional 

𝑏𝑏 The cost of carry, 𝑏𝑏 = 𝑟𝑟 − 𝑞𝑞 
𝐶𝐶 Value of a European call option 
𝐾𝐾 The strike of the European option 
𝑙𝑙 The Libor floating rate in % of an interest rate swap floating cashflow 
𝑚𝑚 The total number of floating leg coupons in an interest rate swap 
𝑀𝑀𝑡𝑡  A tradeable asset or numeraire M evaluated at time t. 
𝑛𝑛 The total number of fixed lef coupons in an interest rate swap 
𝑁𝑁𝑡𝑡  A tradeable asset or numeraire N evaluated at time t. 
𝑁𝑁 The notional of an interest rate swap 

𝑁𝑁(𝑧𝑧) The value of the Cumulative Standard Normal Distribution 
𝑃𝑃 Value of a European put option 

𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  
The market par rate in % for a swap. This is the fixed rate that makes the swap 
fixed leg price match the price of the floating leg. 

𝑃𝑃(𝑡𝑡,𝑇𝑇) 
The discount factor for a cashflow paid at time T and evaluated at time t, where 
t < T 

𝜙𝜙 
A call or put indicator function, 1 represents a call and -1 a put option. 
In the case of swap 1 represents a swap to receive and -1 to pay the fixed leg 
coupons. 

𝑞𝑞 The continous dividend yield or convenience yield 
𝑟𝑟 The risk-free interest rate (zero rate) 

𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  The fixed rate in % of an interest swap fixed cashflow 

𝑠𝑠 
The Libor floating spread in basis points of an interest rate swap floating 
cashflow 

𝑆𝑆 For options the underlying spot value 
𝜎𝜎 The volatility of the underlying asset 
𝑇𝑇 The time to expiry of the option in years 
𝜏𝜏 The year fraction of a swap coupon or cashflow 
𝑉𝑉 Value of a European call or put option 
𝑋𝑋𝑇𝑇  The option payoff evaluated at time T 
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1. Introduction 

A swaption is an option contract that provides the holder with the right, but 
not the obligation, to enter an interest rate swap starting in the future at a fixed 
rate set today. Swaptions are quoted as N x M, where N indicates the option 
expiry in years and M refers to the underlying swap tenor in years. Hence a 1 x 5 
Swaption would refer to 1 year option to enter a 5 year swap1. 

Swaptions are specified as payer or receiver meaning that one has the option 
to enter a swap to pay or receive the fixed leg of the swap respectively. 
Furthermore swaptions have an associated option style with the main flavours 
being European, American and Bermudan, which refer to the option exercise 
date(s), giving the holder the right to exercise at option expiry only, at any date up 
to and on discrete intervals up to and including option expiry respectively. 
Swaptions can be cash or physically settled meaning that on option expiry if 
exercised we can specify to enter into the underlying swap or receive the cash 
equivalent on expiry. In what follows we consider how European Swaptions on 
interest rate swaps with physical settlement are priced. 

In reviewing swaption pricing firstly we outline the necessary preliminaries 
namely the Martingale Representation Theorem (MRT), which provides us with a 
mechanism to replicate, hedge and evaluate option payoffs with respect to a 
hedge instrument or numeraire of our choice2. Secondly, since interest rate 
swaptions have payoffs determined by the underlying interest rate swap (IRS) we 
look at how to price the underlying IRS in order to better understand the swaption 
payoff, highlighting that Interest rates swap prices can be expressed in terms of an 
annuity numeraire. We also outline the canonical call and put payoffs to help 
identify that payer swaptions correspond to a call option on an IRS and likewise 
receiver swaptions to put options. 

We then proceed to apply the Martingale Representation Theorem, selecting 
the annuity numeraire, which was a key component in the underlying IRS price. 
We make this choice to simplify the mathematics of the expected payoff, which in 
this case leads to a Black-Scholes type expression. 

This allows us to use the generalized Black-Scholes (1973) result to arrive at 
an analytical expression for the swaption price, which we show is the Black-76 
formula scaled by an annuity term. To help readers to identify and apply the 
                                                           
1 Note the underlying 5 year swap in this case would be a forward starting swap, starting 
in 1 year with a tenor of 5 years and ending in 6 years from the contract spot date. 
2 Subject to the numeraire being a tradeable instrument which always has a positive 
value. This is so that the corresponding probability measure is never negative. 
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Black-Scholes result we take an extra unnecessary step to apply a change of 
numeraire to the expected payoff to simplify and transform the expected 
swaption payoff into the more classical and recognizable savings account 
numeraire or risk-neutral measure. Finally, we provide a derivation of the 
generalized Black-Scholes result for completeness. 

 

2. Martingale Representation Theorem 

In probability theory, the martingale representation theorem states that a 
random variable that is measurable with respect to the filtration generated by a 
Brownian motion can be written in terms of an Itô integral with respect to this 
Brownian motion. 

The theorem only asserts the existence of the representation and does not 
help to find it explicitly; it is possible in many cases to determine the form of the 
representation using Malliavin calculus. Similar theorems also exist for 
martingales on filtrations induced by jump processes, for example, by Markov 
chains. Following Baxter (1966), Hull (2011), and Burgess (2014), we established 
the martingale representation theorem that provides us a framework to evaluate 
the price of an option using the below formula, whereby the price Vt at time t of 
such an option with payoff XT at time T is evaluated with respect to a tradeable 
asset or numeraire N with corresponding probability measure QN. 

𝑉𝑉𝑡𝑡
𝑁𝑁𝑡𝑡

= 𝐸𝐸𝑄𝑄𝑁𝑁 �
𝑋𝑋𝑇𝑇
𝑁𝑁𝑇𝑇

 | 𝐹𝐹𝑡𝑡�                                                                      (1) 

or equivalently as:  

𝑉𝑉𝑡𝑡 = 𝑁𝑁𝑡𝑡𝐸𝐸𝑄𝑄𝑁𝑁 �
𝑋𝑋𝑇𝑇
𝑁𝑁𝑇𝑇

 | 𝐹𝐹𝑡𝑡�                                                                      (2) 

where Vt is the option price evaluated at time t; Nt is the numeraire evaluated at 
time t; 𝐸𝐸𝑄𝑄𝑁𝑁  is an expectation with respect to the measure of numeraire N; XT

 is at 
time T. 

