

ISSN: 0067-2904

# Orthogonal Generalized Symmetric Higher bi-Derivations on Semiprime $\Gamma$-Rings . 

Salah Mahdi Salih, Samah Jaber Shaker*<br>Department of Mathematics, College of Education, AL-Mustansirya University, Baghdad, Iraq.


#### Abstract

In this paper a $\Gamma$-ring M is presented. We will study the concept of orthogonal generalized symmetric higher bi-derivations on $\Gamma$-ring. We prove that if M is a 2 torsion free semiprime $\Gamma$-ring , $D_{n}$ and $G_{n}$ are orthogonal generalized symmetric higher bi-derivations associated with symmetric higher bi-derivations $d_{n}$ and $g_{n}$ respectively for all $n \in N$. Then the following relations are hold for all $x, y, z \in M, \alpha \in \Gamma$ and $n \in \mathrm{~N}$ : (i) $D_{n}(x, y) \alpha G_{n}(y, z)=G_{n}(x, y) \alpha D_{n}(y, z)=(0)$ hence $D_{n}(x, y) \alpha G_{n}(y, z)+$ $\mathrm{G}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{D}_{\mathrm{n}}(\mathrm{y}, \mathrm{z})=0$. (ii) $\mathrm{d}_{\mathrm{n}}$ and $\mathrm{G}_{\mathrm{n}}$ are orthogonal and $\mathrm{d}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{G}_{\mathrm{n}}(\mathrm{y}, \mathrm{z})=\mathrm{G}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{d}_{\mathrm{n}}(\mathrm{y}, \mathrm{z})=(0)$. (iii) $g_{n}$ and $D_{n}$ are orthogonal and $g_{n}(x, y) \alpha D_{n}(y, z)=D_{n}(x, y) \alpha g_{n}(y, z)=(0)$. (iv) $d_{n}$ and $g_{n}$ are orthogonal symmetric higher bi-derivations . (v) $d_{n} G_{n}=G_{n} d_{n}=0$ and $g_{n} D_{n}=D_{n} g_{n}=0$. (vi) $G_{n} D_{n}=D_{n} G_{n}=0$.


Keywords: Symmetric Bi-derivations $\Gamma$-ring, higher bi-derivations $\Gamma$-ring, generalized higher bi-derivations $\Gamma$-ring ,orthogonal generalized symmetric higher bi-derivations $\Gamma$-ring .

```
تعامد المشتقات الثنائية المتناظرة على الحلقات شبه الأولية من النمط - \(\Gamma\) تعميم
    صلاح مهـي صالح ، سماح جابر شاكر"
قسم الرياضيات ، كلية التربية ، الجامعة المستنصرية ، بغداد ، العر اق
```

الخلاصة
في هذا البحث M هي حلقه من النمط - C • سوف ندرس مفهوم تعميم تعامد المشتقات الثائية المتناظرة
على الحلقات شبه اولية من النمط -Г . سوف نبرهن اذا كانت M حلقة شبه اولية طليقة الالتواء من النمط
$d_{n}, g_{n}$ هما تعميم للمشتقات الثائية المتتاظرة المرتبطة بالمشنقات الثثائية المتتاظرة $D_{n}, G_{n}$ وكانت $\Gamma$ -

$$
\text { على النوالي لكل ne N . اذأ العلاقات النتالية متحققة لكل منГ x, y, zeM , } \alpha \in \text { : }
$$

(i) $D_{n}(x, y) \alpha G_{n}(y, z)=G_{n}(x, y) \alpha D_{n}(y, z)=(0)$ hence $D_{n}(x, y) \propto G_{n}(y, z)+$ $\mathrm{G}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{D}_{\mathrm{n}}(\mathrm{y}, \mathrm{z})=0$.
(ii) $\mathrm{d}_{\mathrm{n}}$ and $\mathrm{G}_{\mathrm{n}}$ are orthogonal and $\mathrm{d}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{G}_{\mathrm{n}}(\mathrm{y}, \mathrm{z})=\mathrm{G}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{d}_{\mathrm{n}}(\mathrm{y}, \mathrm{z})=(0)$.
(iii) $g_{n}$ and $D_{n}$ are orthogonal and $g_{n}(x, y) \alpha D_{n}(y, z)=D_{n}(x, y) \alpha g_{n}(y, z)=(0)$.
(iv) $d_{n}$ and $g_{n}$ are orthogonal symmetric higher bi-derivations .
(v) $d_{n} G_{n}=G_{n} d_{n}=0$ and $g_{n} D_{n}=D_{n} g_{n}=0$.
(vi) $\mathrm{G}_{\mathrm{n}} \mathrm{D}_{\mathrm{n}}=\mathrm{D}_{\mathrm{n}} \mathrm{G}_{\mathrm{n}}=0$.

