Iraqi Journal of Science, 2018, Vol. 59, No.2B, pp: 904-908 DOI:10.24996/ijs.2018.59.2B.11

On Essential (Complement) Submodules with Respect to an Arbitrary Submodule

E. A. Al-Dhaheri*, B. H. Al-Bahrani

Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

In this paper we Proved other properties of essential and complement submodules to an arbitrary submodule of an R-module M .We prove that for a family $\{M_{\alpha}\}_{\alpha \in A}$ of modules . If T_{α} and N_{α} are submodules of M_{α} with $N_{\alpha} + T_{\alpha} \leq_{T_{\alpha}=e} M_{\alpha}$, $\forall \alpha$, then $\bigoplus_{\alpha \in A} (N_{\alpha} + T_{\alpha}) \leq_{\bigoplus \alpha \in_A} T_{\alpha = e} \bigoplus_{\alpha \in A} M_{\alpha}$. Also we show that for submodules T, A, B and C of a module M such that $T \leq A \leq C$. If B is T- c for A in M and C is T- c for B in M, then C is maximal T- essential extension of A in M.

Keywords: Essential submodules, T-essential submodules.

حول المقاسات الجزئية الجوهرية (المكملة) نسبة إلى مقاس جزئي عشوائي

انتصار احمد الظاهري *، بهار حمد البحراني قسم الرياضيات، كلية العلوم، جامعة بغداد، بغداد، العراق.

الخلاصة

في هذا البحث نحن نطور الخصائص للمقاسات الجزئية الجوهرية والمكملة بالنسبة إلى مقاس جزئي اختياري. $N_{\alpha} + T_{\alpha} \leq_{T_{\alpha}-e} M_{\alpha} \quad M_{\alpha} \quad \alpha_{\alpha} = \Lambda$ ق N_{α} مقاسات جزئية من $M_{\alpha} = \Lambda_{\alpha} = \Lambda_{\alpha}$ و $M_{\alpha} = \Lambda_{\alpha} = \Lambda_{\alpha}$ من الموديولات . إذا كانت $T_{\alpha} = T_{\alpha} = 0$ محما نبين انه بالنسبة للمقاسات الجزئية , B $\Lambda_{\alpha} = \Lambda_{\alpha} = \Lambda_{\alpha}$ من المقاسات الجزئية , $\Phi_{\alpha} = \Lambda_{\alpha} = \Lambda_{\alpha} = \Lambda_{\alpha}$ من النمط T ل A في M و C هي محملة من النمط T ل A في M و C هي محملة من النمط T ل A في M. محملة من النمط T ل B في M،فان C هو اكبر توسيع جوهري من النمط T ل A في M.

1. Introduction

In this paper, all rings are. Associative with, identity and all modules are unitary left R-modules. Recall that a submodule A of an R-module M is essential submodule of M{denoted by $A \leq_e M$ },,if for every $B \leq M$, $A \cap B = 0$ implies that B = 0.

A submodule B of a module M is called complement for a submodule A of M if it is maximal, with respect to, the property that $A \cap B = 0$. More details about essential submodules and complement can be found in [1-4].In [5], the authors introduced the definition of T – essential (complement) submodules as follows:

Let $T \lneq M$, a submodule A of M is called T – essential submodule of M {denoted by $A \leq_{T-e} M$ }, provided that $A \not\leq T$ and for each submodule B of M,A $\cap B \leq T$ implies that $B \leq T$.A submodule B of M is called a T –.complement for a submodule A in M if B is maximal with respect to the property that $A \cap B \leq T$.

In section 2,we develop the properties of T- essential submodules and we introduce the definition T – essential monomorphism. We show that, $A \leq_{T-e} M$ iff $\forall Rx \leq M$, $Rx \leq T$ implies that $A \cap Rx \leq T$, see Proposition 2.5. Also we prove that, if every T –essential submodule A of M with T $\leq A$ is finitely

^{*}Email:eahmed.math@gmail.com

generated, then $\frac{M}{T}$ is Noetherian, see Theorem 2-15. In section 3, we develop the properties of Tcomplement submodules. We prove that. For submodules A, B and C of a module M. If $A \leq_e M$ and C is a complement for B in M, then A+ C \leq_{C-e} M, see proposition 3.9.