A European Option with payoff XT at time T takes the below form for a European 
Call: 

𝑋𝑋𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆𝑇𝑇 − 𝐾𝐾, 0)                                                                     (3) 

= (𝑆𝑆𝑇𝑇 − 𝐾𝐾)+                                                                                       

and likewise for a European Put Option: 
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𝑋𝑋𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐾𝐾 − 𝑆𝑆𝑇𝑇 , 0)                                                                      (4) 

= (𝐾𝐾 − 𝑆𝑆𝑇𝑇)+                                                                                        

 

3. Swap Present Value 

An interest rate swaption is an option and an interest rate swap (IRS).In order 
to evaluate the swaption payoff we need to understand the IRS instrument and 
how to determine its price or present value.  

In an interest rate swap transaction a series of fixed cashflows are exchanged 
for a series of floating cashflows. One may consder a swap as an agreement to 
exchange a fixed rate loan for a variable or floating rate loan. An extensive review 
of interest rate swaps, how to price and risk them is outlined in Burgess (2017a). 

The net present value PV or price of an interest rate swap can be evaluated 
as follows. 

𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜙𝜙�𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝐿𝐿𝐿𝐿𝐿𝐿 �                                                         (5) 

= 𝜙𝜙 ��𝑁𝑁𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝜏𝜏𝑖𝑖𝑃𝑃(𝑡𝑡𝐸𝐸 , 𝑡𝑡𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

−�𝑁𝑁(𝑙𝑙𝑗𝑗−1 + 𝑠𝑠)𝜏𝜏𝑗𝑗 𝑃𝑃(𝑡𝑡𝐸𝐸 , 𝑡𝑡𝑗𝑗 )
𝑚𝑚

𝑗𝑗=1

�                  

where 𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝐿𝐿𝐿𝐿𝐿𝐿  refers to  The present value of fixed coupon swap payments. 
Receiver swaps receive the fixed coupons (and pay the floating coupons) and 
payer swaps pay the fixed coupons (and receive the floating coupons). The 
𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  𝐿𝐿𝐿𝐿𝐿𝐿  refers to the present value of variable or floating Libor coupon swap 
payments. Each coupon is determined by the Libor rate at the start of the coupon 
period. When the Libor rate is known the rate is said to have been fixed or reset 
and the corresponding coupon payment is known. 

In the swaps market investors want to enter swaps transactions at zero cost. 
On the swap effective date or start date of the swap the swap has zero value, 
however as time progresses this will no longer be the case and the swap will 
become profitable or loss making. To this end investors want to know what fixed 
rate should be used to make the fixed and floating legs of a swap transaction 
equal, which we denote 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 . Such a fixed rate is called the swap or par rate. 
Interest rate swaps are generally quoted and traded in the financial markets as 
par rates, i.e. the rate that matches the present value of the fixed leg PV and the 
float leg PV. Thus, swaps that are executed with the fixed rate being set to the par 
rate and called par swaps and they have a net PV of zero. 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜙𝜙 ��𝑁𝑁𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝜏𝜏𝑖𝑖𝑃𝑃(𝑡𝑡𝐸𝐸 , 𝑡𝑡𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

−�𝑁𝑁(𝑙𝑙𝑗𝑗−1 + 𝑠𝑠)𝜏𝜏𝑗𝑗𝑃𝑃(𝑡𝑡𝐸𝐸 , 𝑡𝑡𝑗𝑗 )
𝑚𝑚

𝑗𝑗=1

� = 0     (6)   

Since par swaps have zero PV we derive,  

�𝑁𝑁𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝜏𝜏𝑖𝑖𝑃𝑃(𝑡𝑡𝐸𝐸 , 𝑡𝑡𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

= �𝑁𝑁(𝑙𝑙𝑗𝑗−1 + 𝑠𝑠)𝜏𝜏𝑗𝑗𝑃𝑃(𝑡𝑡𝐸𝐸 , 𝑡𝑡𝑗𝑗 )
𝑚𝑚

𝑗𝑗=1

                    (7) 

Furthermore, par swaps have a fixed rate equal to the par rate, i.e. 𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =
𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 . 

�𝑁𝑁𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝜏𝜏𝑖𝑖𝑃𝑃(𝑡𝑡𝐸𝐸 , 𝑡𝑡𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

= �𝑁𝑁(𝑙𝑙𝑗𝑗−1 + 𝑠𝑠)𝜏𝜏𝑗𝑗𝑃𝑃(𝑡𝑡𝐸𝐸 , 𝑡𝑡𝑗𝑗 )
𝑚𝑚

𝑗𝑗=1

                    (8) 

 

 

Following Burgess (2017a) we can represent the float leg as a fixed leg traded at 
the market par rate 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  and hence (8) becomes, 

𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜙𝜙 ��𝑁𝑁(𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 )𝜏𝜏𝑖𝑖𝑃𝑃(𝑡𝑡𝐸𝐸 , 𝑡𝑡𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

−�𝑁𝑁𝑁𝑁𝜏𝜏𝑗𝑗𝑃𝑃(𝑡𝑡𝐸𝐸 , 𝑡𝑡𝑗𝑗 )
𝑚𝑚

𝑗𝑗=1

�   (9)  

= 𝜙𝜙��𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 �𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑠𝑠𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 �                                                

In the case when there is no Libor spreads on the floating leg this simplifies 
to: 

𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜙𝜙 ��𝑁𝑁𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝜏𝜏𝑖𝑖𝑃𝑃(𝑡𝑡𝐸𝐸 , 𝑡𝑡𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

−�𝑁𝑁𝑙𝑙𝑗𝑗−1𝜏𝜏𝑗𝑗𝑃𝑃(𝑡𝑡𝐸𝐸 , 𝑡𝑡𝑗𝑗 )
𝑚𝑚

𝑗𝑗=1

�           (10)  