## 1. Introducation

Let M and $\Gamma$ be two additive abelian groups, M is called a $\Gamma$ ring if the following conditions are satisfied for any $x, y, z \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$ :

[^0](i) $x \alpha y \epsilon M$
(ii) $x \alpha(y+z)=x \alpha y+x \alpha z$ $x(\alpha+\beta) y=x \alpha y+x \beta y$ $(x+y) \alpha z=x \alpha z+y \alpha z$
(iii) $(x \alpha y) \beta z=x \alpha(y \beta z)$

The notion of a $\Gamma$-ring was first introduced by Nobusawa 1964 [1] and generalized by Barnes 1966 [2] as above definition .It is well known that every ring is $\Gamma$-ring . M is called prime if $\mathrm{x} Г \mathrm{M} \mathrm{y}=0$ implies that $\mathrm{x}=0$ or $\mathrm{y}=0$ and its said to be semiprime if $\mathrm{x} \Gamma \mathrm{M} \Gamma \mathrm{x}=0$ implies that $\mathrm{x}=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M},[3]$ , also $M$ is said to be $n$-torsion free if $n x=0, x \in M$ implies that $x=0$ where $n$ is positive integer.
In [4] Jing defined a derivation on $\Gamma$-ring as follows :"An additive mapping $\mathrm{d}: \mathrm{M} \rightarrow \mathrm{M}$ is said to be derivation on $M$ if $d(x \alpha y)=d(x) \alpha y+x \alpha d(y)$ for all $x, y \in M$ and $\alpha \in \Gamma^{\prime \prime}$.

Sapanci and Nakajima in [5] are defined a Jordan derivation on $\Gamma$-ring as follows: "An additive mapping $\mathrm{d}: \mathrm{M} \rightarrow \mathrm{M}$ is said to be Jordan derivation on $\Gamma$-ring if $\mathrm{d}(\mathrm{x} \alpha \mathrm{x})=\mathrm{d}(\mathrm{x}) \alpha \mathrm{x}+\mathrm{x} \alpha \mathrm{d}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{M}$ and $\alpha \epsilon \Gamma$. It is clear that every derivation of a $\Gamma$-ring M is Jordan derivation of $\mathrm{M}^{\prime}$.

Ceven and Ozturk in [6] are defined a generalized derivation on $\Gamma$-ring as follows :" An additive mapping $\mathrm{D}: \mathrm{M} \rightarrow \mathrm{M}$ is said to be generalized derivation on M if there exists a derivation $\mathrm{d}: \mathrm{M} \rightarrow \mathrm{M}$ such that $\mathrm{D}(\mathrm{x} \alpha \mathrm{y})=\mathrm{D}(\mathrm{x}) \alpha \mathrm{y}+\mathrm{x} \alpha \mathrm{d}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha \in \Gamma^{"}$,also defined a Jordan generalized derivation on $\Gamma$-ring as follows:"An additive mapping $\mathrm{D}: \mathrm{M} \rightarrow \mathrm{M}$ is said to be Jordan generalized derivation if there exists a Jordan derivation $\mathrm{d}: \mathrm{M} \rightarrow \mathrm{M}$ such that $\mathrm{D}(\mathrm{x} \alpha \mathrm{x})=\mathrm{D}(\mathrm{x}) \alpha \mathrm{x}+\mathrm{x} \alpha \mathrm{d}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{M}$ and $\alpha \in \Gamma$ .It is clear that every generalized derivation on $\Gamma$-ring M is Jordan generalized derivation of M ".

Ashraf and Jamal in [7] are introduced the definition of orthogonal derivation on $\Gamma$-ring as follows :" Let $d$ and $g$ be two derivations on $M$ are said to be orthogonal if $d(x) \Gamma M \Gamma g(y)=(0)=g(y)$ $\Gamma M \Gamma \mathrm{~d}(\mathrm{x})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}^{\prime \prime}$, also Ashraf and Jamal are defined the orthogonal generalized derivation on $\Gamma$-ring as follows :" Let D and G be two generalized derivations on M is said to be orthogonal if $\mathrm{D}(\mathrm{x}) ~ Г \mathrm{M} \Gamma \mathrm{G}(\mathrm{y})=(0)=\mathrm{G}(\mathrm{y}) \Gamma \mathrm{M} \Gamma \mathrm{D}(\mathrm{x})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}^{\prime \prime}$.

In [8] Ozturk et al. are defined a symmetric bi-derivation on $\Gamma$-ring M as follows: "A mapping $d: M x M \rightarrow M$ is said to be symmetric if $d(x, y)=d(y, x)$ for all $x, y \in M$. "A mapping $f: M \rightarrow M$ defined by $f(x)=d(x, x)$, where $d: M x M \rightarrow M$ is a symmetric mapping, is called the trace of $d$ and the trace $f$ of $d$ satisfies the relation $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})+2 \mathrm{~d}(\mathrm{x}, \mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$. A symmetric bi-additive mapping on $M \times M$ into $M$ is said to be symmetric bi-derivation on $M$ if $d(x \alpha y, z)=d(x, z) \alpha y+x \alpha d(y, z)$ for all $x, y, z$ $\epsilon M, \alpha \in \Gamma$ and $d$ is said to be Jordan bi-derivation on $M$ if $d(x \alpha x, y)=d(x, y) \alpha x+x \alpha d(x, y)$ for all $x, y \in$ $\mathrm{M}, \alpha \in \Gamma^{\prime \prime}$, and authers in [8] introduced the notion of generalized bi- derivation and Jordan generalized bi- derivation on $\Gamma$-ring as follows: "A symmetric bi-additive mapping $\mathrm{D}: \mathrm{MxM} \rightarrow \mathrm{M}$ is said to be generalized bi-derivation if there exists $d: M \times M \rightarrow M$ bi-derivation such that $D(x \alpha y, z)=D(x, z) \alpha y+x \alpha d(y, z)$ for all $x, y, z \in M, \alpha \in \Gamma$, and $D$ is said to be Jordan generalized biderivation if there exists a Jordan bi-derivation $\mathrm{d}: \mathrm{MxM} \rightarrow \mathrm{M}$ such that $\mathrm{D}(\mathrm{x} \alpha \mathrm{x}, \mathrm{y})=\mathrm{D}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{x}+\mathrm{x} \alpha \mathrm{d}(\mathrm{x}, \mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma^{\prime \prime}$.