2.The T – essential submodules

In this section, we proved basic properties of the essential submodules with respect to an arbitrary submodule T of an R-module Mand we introduced the definition of T- essential monomorphism.

Definition2.1.[5]Let T be a proper. submodule of a module M. A submodule A of a module M is called .T-essential submodule , denoted by $A \leq_{T-e} M$, provided that $A \leq T$ and for each submodule B of a module M, $A \cap B \leq T$ implies that $B \leq T$. Clearly that when T = 0, then $A \leq_{T-e} Miff A \leq_{e} M$.

The following proposition gives the basic properties of T – essential submodules, see [5]. **Proposition 2.2** [5]

Let T,A and B be submodules. of a module M. Then

1- If
$$A \leq_{T-e} M$$
, then $\frac{(A+T)}{m} \leq_{e} \frac{1}{2}$

2- If T $\leq A$, then $A \leq_{T-e} M$ iff $\frac{A+T}{T} \leq_{e} \frac{M}{T}$. 3- $A \leq_{T-e} M$ iff $\forall T$.

3- $A \leq_{T-e} M$ iff $\forall x \in M - T$, $\exists r \in R$ such that $r x \in A - T$.

4- If A and B are T – essential submodules of M, then $A \cap B \leq_{T-e} M$.

5- Let $A \le B \le M$ such that $T \le B$. Then $A \le_{T-e} M$ iff $A \le_{T-e} B$ and $B \le_{T-e} M.6$ - Let $h: M_1 \to M_2$ be epimorphism. If $A \leq_{T-e} M_2$, then $f^{-1}(A) \leq_{f}^{-1}(T) = M_1$, where M_1 and M_2 are left R-modules.

Remark2.3. Let T and Abe submodules of a module M.

1- Let T = M. Then $A \cap B \leq T$ and $B \leq T$, $\forall B \leq M$.

2- Let $T \not\subseteq M$. Then $A \leq_{T-e} M$ iff $\forall B \leq M$, $A \cap B \leq T$ implies $B \leq T$.

Proof:1-clear.

2-clear. For the converse, we only need to show that $A \leq T$. Assume $A \leq T$ and let B = M. Then $A \cap B = A \leq T$, but $B = M \leq T$, which is a contradiction, thus $A \leq T$.

Hence we see that the condition T is a proper submodule of M is not necessary. Thus, in this paper by a T – essential submodule we mean let T be a submodule of M (not necessary proper) and let A be a submodule of M. A is T – essential submodule of M if $\forall B \leq M$, A $\cap B \leq T$ implies that $B \leq T$.

Cleary that when T = M, then every submodule of M is T – essential in M.

Propositio2.4

Let T and A be submodules of a module M. Then $A \leq_{T-e} M$ iff for every submodule B of $M, B \leq T$ implies that $A \cap B \leq T$.

Proof: The proof is clear and hence is omitted .

Proposition 2.5

Let T and Abe submodules of a module M. Then $A \leq_{T-e} M$ iff $\forall Rx \leq M$, $Rx \leq T$ implies that $A \cap Rx \leq T$.

Proof: clear by proposition 2.4. For the converse, let $B \le M$ such that $B \le T$. We want to show that $A \cap B \leq T$. Let $x \in B-T$, then $Rx \leq T$, By our assumption $A \cap Rx \leq T$ and hence $A \cap B \leq T$. Thus $A \leq_{T-e} M.$

Proposition 2.6

Let T, A, A₁, B and B₁ be submodules. of a module M such that $A \leq_{T-e} A_1$, and $B \leq_{T-e} B_1$, then $A \cap B \leq_{T-e} A_1 \cap B_1$.

Proof: Let $A \leq_{T-e} A_1$ and $B \leq_{T-e} B_1$. To show that $A \cap B \leq_{T-e} A_1 \cap B_1$, let $x \in (A_1 \cap B_1) - T$. Since $A \leq_{T-e} A_1$, then $\exists r \in R$ such that $r x \in A - T$.