= 𝜙𝜙�𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 �𝑟𝑟𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ��                                                          

 

4. Swaption Price 

In a receiver swaption the holder has the right to receive the fixed leg 
cashflows in the underlying swap at a strike rate agreed today and pay the float 
leg cashflows. A rational option holder will only exercise the option if the fixed leg 
cashflows to be received are larger than the float leg cashflows to be paid. The 
corresponding option payoff XT can be represented as: 

 
Fixed Leg 

  
Float Leg 
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𝑋𝑋𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚��𝑁𝑁𝑁𝑁𝜏𝜏𝑖𝑖𝑃𝑃(𝑡𝑡𝐸𝐸, 𝑡𝑡𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

−�𝑁𝑁𝑙𝑙𝑗𝑗−1𝜏𝜏𝑗𝑗𝑃𝑃�𝑡𝑡𝐸𝐸, 𝑡𝑡𝑗𝑗�, 0
𝑚𝑚

𝑗𝑗=1

 �                    (11) 

= 𝑚𝑚𝑚𝑚𝑚𝑚�𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐾𝐾 − 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , 0�                                                                

= 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑚𝑚𝑚𝑚𝑚𝑚(𝐾𝐾 − 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , 0)                                                                            

= 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝐾𝐾 − 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 )+                                                                                       

As can be seen by comparing (11) and (4) a receiver swaption payoff 
replicates the payoff of a put option scaled by the swap fixed leg annuity 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 . 

Likewise a payer swaption extends the holder the right to receive the fixed 
cashflows from the underlying swap and has payoff XT. 

𝑋𝑋𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚��𝑁𝑁𝑙𝑙𝑗𝑗−1𝜏𝜏𝑗𝑗𝑃𝑃�𝑡𝑡𝐸𝐸, 𝑡𝑡𝑗𝑗�
𝑚𝑚

𝑗𝑗=1

−�𝑁𝑁𝑁𝑁𝜏𝜏𝑖𝑖𝑃𝑃(𝑡𝑡𝐸𝐸, 𝑡𝑡𝑖𝑖), 0
𝑛𝑛

𝑖𝑖=1

 �                    (12) 

= 𝑚𝑚𝑚𝑚𝑚𝑚�𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 −  𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐾𝐾, 0�                                                               

= 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑚𝑚𝑚𝑚𝑚𝑚(𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐾𝐾, 0)                                                                            

= 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐾𝐾)+                                                                                       

Again by comparing (12) and (3) a payer swaption payoff replicates the 
payoff of a call option scaled by the swap fixed leg annuity 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 . 

It can be easily seen from the swaption payoff that a payer swaption 
represents a call option payoff and a receiver swaption a put option payoff. 

Both options give the right but not the obligation to enter into a swap 
contract in the future to pay or receive fixed cashflows respectively in exchange 
for floating cashflows with the fixed rate set today at the strike rate K. 

In the general case we can represent a swaption payoff as, 

𝑋𝑋𝑇𝑇 = 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹�𝜙𝜙(𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐾𝐾)�+
                                                                          (13) 

where 𝜙𝜙 = 1 for a payer swaption and -1 for a receiver swaption. 

Applying the martingale representation theorem from section (2.1) we can 
price the swaption using equation (2) using the swaption payoff from (13) giving: 

𝑉𝑉𝑡𝑡 = 𝑁𝑁𝑡𝑡𝐸𝐸𝑄𝑄𝑁𝑁 �
𝑋𝑋𝑇𝑇
𝑁𝑁𝑇𝑇

 | 𝐹𝐹𝑡𝑡�                                                                                    



N. Burgess / JEFA Vol:2 No:2 (2018) 87-103 
 

Page | 94 
 

= 𝑁𝑁𝑡𝑡𝐸𝐸𝑄𝑄𝑁𝑁 �
𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹�𝜙𝜙(𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐾𝐾)�+

𝑁𝑁𝑇𝑇
 | 𝐹𝐹𝑡𝑡�                                    (14) 

Following Burgess (2017a) we may select a convenient numeraire to simplify 
the expectation term in (14). In this case we select the annuity measure 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  
with corresponding probability measure QA which leads to, 

𝑉𝑉𝑡𝑡 = 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)𝐸𝐸𝑄𝑄𝐴𝐴 �
𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑇𝑇)�𝜙𝜙(𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐾𝐾)�+

𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑇𝑇)
 | 𝐹𝐹𝑡𝑡�                                 

= 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)𝐸𝐸𝑄𝑄𝐴𝐴 ��𝜙𝜙(𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐾𝐾)�+ | 𝐹𝐹𝑡𝑡�                                         (15) 

We could at this stage see that expectation term in (15) can be evaluated 
using the generalized Black-Scholes (1973) formula as shown in (21) below. 
However for completeness we change the measure from the annuity measure QA 
to the more familiar and native Black-Scholes (1973) measure, namely the risk-
neutral or savings account measure Q. This is merely to help readers identify the 
Black-Scholes expectation and is not an actual requirement. 

Following Baxter (1966), Hull (2011) and Burgess (2014), we apply the Radon-
Nikodym derivate allows us to change the numeraire and associated probability 
measure of an expectation and is often used in conjunction with the Martingale 
Respresentation Theorem. The Radon-Nikodym derivative �𝑑𝑑𝑄𝑄𝑀𝑀

𝑑𝑑𝑄𝑄𝑁𝑁
� is defined as, 

�
𝑑𝑑𝑄𝑄𝑀𝑀
𝑑𝑑𝑄𝑄𝑁𝑁

� =
�𝑀𝑀𝑡𝑡
𝑀𝑀𝑇𝑇

�

�𝑁𝑁𝑡𝑡𝑁𝑁𝑇𝑇
�

= �
𝑁𝑁𝑇𝑇
𝑁𝑁𝑡𝑡
� �
𝑀𝑀𝑡𝑡

𝑀𝑀𝑇𝑇
�                                                (16) 