Marir and Salih in [9] are introduced the concept of higher bi- derivation on $\Gamma$-ring M as follows : " Let $\mathrm{D}=\left(d_{i}\right)_{i \in N}$ be a family of bi-additive mapping on on $M \times M$ into $M$ is said to be higher biderivation if $d_{n}$ (xay,zaw) $=\sum_{i+j=n} d_{i}(x, z) \alpha d_{j}(y, w)$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w} \in \mathrm{M}, \alpha \in \Gamma^{\prime \prime}$, and $\mathrm{D}=\left(d_{i}\right)_{i \in N}$ be a family of bi-additive mapping on MxM into M is said to be Jordan bi-derivation if dn ( $\mathrm{x} \alpha \mathrm{x}, \mathrm{y} \alpha \mathrm{y}$ ) $=\sum_{i+j=n} d_{i}(x, y) \alpha d_{j}(x, y)$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \alpha \in \Gamma$, and authers in[9] are defined the generalized higher bi-derivation on $\Gamma$-ring M as follows: " Let $\mathrm{D}=\left(D_{i}\right)_{i \in N}$ be a family of bi-additive mapping on $M \times M$ into M is said to be generalized higher bi-derivation if there exists a higher biderivation $d_{n}: M \times M \rightarrow M$ such that $D_{n}(\mathrm{x} \alpha \mathrm{y}, \mathrm{z} \alpha \mathrm{w})=\sum_{i+j=n} D_{i}(x, z) \alpha d_{j}(y, w)$ for all x,y,z,w $\in \mathrm{M}, \alpha$ $\epsilon \Gamma$, and $\mathrm{D}=\left(D_{i}\right)_{i \in N}$ be a family of bi-additive mapping on $M \times M$ into $M$ is said to be Jordan generalized higher bi-derivation if there exists $d_{n}: M \times M \rightarrow M$ Jordan higher bi-derivation such that $D_{n}(\mathrm{x} \alpha \mathrm{x}, \mathrm{y} \alpha \mathrm{y})=\sum_{i+j=n} D_{i}(x, y) \alpha d_{j}(x, y)$ for all x,y $\in \mathrm{M}, \alpha \in \Gamma^{\prime \prime}$.

In this paper we will extend of this results to present the concept of orthogonal generalized symmetric higher bi -derivations on semiprime $\Gamma$-ring, and we proved same of lemmas and theorems about arthogonality .

## 2. Orthogonal Generalized Symmetric Higher bi-Derivations on Semiprime $\Gamma$-Rings

In this section we will the definition of orthogonal generalized symmetric higher bi-derivations on a $\Gamma$-ring M and we introduced an example and some Lemmas used in our work.
Now, we start with the following definition

## Definition (2. 1):

Let $\mathrm{D}=\left(D_{i}\right)_{i \in N}$ and $\mathrm{G}=\left(G_{i}\right)_{i \in N}$ are two generalized symmetric higher bi-derivations on $\Gamma$-ring M ,then $D_{n}$ and $G_{n}$ are said to be orthogonal if for every $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}, \mathrm{n} \in \mathrm{N}$ :
$D_{n}(\mathrm{x}, \mathrm{y}) ~ Г \mathrm{M} \Gamma G_{n}(\mathrm{y}, \mathrm{z})=(0)=G_{n}(\mathrm{y}, \mathrm{z}) ~ Г \mathrm{M} \Gamma D_{n}(\mathrm{x}, \mathrm{y})$.
Where
$D_{n}(\mathrm{x}, \mathrm{y}) \Gamma \mathrm{M} \Gamma G_{n}(\mathrm{y}, \mathrm{z})=\sum_{i=1}^{n} D_{i}(x, y) \alpha m \beta G_{i}(y, z)=0$
For all $\mathrm{m} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$.
The following example clarify orthogonal generalized higher bi-derivations on $\Gamma$-ring M .