But $r x \in B_1 - T$ and $B \leq_{T-e} B_1$, then $\exists r_1 \in R$ such that $r_1(r x) \in B - T$.

Hence $r_1 rx \in (A \cap B) - T$. Thus $A \cap B \leq_{T-e} A_1 \cap B_1$.

Proposition 2.7

Let T, A be ideals of a ring R. If T is a prime ideal of Rand A \leq T then A $\leq_{T-e} R$.

Proof: Let $x \in R - T$ and $y \in A - T$. Clearly that $x \cdot y \in A$. Claim that $y \cdot x \notin T$. To show that assume y. $x \in T$. But T is a prim ideal, then either $y \in T$ or $x \in T$ which is a contradiction. Thus y. $x \in A-T$ and $A \leq_{T-e} R$.

Before we give next proposition, we will recall the following definition.

Let M be 'an R– module. Recall that Z (M) ={ $x \in M$; ann (x) $\leq_e R$ }is called ;the singular submodule of M. If Z (M) = M then M is called singular module. If Z(M) = 0, then M is called a nonsingular module, [6].

Proposition 2.8

Let T and Abe submodules of a module M. If $A+T \leq_{T-e} M$, then $\frac{M}{A+T}$ is singular.

Proof: Since A + T \leq_{T-e} M, then by proposition 2.2 - 2, $\frac{A+T}{T} \leq_{e} \frac{M}{T}$. By[6, p.32] $\frac{(M/T)}{((A+T)/T)}$ is singular. By

third isomorphic theorem $\frac{M/T}{(A+T)/T} \cong \frac{M}{A+T}$. Then $\frac{M}{A+T}$ is singular.

We1 introduce, the following "definition

Definition 2.9. Let M_1 and M_2 be two modules and let T be a submodule of a module M_2 . A homomorphism $h: M_1 \to M_2$ is called T –. essential monomorphism if $h(M_1) \leq_{T-e} M_2$.

Proposition2.10

For submodules T and A of a module M. The, following statement are equivalent. $1\text{-}A{\leq}_{\text{T-e}}M$.

2-The inclusion map $I_A: A \rightarrow M$ is a T-essential monomorphism;

3-for each module M_1 and $f \in$ Homomorphism (M, M_1) such that Ker $(f) \cap A \leq T$, then Ker $(f) \leq T$. **Proof:** $1 \rightarrow 2$)Let $B \leq M$ such that $I_A(A) \cap B \leq T$. To show $B \leq T$, since $I_A(A) \cap B = A \cap B \leq T$, and since $A \leq_{T-e} M$. Then $B \leq T$.

 $2 \rightarrow 1$) It's clear.

 $1 \rightarrow 3$) Let $A \leq_{T-e} M$ and $f : M \rightarrow M_1$ be a homomorphism such that Ker (f) $\cap A \leq T$. To show Ker (f) $\leq T$, since $A \leq_{T-e} M$. Then Ker (f) $\leq T$.

 $3\rightarrow 1$) To show $A \leq_{T-e} M$, let $B \leq M$ such that $A \cap B \leq T$, To show $B \leq T$.

Define $\prod : M \to \frac{M}{B}$ be a natural epimorphism , $\prod \in$ Homomorphism (M, $\frac{M}{B}$). Then Ker $\prod \cap A = A \cap B \leq T$, hence Ker $\prod = B \leq T$.

Remark 2.11. The sum of T – essential submodules need not be T – essential. As shown in the following example

Example 2.12 Let R = Z, $M=Z \oplus Z_2$ and let $T = \{0\}$, $A_1=A_2=2Z \oplus (\overline{0}) \leq M$, $B_1=Z \oplus (\overline{0})$ and $B_2=Z(1,\overline{1}) \leq M$. One can easily show that $A_1 \leq_{\{0\}-e} B_1$ and $A_2 \leq_{\{0\}-e} B_2$. But $A_1+A_2 = A_1=2Z \oplus (\overline{0})$ and $B_1+B_2=Z \oplus (\overline{0}) + Z(1,\overline{1})=M$, and $(2Z \oplus (\overline{0})) \cap (0 \oplus Z_2)=0$. So A_1+A_2 is not T - essential in M.