To change numeraire from 𝑄𝑄𝑁𝑁  to 𝑄𝑄𝑀𝑀 , we can multiply Vt by Radon-Nikodym 
derivative �𝑑𝑑𝑄𝑄𝑀𝑀

𝑑𝑑𝑄𝑄𝑁𝑁
� giving, 

𝑉𝑉𝑡𝑡 = 𝐸𝐸𝑄𝑄𝑁𝑁 �
𝑁𝑁𝑡𝑡
𝑁𝑁𝑇𝑇

 𝑋𝑋𝑇𝑇  | 𝐹𝐹𝑡𝑡�                                                                                    

= 𝐸𝐸𝑄𝑄𝑁𝑁 �
𝑁𝑁𝑡𝑡
𝑁𝑁𝑇𝑇

�
𝑑𝑑𝑄𝑄𝑀𝑀
𝑑𝑑𝑄𝑄𝑁𝑁

�𝑋𝑋𝑇𝑇  | 𝐹𝐹𝑡𝑡�                                                                       

= 𝐸𝐸𝑄𝑄𝑁𝑁 �
𝑁𝑁𝑡𝑡
𝑁𝑁𝑇𝑇

�
𝑁𝑁𝑇𝑇
𝑁𝑁𝑡𝑡
� �
𝑀𝑀𝑡𝑡

𝑀𝑀𝑇𝑇
�𝑋𝑋𝑇𝑇  | 𝐹𝐹𝑡𝑡�                                                                

= 𝐸𝐸𝑄𝑄𝑁𝑁 �
𝑀𝑀𝑡𝑡

𝑀𝑀𝑇𝑇
𝑋𝑋𝑇𝑇  | 𝐹𝐹𝑡𝑡�                                                                           (17)  
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Utilizing Radon-Nikodym derivative to change the measure from the annuity 
measure QA to the risk-neutral savings account measure Q in (15) leads to a 
generalized Black-Scholes formula type expression as shown below. 

𝑉𝑉𝑡𝑡 = 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)𝐸𝐸𝑄𝑄 ��
𝑑𝑑𝑑𝑑
𝑑𝑑𝑄𝑄𝐴𝐴

� �𝜙𝜙(𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐾𝐾)�+ | 𝐹𝐹𝑡𝑡�                                           (18) 

= 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)𝐸𝐸𝑄𝑄

⎣
⎢
⎢
⎡ �𝑒𝑒

𝑟𝑟𝑟𝑟

𝑒𝑒𝑟𝑟𝑟𝑟�

�𝐴𝐴𝑁𝑁
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)

𝐴𝐴𝑁𝑁𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑇𝑇)
�
�𝜙𝜙(𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐾𝐾)�+ | 𝐹𝐹𝑡𝑡

⎦
⎥
⎥
⎤
                           

= 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)𝐸𝐸𝑄𝑄 ��
𝑒𝑒𝑟𝑟𝑟𝑟

𝑒𝑒𝑟𝑟𝑟𝑟��
𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑇𝑇)
𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)

� �𝜙𝜙(𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐾𝐾)�+ | 𝐹𝐹𝑡𝑡�               

= 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)𝐸𝐸𝑄𝑄 �𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) �
𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑇𝑇)
𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)

� �𝜙𝜙(𝑝𝑝𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐾𝐾)�+ | 𝐹𝐹𝑡𝑡�           

= 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)𝐸𝐸𝑄𝑄 ��
𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑇𝑇) ∗ 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)
� �𝜙𝜙(𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐾𝐾)�+ | 𝐹𝐹𝑡𝑡�        

Noting that 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) is the discount factor operator from time T to t under 
savings account measure. If we discount the spot annuity 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝑇𝑇) back to time t 
by applying the discount factor operator we have the 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝑇𝑇) ∗ 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) =
𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝑡𝑡) giving, 

𝑉𝑉𝑡𝑡 = 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)𝐸𝐸𝑄𝑄 ��
𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)
𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)

� �𝜙𝜙(𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐾𝐾)�+ | 𝐹𝐹𝑡𝑡�                                       

= 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)𝐸𝐸𝑄𝑄 ��𝜙𝜙(𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐾𝐾)�+ | 𝐹𝐹𝑡𝑡�                                                  (19)  

 

 

In case where our underlying swap has a Libor spread on the floating leg 
using (9) gives, 

𝑉𝑉𝑡𝑡 = 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)𝐸𝐸𝑄𝑄 ��𝜙𝜙�𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑠𝑠 �
𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑇𝑇)
𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)

� − 𝐾𝐾��
+

 | 𝐹𝐹𝑡𝑡�                                

= 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)𝐸𝐸𝑄𝑄 ��𝜙𝜙�𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐾𝐾′��
+

 | 𝐹𝐹𝑡𝑡�                                                    (20)  
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Black-Scholes Formula 
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where 

𝐾𝐾′ = 𝐾𝐾 − 𝑠𝑠 �
𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝑇𝑇)
𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝑡𝑡)

� 

 

5. Generalized Black-Scholes and Black-76 Formulae 

The generalized Black-Scholes formula for European option pricing, see Black-
Scholes (1973), is popular amongst traders and market practictions because of its 
analytical tractability. The formula relies heavily on dynamic delta hedging, see 
Derman and Taleb (2005) for details. It evaluates the price (Vt) at time t of a 
European option with expiry at time T as follows, 

 

𝑉𝑉𝑡𝑡𝐵𝐵𝐵𝐵 = 𝜙𝜙𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) �𝑆𝑆𝑡𝑡 𝑒𝑒𝑏𝑏(𝑇𝑇−𝑡𝑡)𝑁𝑁(𝜙𝜙𝑑𝑑1) − 𝐾𝐾𝐾𝐾(𝜙𝜙𝑑𝑑2)�                                  (21) 

 

where 

𝑑𝑑1 =
ln �𝑆𝑆𝑡𝑡𝐾𝐾�+ �𝑏𝑏 + 1

2𝜎𝜎
2� (𝑇𝑇 − 𝑡𝑡)

𝜎𝜎�(𝑇𝑇 − 𝑡𝑡)
 

and 

𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎�(𝑇𝑇 − 𝑡𝑡) 