## Example (2.2):

Let $d_{n}$ and $g_{n}$ are two symmetric higher bi-derivations on $\Gamma$-ring $M$. Put $M=M \times M$ and $\Gamma^{\prime}=\Gamma \times \Gamma$, we define $d_{n}^{\prime}$ and $g_{n}^{\prime} \quad$ on $M^{\prime}$ into itself such that $d_{n}^{\prime}((x, y))=\left(d_{n}(x), 0\right)$ and $g_{n}^{\prime}((x, y))=\left(0, g_{n}(y)\right)$ for all $(x, y) \in M^{\prime}$ and $n \in N$. More over if $\left(D_{n}, d_{n}\right)$ and $\left(G_{n}, g_{n}\right)$ are generalized symmetric higher bi-derivations on $M$, we defined $D_{n}$ and $G_{n}$ on $M$ into itself such that $D_{n}{ }^{\prime}((x, y))=\left(D_{n}(x), 0\right)$ and $G_{n}((x, y))=\left(0, G_{n}(y)\right)$ for all $(x, y) \in M^{\prime}$ and $n \in N$.Then $\left(D_{n}{ }^{\prime}, d_{n}^{\prime}\right)$ and $\left(G_{n}, g_{n}^{\prime}\right)$ are generalized symmetric higher bi-derivations such that $D_{n}$ and $G_{n}$ are orthogonal.

## Lemma (2. 3): [11]

Let $M$ be a 2-torsion free semiprime $\Gamma$-ring and $a, b$ the elements of $M$. If for all $\alpha, \beta \epsilon \Gamma$, then the following conditions are equivalent:
(i) $\quad \mathrm{a} \alpha \mathrm{M} \beta \mathrm{b}=0$
(ii) $\quad \mathrm{b} \alpha \mathrm{M} \beta \mathrm{a}=0$
(iii) $\quad \mathrm{a} \alpha \mathrm{M} \beta \mathrm{b}+\mathrm{b} \alpha \mathrm{M} \beta \mathrm{a}=0$
(iv) $\quad \mathrm{a} \alpha \mathrm{M} \beta \mathrm{b}+\mathrm{b} \alpha \mathrm{M} \beta \mathrm{a}=0$

If one of these conditions is fulfilled, then $\mathrm{a} \alpha \mathrm{b}=\mathrm{b} \alpha \mathrm{a}=0$.

## Lemma (2. 4): [10]

Let M be a 2-torsion free semiprime $\Gamma$-ring and $\mathrm{a}, \mathrm{b}$ the elements of M such that $\mathrm{a} \alpha \mathrm{M} \beta \mathrm{b}+\mathrm{b} \alpha \mathrm{M} \beta \mathrm{a}=0$ for all $\mathrm{a}, \beta \in \Gamma$,then $\mathrm{a} \alpha \mathrm{M} \beta \mathrm{b}=\mathrm{b} \alpha \mathrm{M} \beta \mathrm{a}=0$.

## Lemma (2.5):

Let M be a semiprime $\Gamma$-ring . Suppose that $D_{n}$ and $G_{n}$ are bi-additive mappings satisfies $D_{n}(\mathrm{x}, \mathrm{y})$ $\Gamma \mathrm{M} \Gamma G_{n}(\mathrm{x}, \mathrm{y})=(0)$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}, \mathrm{n} \in \mathrm{N}$. Then $D_{n}(\mathrm{x}, \mathrm{y}) \Gamma \mathrm{M} \Gamma G_{n}(\mathrm{y}, \mathrm{z})=(0)$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}$ and $\mathrm{n} \in \mathrm{N}$.

## Proof:

Suppose that $\mathrm{D}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \Gamma \mathrm{M} \Gamma \mathrm{G}_{\mathrm{n}}(\mathrm{x}, \mathrm{y})=(0)$
$D_{n}(x, y) \Gamma M \Gamma G_{n}(x, y)=\sum_{i=1}^{n} D_{i}(x, y) \alpha m \beta G_{i}(x, y)=0$
for all $\alpha, \beta \in \Gamma$
Replace $x$ by $x+z$ in (1) for all $z \in M$ we get

```
\(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}(\mathrm{x}+\mathrm{z}, \mathrm{y}) \alpha \mathrm{m} \beta \mathrm{G}_{\mathrm{i}}(\mathrm{x}+\mathrm{z}, \mathrm{y})=0\)
\(\sum_{i=1}^{\mathrm{n}}\left[\mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})+\mathrm{D}_{\mathrm{i}}(\mathrm{z}, \mathrm{y})\right] \alpha \mathrm{m} \beta\left[\mathrm{G}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})+\mathrm{G}_{\mathrm{i}}(\mathrm{z}, \mathrm{y})\right]=0\)
\(\sum_{\mathrm{I}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{m} \beta \mathrm{G}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})+\mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{m} \beta \mathrm{G}_{\mathrm{i}}(\mathrm{z}, \mathrm{y})+\mathrm{D}_{\mathrm{i}}(\mathrm{z}, \mathrm{y}) \alpha \mathrm{m} \beta \mathrm{G}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})+\mathrm{D}_{\mathrm{i}}(\mathrm{z}, \mathrm{y}) \alpha \mathrm{m} \beta \mathrm{G}_{\mathrm{i}}(\mathrm{z}, \mathrm{y})=0\)
```