Theorem 2.13.Let { M_{α} , $\alpha \in \Lambda$ } be a family of modules and T_{α} and N_{α} be submodules of a module M_{α} , $\forall \alpha \in \Lambda$. If N_{α} + $T_{\alpha} \leq_{T_{\alpha}} -e$ $M_{\alpha} \forall \alpha \in \Lambda$. Then $\bigoplus_{\alpha \in \Lambda} (N_{\alpha} + T_{\alpha}) \leq_{\bigoplus} \alpha \in_{\Lambda} T_{\alpha} -e \bigoplus_{\alpha \in \Lambda} M_{\alpha}$. **Proof:**-Assume that $N_{\alpha} + T_{\alpha} \leq_{T_{\alpha}} -e$ $M_{\alpha} \forall \alpha \in \Lambda$. Then by proposition 2.2 $-2\frac{N\alpha + T\alpha}{T\alpha} \leq e\frac{M\alpha}{T\alpha}$, $\forall \alpha \in \Lambda$. By [2, corollary 5.1.7, p. 110] $\bigoplus_{\alpha \in \Lambda} (\frac{N\alpha + T\alpha}{T\alpha}) \leq_{e} \bigoplus_{\alpha \in \Lambda} (\frac{M\alpha}{T\alpha})$. Hence $\frac{\bigoplus \alpha \in_{\Lambda} (N\alpha + T\alpha)}{\bigoplus \alpha \in_{\Lambda} T\alpha} = \frac{[(\bigoplus \alpha \in_{\Lambda} N\alpha) + (\bigoplus \alpha \in_{\Lambda} T\alpha)]}{\bigoplus \alpha \in_{\Lambda} T\alpha}$. $\leq_{e} \frac{\bigoplus \alpha \in_{\Lambda} M\alpha}{\bigoplus \alpha \in_{\Lambda} T\alpha}$. Therefore , by proposition 2.2 -2, $\bigoplus_{\alpha \in_{\Lambda}} (N_{\alpha} + T_{\alpha}) \leq_{\bigoplus \alpha \in_{\Lambda} T\alpha -e} \bigoplus_{\alpha \in_{\Lambda}} M_{\alpha}$.

 $e_{\oplus \alpha \in \Lambda T\alpha}$. Therefore, by proposition 2.2 2, $\bigoplus_{\alpha \in \Lambda} (T_{\alpha} + T_{\alpha}) = \bigoplus_{\alpha \in \Lambda T\alpha} (T_{\alpha} + T_{\alpha})$. **Corollary 2.14.** Let { $M_{\alpha}, \alpha \in \Lambda$ } be a family of modules and T_{α}, N_{α} be submodules of M_{α} with $T_{\alpha} \leq N_{\alpha}$,

Corollary 2.14. Let $\{M_{\alpha}, \alpha \in \Lambda\}$ be a family of modules and Γ_{α} , N_{α} be submodules of M_{α} with $\Gamma_{\alpha} \leq N_{\alpha}$, $\forall \alpha \in \Lambda$. If $N_{\alpha} \leq_{T\alpha \to e} M_{\alpha} \forall \alpha \in \Lambda$, then $\bigoplus_{\alpha \in \Lambda} N_{\alpha} \leq_{\bigoplus \alpha \in \Lambda} T_{\alpha \to e} \bigoplus_{\alpha \in \Lambda} M_{\alpha}$.

Theorem 2.15. Let T be a submodule of a module M. If every T –essential submodule A of M with T \leq A is finitely generated, then $\frac{M}{T}$ is Noetherian.

Proof:- Let $\frac{A}{T} \leq \frac{M}{T}$, to show $\frac{A}{T}$ is finite generated. By Zorn's lemma $\frac{A}{T}$ has complement say, $\frac{B}{T}$ in $\frac{M}{T}$. By [6, proposition 1.3, p. 17] then $\frac{A}{T} \bigoplus_{T=0}^{B} \leq_{e_{T}} \frac{M}{T}$, and then $\frac{A+B}{T} \leq_{e_{T}} \frac{M}{T}$. By Proposition 2.2- 2, then $A+B \leq_{T-e} M$. Then A+B is finite generated, and then $\frac{A}{T} \bigoplus_{T=0}^{B} \frac{B}{T}$ is finite generated. Let $\frac{A}{T} \bigoplus_{T=0}^{B} \frac{B}{T} = R(a_{1}+b_{1}+T) + \dots + R(a_{n}+b_{n}+T), a_{i} \in A, b_{i} \in B \forall i=1,2,\dots, n$.