Furthermore, as outlined in Burgess (2017b) setting the carry term 𝑏𝑏 = 0 leads to 
the Black-76 formula for pricing interest rate options namely, 

 

𝑉𝑉𝑡𝑡𝐵𝐵𝐵𝐵76 = 𝜙𝜙 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) [𝑆𝑆𝑡𝑡𝑁𝑁(𝜙𝜙𝑑𝑑1) − 𝐾𝐾𝐾𝐾(𝜙𝜙𝑑𝑑2)]                                  (22) 

where 

𝑑𝑑1 =
ln �𝑆𝑆𝑡𝑡𝐾𝐾�+ 1

2𝜎𝜎
2(𝑇𝑇 − 𝑡𝑡)

𝜎𝜎�(𝑇𝑇 − 𝑡𝑡)
 

and 

𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎�(𝑇𝑇 − 𝑡𝑡) 
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As outlined in the appendix we should now recognise that the swaption 
pricing formula from (19) is nothing more than the generalized Black-Scholes 
(1973) formula scaled by the annuity factor 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝑡𝑡). In this particular case the 
underlying asset is an interest rate, therefore we customize the generalized Black-
Scholes formula as outlined in Burgess (2017b) to price interest rate options by 
setting the carry term b to zero, which leads to the Black-76 formula, see Black 
(1976). 

Note that comparing the Black-76 formula from (22) and our swaption pricing 
formula (19) we have additional discounting term 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡), which we eliminate by 
setting the zero rate r = 0 to make this additional term equal to unity. 

Therefore, applying the generalized Black-Scholes (1973) result to (19) with 
the carry term b = 0 and zero rate r = 0 leads to following result. European 
swaptions can be priced using the Black-76 analytical formula scaled by the 
interest rate swap fixed leg annuity term 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝑡𝑡). 

 
𝑉𝑉𝑡𝑡 = 𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − 76(𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝐾𝐾, (𝑇𝑇 − 𝑡𝑡), 𝜎𝜎(𝐾𝐾, 𝑡𝑡), 𝑟𝑟 = 0)                    (23) 

 
quoting this explicitly we have, 

 
𝑉𝑉𝑡𝑡 = 𝜙𝜙𝐴𝐴𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑡𝑡)�𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁(𝜙𝜙𝑑𝑑1) − 𝐾𝐾𝐾𝐾(𝜙𝜙𝑑𝑑2)�                                          (24) 

 
where 

𝑑𝑑1 =
ln �𝑝𝑝

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝐾𝐾 � + 1
2𝜎𝜎

2(𝑇𝑇 − 𝑡𝑡)

𝜎𝜎�(𝑇𝑇 − 𝑡𝑡)
 

𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎�(𝑇𝑇 − 𝑡𝑡) 

and 𝜙𝜙 = 1 denotes a payer swaption and 𝜙𝜙 = −1 a receiver swaption. In the case 
where our underlying swap has a Libor floating spread we adjust the strike as 

outlined in (20) replacing K with K’ where 𝐾𝐾′ = 𝐾𝐾 − 𝑠𝑠 �𝐴𝐴𝑁𝑁
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝑇𝑇)
𝐴𝐴𝑁𝑁
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝑡𝑡)

�. 

 

6. Conclusion 

In conclusion we reviewed the martingale representation theorem for pricing 
options, which allows us to price options under a numeraire of our choice.  We 
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also considered the classical European call and put option pricing payoffs to help 
us identify that payer swaptions are comparible to call options and likewise 
receiver swaptions to put options.  

Since interest rate swaptions are options on interest rate swaps, we also 
discussed how to evaluate and price an interest swap to better understand the 
swaption payoff. In particular we highlight a key component of the underlying 
swap price is the annuity term, which was pivotal in selecting a numeraire to 
evaluate the expected swaption value. 

We examined how to price interest rate swaptions using the Martingale 
Representation Theorem to derive a closed form analytical solution. We chose the 
annuity measure to simplify the expected swaption payoff. This reduced the 
pricing calculation to a Black-Scholes (1973) like expression. To make this more 
transparent we took an extra unnecessary step and applied the Radon-Nikodym 
derivative to change probability measure from the annuity measure to the savings 
account numeraire or risk-neutal measure, which is more classical and 
recongnizable, to arrive at a swaption pricing formula expressed in terms of the 
Black- 76 formula. 

We showed that the interet swaption pricing formula is nothing more than 
the Black-76 formula scaled by the underlying swap annuity factor. In the 
appendix we also provide a full derivation of the generalized Black-Scholes 
formula for completeness. 

 

References 

Baxter, M., and Rennie, A. (1966). Textbook: Financial Calculus – An Introduction 
to Derivatives Pricing. Cambridge University Press. 

Black, F., and Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. 
Journal of Political Economy, 81(3), 637-654. 

Black, F. (1976). The Pricing of Commodity Contracts. Journal of Financial 
Economics, 3(1-2), 167-179. 

Burgess, N. (2014). Martingale Measures & Change of Measure Explained. 
Available at SSRN: https://ssrn.com/abstract=2961006 or 
http://dx.doi.org/10.2139/ssrn.2961006 

https://ssrn.com/abstract=2961006
http://dx.doi.org/10.2139/ssrn.2961006


N. Burgess / JEFA Vol:2 No:2 (2018) 87-103 
 

Page | 99 
 

Burgess, N. (2017a). How to Price Swaps in Your Head - An Interest Rate Swap & 
Asset Swap Primer. Available at SSRN: https://ssrn.com/abstract=2815495 or 
http://dx.doi.org/10.2139/ssrn.2815495 

Burgess, N. (2017b). A Review of the Generalized Black-Scholes Formula & It’s 
Application to Different Underlying Assets. Available at SSRN: 
https://ssrn.com/abstract=3023440 or 
http://dx.doi.org/10.2139/ssrn.3023440  

Derman, E., and Taleb, N. (2005). The Illusion of Dynamic Delta Replication. 
Quantitative Finance, 5(4), 323-326. 