By equation (1) we get
$\sum_{i=1}^{n} D_{i}(x, y) \alpha m \beta G_{i}(z, y)+D_{i}(z, y) \alpha m \beta G_{i}(x, y)=0$
$\sum_{i=1}^{n} D_{i}(x, y) \alpha m \beta G_{i}(z, y)=-\sum_{i=1}^{n} D_{i}(z, y) \alpha m \beta G_{i}(x, y)$
Multiplication (2) by $\gamma \mathrm{t} \delta \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \propto \mathrm{m} \beta \mathrm{G}_{\mathrm{i}}(\mathrm{z}, \mathrm{y})$ for all $\mathrm{t} \in \mathrm{M}$ and $\gamma, \delta \epsilon \Gamma$ we get
$\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \propto \mathrm{m} \beta \mathrm{G}_{\mathrm{i}}(\mathrm{z}, \mathrm{y}) \gamma \mathrm{t} \delta \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \propto \mathrm{m} \beta \mathrm{G}_{\mathrm{i}}(\mathrm{z}, \mathrm{y})=0$
Since M is semiprime we get
$\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \propto \mathrm{m} \beta \mathrm{G}_{\mathrm{i}}(\mathrm{z}, \mathrm{y})=0$
Replace $\mathrm{G}_{\mathrm{i}}(\mathrm{z}, \mathrm{y})$ by $\mathrm{G}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})$ in (3) we get
$\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \propto \mathrm{m} \beta \mathrm{G}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})=0$
Hence $D_{n}(x, y) \Gamma М Г G_{n}(y, z)=(0)$

## Lemma (2. 6):

Let M be a 2 -torsion free semiprime $\Gamma$-ring such that a $\alpha y \beta z=\mathrm{a} \beta \mathrm{y} \alpha \mathrm{z}$, two generalized symmetric higher bi-derivations $D_{n}$ and $G_{n}$ associated with two symmetric higher bi-derivations $d_{n}$ and $g_{n}$ respectively for all $n \in N$. Then $D_{n}$ and $G_{n}$ are orthogonal if and only if $D_{n}(x, y) \alpha G_{n}(y, z)+$ $\mathrm{G}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{D}_{\mathrm{n}}(\mathrm{y}, \mathrm{z})=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}, \mathrm{n} \in \mathrm{N}$ and $\alpha, \beta \in \Gamma$.

## Proof:

Suppose that $\mathrm{D}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{G}_{\mathrm{n}}(\mathrm{y}, \mathrm{z})+\mathrm{G}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{D}_{\mathrm{n}}(\mathrm{y}, \mathrm{z})=0$
$\sum_{i=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{G}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})+\mathrm{G}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{D}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})=0$
Replace x by $\mathrm{x} \beta \mathrm{w}$ in (1) for all $\mathrm{w} \epsilon \mathrm{M}$ we get
$\sum_{i=1}^{n} D_{i}(x \beta w, y) \alpha G_{i}(y, z)+G_{i}(x \beta w, y) D_{i}(y, z)=0$
$\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \beta \mathrm{d}_{\mathrm{i}}(\mathrm{w}, \mathrm{y}) \alpha \mathrm{G}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})+\mathrm{G}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \beta \mathrm{g}_{\mathrm{i}}(\mathrm{w}, \mathrm{y}) \alpha \mathrm{D}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})=0$
Replace $d_{i}(w, y)$ by $g_{i}(w, y)$ in (2) we get
$\sum_{i=1}^{n} D_{i}(\mathrm{x}, \mathrm{y}) \beta \mathrm{g}_{\mathrm{i}}(\mathrm{w}, \mathrm{y}) \alpha \mathrm{G}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})+\mathrm{G}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \beta \mathrm{g}_{\mathrm{i}}(\mathrm{w}, \mathrm{y}) \alpha \mathrm{D}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})=0$
By Lemma (2-4) we get
$\sum_{i=1}^{n} D_{i}(x, y) \beta g_{i}(w, y) \alpha G_{i}(y, z)=\sum_{i=1}^{n} G_{i}(x, y) \beta g_{i}(w, y) \alpha D_{i}(y, z)=0$
Replace $\mathrm{g}_{\mathrm{i}}(\mathrm{w}, \mathrm{y})$ by m in (3) for all $\mathrm{m} \epsilon \mathrm{M}$ we get $D_{n}(x, y) Г M \Gamma G_{n}(y, z)=G_{n}(x, y) Г M \Gamma D_{n}(y, z)=(0)$

Thus $\mathrm{D}_{\mathrm{n}}$ and $\mathrm{G}_{\mathrm{n}}$ are orthogonal
Conversely, suppose that $D_{n}$ and $G_{n}$ are orthogonal
$D_{n}(x, y) ~ Г М Г G_{n}(y, z)=(0)=G_{n}(x, y)$ ГМГ $D_{n}(y, z)$
$\sum_{i=1}^{n} D_{i}(x, y) \alpha m \beta G_{i}(y, z)=0=\sum_{i=1}^{n} G_{i}(x, y) \alpha m \beta D_{i}(y, z)$
$\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \alpha m \beta \mathrm{G}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})+\mathrm{G}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{m} \beta \mathrm{D}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})=0$
By Lemma (2-3) we get
$\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{G}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{G}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{D}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})=0$
$\sum_{i=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{G}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})+\mathrm{G}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{D}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})=0$
Hence $D_{n}(x, y) \alpha G_{n}(y, z)+G_{n}(x, y) \alpha D_{n}(y, z)=0$