Claim that $\frac{A}{T} = R(a_1+T) + \cdots + R(a_n+T)$. Let $x + T \in \frac{A}{T}$. Then $x + T = r_1(a_1+b_1+T) + \cdots + r_n(a_n+b_n+T)$, $a_1 \in A$, $b_i \in B \forall i=1,2,\cdots,n$. Therefore $[x-(r_1a_1+\cdots+r_na_n)] + T = (r_1b_1+\cdots+r_nb_n) + T \in (\frac{A}{T}) \cap (\frac{B}{T}) = T$. Then $[x-(r_1a_1+\cdots+r_na_n)] + T = T$, therefore $x - (r_1a_1+\cdots+r_na_n) \in T$. Hence $x + T = (r_1a_1+\cdots+r_na_n) + T$, hence $x + T \in R(a_1+T) + \cdots + R(a_n+T)$, thus $\frac{A}{T}$ is finite generated.

3. TheT-complement submodules

In, this section, we proved properties of the complement submodule with respect to an arbitrary submodule T of an R-module M

Definition3.1[5] Let T be a proper ,submodules 'of a module M and let Abe a submodule of M . A submodule B of M is called a T –.complement to A in M { denoted by B is a T – c to A in M },if B is maximal with, respect to the property that $A \cap B \leq T$.

Let M be a module and let T=0 . For a submodules A and B of M . Clearly that B is a T-c to A in M iff B is a complement for A in M .

Theorem 3.2. Let T and Abe submodules of, a module M, then A has a T -. complement in M.

Proof: Let T and A \leq M. We want to show A has a T-complement. Let $F = \{B \leq M \mid A \cap B \leq T\}$. $F \neq \emptyset$, since $0 \in F$, let $\{C\}_{\alpha \in \Lambda}$ be a chain in F. To show that $(U_{\alpha \in \Lambda} C_{\alpha}) \in F$. Clearly $U_{\alpha \in \Lambda} C_{\alpha} \leq M$. Since $A \cap (U_{\alpha \in \Lambda} C_{\alpha}) = U_{\alpha \in \Lambda} (A \cap C_{\alpha}) \leq T$. Then $U_{\alpha \in \Lambda} C_{\alpha} \in F$. By Zorn's lemma F has a. maximal element say H. Claim H is a T - c to A in M. To show that ,let $H \leq L \leq M$ such that $A \cap L \leq T$, therefore $L \in F$ which is contradiction. Thus H=L.

Remark 3.3Let T and A be submodules of a module M. Then a T –complement of A in M need not be unique as the following example shows : Consider Z_{12} as Z-module . Let $A=\{\overline{0},\overline{3},\overline{6},\overline{9}\}$ and $T=\{\overline{0},\overline{2},\overline{4},\overline{6},\overline{8},\overline{10}\}$. Let $B=\{\overline{0},\overline{6}\}$ and $C=\{\overline{0},\overline{4},\overline{8}\}$, one can easily show that each of B, C is a T – complement to A in Z_{12} .

Proposition3.4.

Let T, A and B be submodules of a module M, $if\frac{B}{T}$ is a complement $for\frac{A}{T}in\frac{M}{T}$, then B is a, T - c to A .in M. The converse is true if $T \leq A \cap B$.