Hull, J. (2011). Textbook: Options, Futures and Other Derivatives. 8th ed., Pearson 
Education Limited 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://ssrn.com/abstract=2815495
http://dx.doi.org/10.2139/ssrn.2815495
https://ssrn.com/abstract=3023440
http://dx.doi.org/10.2139/ssrn.3023440


N. Burgess / JEFA Vol:2 No:2 (2018) 87-103 
 

Page | 100 
 

Appendix 

A1. Derivation of the Generalized Black-Scholes Model 
We first assume that the underlying asset St follows a Geometric Brownian 

Motion process with constant volatility σ namely, 

𝑑𝑑𝑆𝑆𝑡𝑡 = 𝑟𝑟𝑆𝑆𝑡𝑡𝑑𝑑𝑑𝑑 + σ𝑆𝑆𝑡𝑡𝑑𝑑𝐵𝐵𝑡𝑡                                                               (25) 

and more generally for assets paying a constant dividend q, 

𝑑𝑑𝑆𝑆𝑡𝑡 = (𝑟𝑟 − 𝑞𝑞)𝑆𝑆𝑡𝑡𝑑𝑑𝑑𝑑 + σ𝑆𝑆𝑡𝑡𝑑𝑑𝐵𝐵𝑡𝑡                                                   (26) 

For a log-normal process we define 𝑌𝑌𝑡𝑡 = ln(𝑆𝑆𝑡𝑡) or 𝑆𝑆𝑡𝑡 = 𝑒𝑒𝑌𝑌𝑡𝑡  and apply Ito’s 
Lemma to Yt giving, 

𝑑𝑑𝑌𝑌𝑡𝑡 =  
𝑑𝑑𝑌𝑌𝑡𝑡
𝑑𝑑𝑆𝑆𝑡𝑡

𝑑𝑑𝑆𝑆𝑡𝑡 + 
1
2
𝑑𝑑2𝑌𝑌𝑡𝑡
𝑑𝑑𝑆𝑆𝑡𝑡2

𝑑𝑑𝑆𝑆𝑡𝑡2                                                   (27) 

Now we know  𝑑𝑑𝑌𝑌𝑡𝑡
𝑑𝑑𝑆𝑆𝑡𝑡

= �1
𝑆𝑆𝑡𝑡
�, 𝑑𝑑

2𝑌𝑌𝑡𝑡
𝑑𝑑𝑆𝑆𝑡𝑡2

= �− 1
𝑑𝑑𝑆𝑆𝑡𝑡2

� and 𝑑𝑑𝑆𝑆𝑡𝑡2 = σ2𝑆𝑆𝑡𝑡2𝑑𝑑𝑑𝑑 , therefore we have 

𝑑𝑑𝑌𝑌𝑡𝑡 =  �
1
𝑆𝑆𝑡𝑡
� �(𝑟𝑟 − 𝑞𝑞)𝑆𝑆𝑡𝑡𝑑𝑑𝑑𝑑 + σ𝑆𝑆𝑡𝑡𝑑𝑑𝐵𝐵𝑡𝑡� +  

1
2�

−
1
𝑆𝑆𝑡𝑡2
�σ2𝑆𝑆𝑡𝑡2𝑑𝑑𝑑𝑑                (28) 

giving 

𝑑𝑑𝑌𝑌𝑡𝑡 = � 𝑟𝑟 − 𝑞𝑞 −
1
2
σ2�𝑑𝑑𝑑𝑑 + σ𝑑𝑑𝐵𝐵𝑡𝑡                                                              (29) 

which leads to 

𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆𝑡𝑡 = � 𝑟𝑟 − 𝑞𝑞 −
1
2
σ2�𝑑𝑑𝑑𝑑 + σ𝑑𝑑𝐵𝐵𝑡𝑡                                                              (30) 

expressing this in integral form we have,  

� lnS(𝑢𝑢)𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡

= ��r − q −
1
2
σ2�𝑑𝑑𝑑𝑑

𝑇𝑇

𝑡𝑡

+ �σ𝑑𝑑𝑑𝑑(𝑢𝑢)
𝑇𝑇

𝑡𝑡

                                    (31) 

which implies3 

𝑙𝑙𝑙𝑙S(T) –  lnS(t) = � 𝑟𝑟 − 𝑞𝑞 −
1
2
σ2� (𝑇𝑇 − 𝑡𝑡) + σ𝐵𝐵(𝑇𝑇)                                  (32) 

ln�
𝑆𝑆(𝑇𝑇)
𝑆𝑆(𝑡𝑡)�

= � 𝑟𝑟 − 𝑞𝑞 −
1
2
σ2� (𝑇𝑇 − 𝑡𝑡) + σ𝐵𝐵(𝑇𝑇)                                            

                                                           
3 Note that when evaluating the stochastic integrand B(t)=0 
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knowing the dynamics of our normally distributed Brownian process, namely 
𝐵𝐵(𝑇𝑇)~𝑁𝑁(0,𝑇𝑇 − 𝑡𝑡) and applying the normal standardization formula (Central Limit 
Theorem) with mean 𝜇𝜇 and variance σ2 we have that 

𝑧𝑧 = �
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

� = �
𝐵𝐵(𝑇𝑇)

�(𝑇𝑇 − 𝑡𝑡)
�                                           (33) 

which we rearrange as 

𝐵𝐵(𝑇𝑇) =  𝑧𝑧�(𝑇𝑇 − 𝑡𝑡)                                             (34) 

where z represents a standard normal variate. Applying (34) to our Brownian 
expression (32) and rearranging gives 

𝑆𝑆(𝑇𝑇) = 𝑆𝑆(𝑡𝑡)𝑒𝑒(𝑟𝑟−𝑞𝑞−1
2𝜎𝜎

2)(𝑇𝑇−𝑡𝑡)+𝜎𝜎�(𝑇𝑇−𝑡𝑡)𝑧𝑧                            (35) 

Knowing (35) we could choose to use Monte Carlo simulation with random 
number standard normal variates z or proceed in search of an analytical solution.  