## Lemma (2.7):

Let M be a 2 -torsion free semiprime $\Gamma$-ring such that a $\alpha y \beta z=\mathrm{a} \beta \mathrm{y} \alpha \mathrm{z}$, two generalized symmetric higher bi-derivations $D_{n}$ and $G_{n}$ associated with two symmetric higher bi-derivations $d_{n}$ and $g_{n}$ respectively for $n \in N$.Then $D_{n}$ and $G_{n}$ are orthogonal if and only if $D_{n}(x, y) \alpha G_{n}(y, z)=0$ or $\mathrm{G}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{D}_{\mathrm{n}}(\mathrm{y}, \mathrm{z})=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}, \mathrm{n} \in \mathrm{N}$ and $\alpha, \beta \in \Gamma$.

## Proof:

Suppose that $\mathrm{D}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{G}_{\mathrm{n}}(\mathrm{y}, \mathrm{z})=0$
$D_{n}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{G}_{\mathrm{n}}(\mathrm{y}, \mathrm{z})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{G}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})=0$
Replace x by $\mathrm{x} \beta \mathrm{w}$ in (1) for all $\mathrm{w} \in \mathrm{M}$ we get

$$
\begin{align*}
& \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}(\mathrm{x} \beta \mathrm{w}, \mathrm{y}) \alpha \mathrm{G}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})=0 \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \beta \mathrm{d}_{\mathrm{i}}(\mathrm{w}, \mathrm{y}) \alpha \mathrm{G}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})=0 \tag{2}
\end{align*}
$$

Replace $d_{i}(w, y)$ by $m$ for all $m \in M$ we get

$$
\sum_{i=1}^{n} D_{i}(x, y) \beta m \alpha G_{i}(y, z)=0
$$

Hence we get the require result.
Similarly way if $G_{n}(x, y) \alpha D_{n}(y, z)=0$ we get $D_{n}$ and $G_{n}$ are orthogonal .
Conversely, suppose that $D_{n}$ and $G_{n}$ are orthogonal

$$
\begin{aligned}
& D_{n}(x, y) \Gamma M \Gamma G_{n}(y, z)=(0) \\
& \sum_{i=1}^{n} D_{i}(x, y) \alpha m \beta G_{i}(y, z)=0
\end{aligned}
$$

By Lemma (2-3) we get

$$
\sum_{i=1}^{n} D_{i}(x, y) \alpha G_{i}(y, z)=0
$$

Hence $D_{n}(x, y) \alpha G_{n}(y, z)=0$
And by $\mathrm{G}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \Gamma \mathrm{M} \Gamma \mathrm{G}_{\mathrm{n}}(\mathrm{y}, \mathrm{z})=(0)$

$$
\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{G}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \propto \mathrm{m} \beta \mathrm{D}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})=0
$$

By Lemma (2-3) we get
$\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{G}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{D}_{\mathrm{i}}(\mathrm{y}, \mathrm{z})=0$
Thus $\mathrm{G}_{\mathrm{n}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{D}_{\mathrm{n}}(\mathrm{y}, \mathrm{z})=0$

## Lemma (2. 8):

Let M be a 2 -torsion free semiprime $\Gamma$-ring a $\alpha y \beta z=\mathrm{a} \beta \mathrm{y} \alpha \mathrm{z}$, two generalized symmetric higher bi-derivations $D_{n}$ and $G_{n}$ associated with two symmetric higher bi-derivations $d_{n}$ and $g_{n}$ respectively for $\mathrm{n} \in \mathrm{N}$. Then $D_{n}$ and $G_{n}$ are orthogonal iff $D_{n}(x, y) \alpha g_{n}(y, z)=0$ or $d_{n}(x, y) \alpha G_{n}(y, z)=0$ for all $x, y, z \in M, \alpha, \beta \in \Gamma$ and $n \epsilon N$.

## Proof:

Suppose that $D_{n}(x, y) \alpha g_{n}(y, z)=0$
$D_{n}(x, y) \alpha g_{n}(y, z)=\sum_{i=1}^{n} D_{i}(x, y) \alpha g_{i}(y, z)=0$
Replace $z$ by $w \beta z$ in (1) for all $\mathrm{w} \epsilon \mathrm{M}$ we get
$\sum_{i=1}^{n} D_{i}(x, y) \alpha g_{i}(y, w \beta z)=0$
$\sum_{i=1}^{n} D_{i}(x, y) \alpha g_{i}(y, w) \beta g_{i}(y, z)=0$
Replace $g_{i}(y, z)$ by $G_{i}(y, z)$ in (2) we get
$\sum_{i=1}^{n} D_{i}(x, y) \alpha g_{i}(y, w) \beta G_{i}(y, z)=0$
By Lemma (2-3) we get
$\sum_{i=1}^{n} D_{i}(x, y) \alpha G_{i}(y, z)=0$
$D_{n}(x, y) \alpha G_{n}(y, z)=0$
By Lemma (2-7) we get $D_{n}$ and $G_{n}$ are orthogonal .
Similarly we if $d_{n}(x, y) \alpha G_{n}(y, z)=0$ we get $D_{n}$ and $G_{n}$ are orthogonal .
Conversely, suppose that $D_{n}$ and $G_{n}$ are orthogonal.