Proof: Let $\frac{B}{T}$ is a complement for $\frac{A}{T}in\frac{M}{T}$, then $\frac{B}{T}is$ maximal with, respect to the ,property $(\frac{A}{T})\cap(\frac{B}{T})=0$. Hence B is. maximal with respect to the property $A\cap B=T$. To show that B is a T-c to A in M, let $B \le N \le M$ such that $A \cap N \le T$. Now $A \cap N \le T = A \cap B$. But $B \le N$, therefore $A \cap B \le A \cap N$. Thus $A \cap B = A \cap N$. Therefore $(\frac{A}{T})\cap(\frac{B}{T}) = \frac{(A \cap B)}{T} = \frac{(A \cap N)}{T} = \frac{T}{T} = 0$. But $\frac{B}{T}$ is a complement for $\frac{A}{T}in\frac{M}{T}$, so

 $\frac{N}{T} = \frac{B}{T}$ and hence N = B. Thus B is a T – c to A in M. For the converse, let B is a T – c to A in M and T $\leq A \cap B$.

Then
$$T = A \cap B.(\frac{A}{T}) \cap (\frac{B}{T}) = \frac{(A \cap B)}{T} = \frac{T}{T} = 0$$
. Now let $\frac{B}{T} \le \frac{N}{T} \le \frac{M}{T}$ such that $(\frac{A}{T}) \cap (\frac{N}{T}) = 0$. Then $\frac{(A \cap N)}{T} = 0$, and hence $A \cap N = T$. But B is a $T = c$ to A in M therefore $N = B$. Thus $\frac{N}{T} = \frac{B}{T}$.

and hence $A \cap N = T$. But B is a T - c to A in M, therefore N = B. Thus $\overline{T} = \overline{T}$. Corollary 3.5. Let T, A and B be submodules of a module M such that

 $\frac{M}{T} = (\frac{A}{T}) \bigoplus (\frac{B}{T})$. Then B is a T – c to A in M.

 $\frac{1}{T} - C_T / C_T / T = \frac{1}{T} = \frac{1}{T} + \frac{1}{T} = \frac{1}{T} + \frac{1}{T} + \frac{1}{T} + \frac{1}{T} = \frac{1}{T} + \frac{1}{T}$

Proposition3.6.

Let T, A, B and C be submodules of an module M with $A \le C$. If B is an T – c to A in M and C is a T – c to B in M. Then B is a T – c to C in M.

Proof: Let B is a T – c to A in M and C is a T – c to Bin M and A \leq C. Then B \cap C \leq T. To show that B is a T – c to C in M, let B \leq L \leq M such that L \cap C \leq T. Since (A \leq C), then A \cap L \leq C \cap L \leq T, implies that A \cap L \leq T. But B is maximal with respect to property A \cap B \leq T, therefore B=L. Thus B is a T – c to C in M.

Proposition3.7

Let T, A, B and C be submodules of a module M such that $T \le A \le C$. If B is a T – c to A in M and C is a T – c to B in M. Then C is a maximal T –essential extension of A in M.

Proof:-Let B is a T – c to A in M ,C is a T – c to B in M and T \leq A \leq C .First, we prove that A \leq_{T-e} C, let K \leq C such that A \cap K \leq T .Claim that A \cap (B + K) \leq T. To show that, let a = b +k such that a \in A, b \in B ,k \in K. Thus b = a-k \in B \cap C \leq T \leq A. Hence a-b= k \in A \cap K \leq T and hence a \in T. But B is maximal with respect .to the property A \cap B \leq T, therefore B+K = B .Then K \leq B . Hence K = K \cap C \leq B \cap C \leq T. Thus A \leq_{T-e} C. Now to show C is maximal T –essential extension of A in M. Let C \leq N \leq M with

 $A \leq_{T-e} N$. Since $A \cap B \leq T$, then $(A \cap B) \cap N \leq T \cap N = T$, and hence $A \cap (B \cap N) \leq T$. Since $A \leq_{T-e} N$, then $B \cap N \leq T$. But C is maximal with respect to the property $B \cap C \leq T$, therefore N = C.

Proposition3.8

Let A and B be submodules of a module M then B is a complement for A in M iff $A \bigoplus B \leq_{B-e} M$. **Proof:**

. \rightarrow) Let A \leq M and B is an complement for A in M. Then by [6,prop.1.3,p.17]A \oplus B \leq_e M. But B is closed in M, by[6, prop.1.4,p.18] therefore $\frac{(A \oplus B)}{B} \leq_e \frac{M}{B}$, by[6,prop.1.4,p.18]. By proposition 2.2 – 2, $A \oplus B \leq_{B-e} M$.