For vanilla European option pricing we can evaluate the price as the 
discounted expected value of the option payoff namely as follows for call options 

𝐶𝐶(𝑡𝑡) = 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)𝔼𝔼ℚ[Max(𝑆𝑆(𝑇𝑇) − 𝐾𝐾, 0)]                              (36) 
and likewise for put options 

𝑃𝑃(𝑡𝑡) = 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)𝔼𝔼ℚ[Max(𝑆𝑆(𝑇𝑇) − 𝐾𝐾, 0)]                              (37) 
for a call option we have 

Max(𝑆𝑆(𝑇𝑇) − 𝐾𝐾, 0) = �𝑆𝑆(𝑇𝑇) − 𝐾𝐾, 𝑖𝑖𝑖𝑖 𝑆𝑆(𝑇𝑇) ≥ 𝐾𝐾
0,                         otherwise

�                       (38) 

from (35) we have 

𝑧𝑧 = �
ln �𝑆𝑆(𝑇𝑇)

𝑆𝑆(𝑡𝑡)� − �𝑟𝑟 − 𝑞𝑞 − 1
2𝜎𝜎

2� (𝑇𝑇 − 𝑡𝑡)

𝜎𝜎�(𝑇𝑇 − 𝑡𝑡)
�                           (39) 

We can evaluate the call payoff from (38) using and evaluating (39) for 𝑆𝑆(𝑇𝑇) ≥ 𝐾𝐾 
giving, 

𝑆𝑆(𝑇𝑇) ≥ 𝐾𝐾 ⟺ 𝑧𝑧 ≥ �
ln � 𝐾𝐾

𝑆𝑆(𝑡𝑡)� − �𝑟𝑟 − 𝑞𝑞 − 1
2𝜎𝜎

2� (𝑇𝑇 − 𝑡𝑡)

𝜎𝜎�(𝑇𝑇 − 𝑡𝑡)
�                     (40) 

Next we define the RHS of (40) as follows 
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Payoff   

PDF 
 

 
Term 1 

 

−𝑑𝑑2 = �
ln � 𝐾𝐾

𝑆𝑆(𝑡𝑡)� − �𝑟𝑟 − 𝑞𝑞 − 1
2𝜎𝜎

2� (𝑇𝑇 − 𝑡𝑡)

𝜎𝜎�(𝑇𝑇 − 𝑡𝑡)
�                        ( 41) 

multiplying both sides by minus one gives 

𝑑𝑑2 = �
ln �𝑆𝑆(𝑡𝑡)

𝐾𝐾 � + �𝑟𝑟 − 𝑞𝑞 − 1
2𝜎𝜎

2� (𝑇𝑇 − 𝑡𝑡)

𝜎𝜎�(𝑇𝑇 − 𝑡𝑡)
�                         (42) 

Substituting our definition of S(T) from (35) and d2 from (42) into our call option 
payoff (38) we arrive at, 

Max(𝑆𝑆(𝑇𝑇) − 𝐾𝐾, 0) = �𝑆𝑆(𝑇𝑇) = 𝑆𝑆(𝑡𝑡)𝑒𝑒�𝑟𝑟−𝑞𝑞−
1
2𝜎𝜎

2�(𝑇𝑇−𝑡𝑡)+𝜎𝜎�(𝑇𝑇−𝑡𝑡)𝑧𝑧 ,  if 𝑍𝑍 ≥ −𝑑𝑑2
0,                                                                       otherwise

�          (43) 

from the definition of standard normal probability density function PDF for Z 

𝑃𝑃(𝑍𝑍 = 𝑧𝑧) =
1

√2𝜋𝜋
𝑒𝑒−

1
2𝑧𝑧

2
                                                  (44) 

We proceed to evaluate the risk neutral price of the discounted call option payoff 
from (36). Note we eliminate the max operator using (43) by evaluating the 
integrand from the lower bound d2 which guarantees a positive payoff. 
 

𝐶𝐶(𝑡𝑡) = 𝔼𝔼ℚ[Max(𝑆𝑆(𝑇𝑇) − 𝐾𝐾, 0)]                                                                                          
 

= 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)� �𝑆𝑆(𝑡𝑡)𝑒𝑒�𝑟𝑟−𝑞𝑞−
1
2𝜎𝜎

2�(𝑇𝑇−𝑡𝑡)+𝜎𝜎�(𝑇𝑇−𝑡𝑡)𝑧𝑧 − 𝐾𝐾�
∞

−𝑑𝑑2

 1
√2𝜋𝜋

𝑒𝑒−
1
2𝑧𝑧

2
𝑑𝑑𝑑𝑑                     

 
 

  =
𝑆𝑆(𝑡𝑡)𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

√2𝜋𝜋
� �𝑒𝑒�𝑟𝑟−𝑞𝑞−

1
2𝜎𝜎

2�(𝑇𝑇−𝑡𝑡)+𝜎𝜎�(𝑇𝑇−𝑡𝑡)𝑧𝑧 − 𝐾𝐾�
∞

−𝑑𝑑2

𝑒𝑒−
1
2𝑧𝑧

2
𝑑𝑑𝑑𝑑 

  =
𝑆𝑆(𝑡𝑡)𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

√2𝜋𝜋
� �𝑒𝑒�𝑟𝑟−𝑞𝑞−

1
2𝜎𝜎

2�(𝑇𝑇−𝑡𝑡)+𝜎𝜎�(𝑇𝑇−𝑡𝑡)𝑧𝑧�
∞

−𝑑𝑑2

𝑒𝑒−
1
2𝑧𝑧

2
𝑑𝑑𝑑𝑑 −  

𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

√2𝜋𝜋
� 𝑒𝑒−

1
2𝑧𝑧

2
𝑑𝑑𝑑𝑑

∞

−𝑑𝑑2

  (45) 

 
factorizing the exponential r and q terms give 
 

𝐶𝐶(𝑡𝑡) =
𝑆𝑆(𝑡𝑡)𝑒𝑒−𝑞𝑞(𝑇𝑇−𝑡𝑡)