By Lemma (2-7) we get

$$
\begin{align*}
& D_{n}(x, y) \alpha G_{n}(y, z)=0 \\
& \sum_{i=1}^{n} D_{i}(x, y) \alpha G_{i}(y, z)=0 \tag{3}
\end{align*}
$$

Replace z by $\mathrm{w} \beta z$ in (3) for all $\mathrm{w} \epsilon \mathrm{M}$ we get
$\sum_{i=1}^{n} D_{i}(x, y) \alpha G_{i}(y, w \beta z)=0$
$\sum_{i=1}^{n} D_{i}(x, y) \alpha G_{i}(y, w) \beta g_{i}(y, z)=0$
By Lemma (2-3) we get
$\sum_{i=1}^{n} D_{i}(x, y) \alpha g_{i}(y, z)=0$
Hence $D_{n}(x, y) \alpha g_{n}(y, z)=0$
And replace x by $\mathrm{w} \beta x$ in (3) we get
$\sum_{i=1}^{n} D_{i}(\mathrm{w} \beta x, y) \alpha G_{i}(y, z)=0$
$\sum_{i=1}^{n} D_{i}(w, y) \beta d_{i}(x, y) \alpha G_{i}(y, z)=0$
Multiplication (4) by $d_{i}(x, y) \alpha G_{i}(y, z) \delta$ for all $\delta \epsilon \Gamma$ we get
$\sum_{i=1}^{n} d_{i}(x, y) \alpha G_{i}(y, z) \delta D_{i}(w, y) \beta d_{i}(x, y) \alpha G_{i}(y, z)=0$
Since M is semiprime we get
$\sum_{i=1}^{n} d_{i}(x, y) \alpha G_{i}(y, z)=0$
Hence $d_{n}(x, y) \alpha G_{n}(y, z)=0$

## Lemma (2.9):

Let M be a 2 -torsion free semiprime $\Gamma$-ring a $\alpha \mathrm{y} \beta \mathrm{z}=\mathrm{a} \beta \mathrm{y} \alpha \mathrm{z}$, two generalized symmetric higher bi-derivations $\quad D_{n}$ and $G_{n}$ associated with two symmetric higher biderivations $d_{n}$ and $g_{n}$ respectively for all $\mathrm{n} \in \mathrm{N}$. Then $D_{n}$ and $G_{n}$ are orthogonal if and only if $D_{n}(x, y) \alpha G_{n}(y, z)=d_{n}(x, y) \alpha G_{n}(y, z)=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}, \alpha \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$.

## Proof:

Suppose that $D_{n}$ and $G_{n}$ are orthogonal
By Lemma (2-7) we get
$D_{n}(x, y) \alpha G_{n}(y, z)=0$
And by Lemma (2-8) we get
$d_{n}(x, y) \alpha G_{n}(y, z)=0$
From (1) and (2) we get $D_{n}(x, y) \alpha G_{n}(y, z)=d_{n}(x, y) \alpha G_{n}(y, z)=0$
Conversely, suppose that $D_{n}(x, y) \alpha G_{n}(y, z)=0$
By Theorem (2-7) we get
Hence $D_{n}$ and $G_{n}$ are orthogonal
Now, if $d_{n}(x, y) \alpha G_{n}(y, z)=0$
By Theorem (2-8) we get
$D_{n}$ and $G_{n}$ are orthogonal.

## 3. Main Results

In this section, we present and study some basic Theorems of orthogonal generalized symmetric higher bi-derivations on $\Gamma$-ring M .

## Theorem (3.1):

Let M is a 2-torsion free semiprime $\Gamma$-ring a $\alpha \mathrm{y} \beta \mathrm{z}=\mathrm{a} \beta \mathrm{y} \alpha \mathrm{z}, D_{n}$ and $G_{n}$ are orthogonal generalized symmetric higher bi-derivations associated with symmetric higher biderivations $d_{n}$ and $g_{n}$ respectively for all $\mathrm{n} \in \mathrm{N}$. Then the following relations are hold for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$ $\epsilon \mathrm{M}, \alpha, \beta \in \Gamma$ and $\mathrm{n} \in \mathrm{N}$.
(i) $D_{n}(x, y) \alpha G_{n}(y, z)=G_{n}(x, y) \alpha D_{n}(y, z)=0$ hence $D_{n}(x, y) \alpha G_{n}(y, z)+G_{n}(x, y) \alpha D_{n}(y, z)=0$.
(ii) $d_{n}$ and $G_{n}$ are orthogonal and $d_{n}(x, y) \alpha G_{n}(y, z)=G_{n}(x, y) \alpha d_{n}(y, z)=(0)$.
(iii) $g_{n}$ and $D_{n}$ are orthogonal and $g_{n}(x, y) \alpha \quad D_{n}(y, z)=D_{n}(x, y) \alpha g_{n}(y, z)=(0)$.
(iv) $d_{n}$ and $g_{n}$ are orthogonal symmetric higher bi-derivations .
(v) $d_{n} G_{n}=G_{n} d_{n}=0$ and $g_{n} D_{n}=D_{n} g_{n}=0$.
(vi) $G_{n} D_{n}=D_{n} G_{n}=0$.