 $\leftarrow) \text{ Let } A \oplus B \leq_{B-e} M \text{ , then } A \cap B = 0 \text{ . By proposition } 2.2 - 2, \frac{(A \oplus B)}{B} \leq_{e_{\overline{B}}}^{M} \text{.Now, let } B \leq \text{Hand } A \cap H$ $= 0 \text{ . Now,} \underset{B}{\overset{H}{=}} \leq \frac{M}{B} \text{and} \frac{(A \oplus B)}{B} \cap \frac{H}{B} = \frac{(A \oplus B) \cap H}{B} = \frac{(A \cap H) \oplus B}{B} \text{by modular law } \frac{0 \oplus B}{B} = 0 \text{ .But } \frac{(A \oplus B)}{B} \leq_{e_{\overline{B}}}^{M} A \cap H$ $\text{therefore } \underset{B}{\overset{H}{=}} 0 \text{ . Hence } B = \text{H. Thus } B \text{ is a complement for } A \text{ in } M.$

Proposition3.9

Let A , B and C be submodules of a module M . If $A\leq_e M$ and C is a complement for B in M , then $A+C\leq_{C-e}M$.

Proof: Let $A \leq_e M$ and C is a complement for B in M. Claim that $\frac{(A+C)}{C} \leq_e \frac{M}{C}$. First we prove that, let $\frac{N}{C} \leq_c \frac{M}{C}$ such that $\frac{(A+C)}{C} \cap \frac{N}{C} = 0$. Then $\frac{(A+C) \cap N}{C} = 0$. By modular $law \frac{(A\cap N)+C}{C} = 0$. Implies that $(A \cap N) + C = C$. Therefore $A \cap N \leq C$.

Hence $(A \cap N) \cap B \le C \cap B=0$, then $A \cap (N \cap B) = 0$. Since $A \le_e M$, then $N \cap B = 0$. But C is maximal with respect to, the property $B \cap C = 0$, so N = C. Thus $\frac{(A+C)}{C} \le_e \frac{M}{C}$. By proposition 2.2-2, $A+C \le_{C-e} M$.

Proposition3.10

Let T, A, B and C be submodules of a module M such that $T \leq A$. If $A \leq_{(T+C)-e} M$ and C is a T-c to B in M, then $\frac{(A+C)}{C} \leq_{(T+C)-e} \frac{M}{C}$.

Proof : Let $A \leq_{(T+C)-e} M$ and C is a T -c to B in M. To show $\frac{(A+C)}{C} \leq_{(T+C)-e} \frac{M}{c}$. Let $\frac{N}{c} \leq_{C} \frac{M}{c}$ such that $\frac{(A+C)}{C} \cap \frac{N}{C} \leq_{C} \frac{(T+C)}{C}$. Since $\frac{(A+C)}{C} \cap \frac{N}{C} = \frac{(A+C)\cap N}{C} = \frac{(A\cap N)+C}{C}$, then $(A\cap N) + C \leq T + C$, and hence $A \cap N \leq T + C$. But $A \leq_{(T+C)-e} M$, therefore $N \leq T + C$ and hence $\frac{N}{C} \leq \frac{(T+C)}{C}$.

References

- 1. Anderson, F. W. and Fuller, K. R.1974. *Rings and categories of modules*, New York: Springer-Verlag.
- 2. Kasch, F. 1982. Modules and Rings, Academic press, London.
- **3.** Mohamed, S. H. and Muller, B. J.**1990.***Continuous and Discrete Modules*, London Mathematical Society Lecture Note Series 147.
- 4. Wisbauer, R.1991. Foundations of Module and Ring Theory. Gordon and Breach, Philadelphia.
- 5. Safaeeyan, S. and Saboori Shirazi, N. 2013. Essential submodules with respect to an arbitrary submodule *.Journal of Mathematical Extension*, 7(3): 15-27.
- 6. Goodearl, K. R.1976. Ring Theory, Nonsingular Rings and Modules, Marcel Dekker, New York.