√2𝜋𝜋
� (𝑒𝑒−

1
2𝜎𝜎

2(𝑇𝑇−𝑡𝑡)+𝜎𝜎�(𝑇𝑇−𝑡𝑡)𝑧𝑧)
∞

−𝑑𝑑2

𝑒𝑒−
1
2𝑧𝑧

2
𝑑𝑑𝑑𝑑 −

𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

√2𝜋𝜋
� 𝑒𝑒−

1
2𝑧𝑧

2
𝑑𝑑𝑑𝑑

∞

−𝑑𝑑2

 

         = 𝑆𝑆(𝑡𝑡)𝑒𝑒−𝑞𝑞(𝑇𝑇−𝑡𝑡)

√2𝜋𝜋
� 𝑒𝑒(−1

2𝜎𝜎
2(𝑇𝑇−𝑡𝑡)+𝜎𝜎�(𝑇𝑇−𝑡𝑡)𝑧𝑧−1

2𝑧𝑧
2)

∞

−𝑑𝑑2

𝑑𝑑𝑑𝑑 − 𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

√2𝜋𝜋
� 𝑒𝑒−

1
2𝑧𝑧

2
𝑑𝑑𝑑𝑑

∞

−𝑑𝑑2

                 (46) 
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Term 2 

 

We now complete the square of term 1 in (46) to get 

𝐶𝐶(𝑡𝑡) = 𝑆𝑆(𝑡𝑡)𝑒𝑒−𝑞𝑞(𝑇𝑇−𝑡𝑡)

√2𝜋𝜋
� 𝑒𝑒�−

1
2�𝑧𝑧−𝜎𝜎�(𝑇𝑇−𝑡𝑡)�

2
�𝑑𝑑𝑑𝑑

∞

−𝑑𝑑2

− 𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

√2𝜋𝜋
� 𝑒𝑒−

1
2𝑧𝑧

2
𝑑𝑑𝑑𝑑

∞

−𝑑𝑑2

        (47) 

 
Next we make a substitution namely 𝑦𝑦 ≜ 𝑧𝑧 −  𝜎𝜎�(𝑇𝑇 − 𝑡𝑡) such that term 2 in (47) 
becomes a standard normal function in y. When making this substitution our 
integration limits change; from a lower bound of 𝑧𝑧 = −𝑑𝑑2  to 𝑦𝑦 = −𝑑𝑑2 −
 𝜎𝜎�(𝑇𝑇 − 𝑡𝑡) ≜ 𝑑𝑑1 and from an upper bound of 𝑧𝑧 = ∞ to 𝑦𝑦 = ∞ leading to 
 

𝐶𝐶(𝑡𝑡) =
𝑆𝑆(𝑡𝑡)𝑒𝑒−𝑞𝑞(𝑇𝑇−𝑡𝑡)

√2𝜋𝜋
� 𝑒𝑒−

1
2𝑦𝑦

2
𝑑𝑑𝑑𝑑

∞

−𝑑𝑑1

−
𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

√2𝜋𝜋
� 𝑒𝑒−

1
2𝑧𝑧

2
𝑑𝑑𝑑𝑑

∞

−𝑑𝑑2

                       (48) 

from the definition of standard normal cumulative density function we know that 

𝑃𝑃(𝑍𝑍 = 𝑧𝑧) =
1

√2𝜋𝜋
� 𝑒𝑒−

1
2𝑧𝑧

2
𝑑𝑑𝑑𝑑

∞

𝑧𝑧
=

1
√2𝜋𝜋

� 𝑒𝑒−
1
2𝑧𝑧

2
𝑑𝑑𝑑𝑑

−𝑧𝑧

−∞
                     (49) 

Since standard normal distribution is symmetrical we can invert the bounds to 
give 

𝐶𝐶(𝑡𝑡) =
𝑆𝑆(𝑡𝑡)𝑒𝑒−𝑞𝑞(𝑇𝑇−𝑡𝑡)

√2𝜋𝜋
� 𝑒𝑒−

1
2𝑦𝑦

2
𝑑𝑑𝑑𝑑

𝑑𝑑1

−∞
−
𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

√2𝜋𝜋
� 𝑒𝑒−

1
2𝑧𝑧

2
𝑑𝑑𝑑𝑑

𝑑𝑑2

−∞
                    (50) 

applying the standard normal CDF expression (49) into (50) 
 

𝐶𝐶(𝑡𝑡) = 𝑆𝑆(𝑡𝑡)𝑒𝑒−𝑞𝑞(𝑇𝑇−𝑡𝑡)𝑁𝑁(𝑑𝑑1) − 𝐾𝐾𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)𝑁𝑁(𝑑𝑑2)                                      (51) 

Finally applying put-call super-symmetry and with minor rearrangement we arrive 
at the generalized Black-Scholes result namely 
 

𝑉𝑉(𝑡𝑡) = 𝜙𝜙𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)�𝑆𝑆(𝑡𝑡)𝑒𝑒𝑏𝑏(𝑇𝑇−𝑡𝑡)𝑁𝑁(𝜙𝜙𝑑𝑑1)− 𝐾𝐾𝐾𝐾(𝜙𝜙𝑑𝑑2)�                            (52) 

where 𝜙𝜙 is our call-put indicator function and 𝑑𝑑1 = 𝑑𝑑2 + 𝜎𝜎√𝑇𝑇 − 𝑡𝑡 giving 
 

𝑑𝑑1 = �
ln �𝑆𝑆(𝑡𝑡)

𝐾𝐾 � + �𝑟𝑟 − 𝑞𝑞 + 1
2𝜎𝜎

2� (𝑇𝑇 − 𝑡𝑡)

𝜎𝜎�(𝑇𝑇 − 𝑡𝑡)
�                                       (53) 

and 

𝑑𝑑2 = �
ln �𝑆𝑆(𝑡𝑡)

𝐾𝐾 � + �𝑟𝑟 − 𝑞𝑞 − 1
2𝜎𝜎

2� (𝑇𝑇 − 𝑡𝑡)

𝜎𝜎�(𝑇𝑇 − 𝑡𝑡)
�                                       (54) 