Proof : (i)
Suppose that $D_{n}$ and $G_{n}$ are orthogonal
By Lemma (2-7) we get
$D_{n}(x, y) \alpha G_{n}(y, z)=0$ and $G_{n}(x, y) \alpha D_{n}(y, z)=0$
$D_{n}(x, y) \alpha G_{n}(y, z)=G_{n}(x, y) \alpha D_{n}(y, z)=0$
Hence $D_{n}(x, y) \alpha G_{n}(y, z)+G_{n}(x, y) \alpha D_{n}(y, z)=0$
Proof: (ii)
Suppose that $D_{n}$ and $G_{n}$ are orthogonal
By Lemma (2-8) we get

$$
\begin{equation*}
d_{n}(x, y) \alpha G_{n}(y, z)=0 \tag{1}
\end{equation*}
$$

$\sum_{i=1}^{n} d_{i}(x, y) \alpha G_{i}(y, z)=0$
Replace $x$ by $x \beta w$ in (2) $\mathrm{w} \in \mathrm{M}, \beta \in \Gamma$ we get
$\sum_{i=1}^{n} d_{i}(\mathrm{x} \beta \mathrm{w}, y) \alpha G_{i}(y, z)=0$
$\sum_{i=1}^{n} d_{i}(x, y) \beta d_{i}(w, y) \alpha G_{i}(y, z)=0$
Replace $d_{i}(w, y)$ by m in (3) $\mathrm{m} \in \mathrm{M}$ we get
$\sum_{i=1}^{n} d_{i}(x, y) \beta m \alpha G_{i}(y, z)=0$
And from $(i) G_{n}(x, y) \alpha D_{n}(y, z)=0$
$\sum_{i=1}^{n} D_{i}(x, y) \alpha G_{i}(y, z)=0$
Replace $z$ by $w \beta z$ in (5) we get
$\sum_{i=1}^{n} G_{i}(x, y) \alpha D_{i}(y, w \beta z)=0$
$\sum_{i=1}^{n} G_{i}(x, y) \alpha D_{i}(y, w) \beta d_{i}(y, z)=0$
By Lemma (2-3) we get
$\sum_{i=1}^{n} G_{i}(x, y) \alpha d_{i}(y, z)=0$
$G_{n}(x, y) \alpha d_{n}(y, z)=0$
And by $\sum_{i=1}^{n} G_{i}(x, y) \alpha d_{i}(y, z)=0$, replace z by $\mathrm{w} \beta z$ we get

$$
\begin{align*}
& \sum_{i=1}^{n} G_{i}(x, y) \alpha d_{i}(y, w \beta z)=0 \\
& \sum_{i=1}^{n} G_{i}(x, y) \alpha d_{i}(y, w) \beta d_{i}(y, z)=0 \tag{7}
\end{align*}
$$

Replace $\alpha d_{i}(y, w) \beta$ by $\beta d_{i}(w, y) \alpha$ in (7) we get
$\sum_{i=1}^{n} G_{i}(x, y) \beta d_{i}(w, y) \alpha d_{i}(y, z)=0$
Replace $d_{i}(w, y)$ by $m$ in (8) we get
$\sum_{i=1}^{n} G_{i}(x, y) \beta m \alpha d_{i}(y, z)=0$
From (4) and (9) we get $D_{n}$ and $G_{n}$ are orthogonal
From (1) and (6) we get
$G_{n}(x, y) \alpha d_{n}(y, z)=d_{n}(x, y) \alpha G_{n}(y, z)=0$

## Proof: (iii)

Similarly way used in the proof of (ii)
Proof: (iv)
From (i) $D_{n}(x, y) \alpha G_{n}(y, z)=0$
$\sum_{i=1}^{n} D_{i}(x, y) \alpha G_{i}(y, z)=0$
Replacing $x$ by $w \beta x$ and $z$ by $w \gamma z$ in(1) for all $\gamma \in \Gamma$ we get
$\sum_{i=1}^{n} D_{i}(w \beta x, y) \alpha G_{i}(y, w \gamma z)=0$
$\sum_{i=1}^{n} D_{i}(w, y) \beta d_{i}(x, y) \alpha G_{i}(y, w) \gamma g_{i}(y, z)=0$
Replace $G_{i}(y, w)$ by m in (2) for all $\mathrm{m} \in \mathrm{M}$ we get
$\sum_{i=1}^{n} D_{i}(w, y) \beta d_{i}(x, y) \alpha m \gamma g_{i}(y, z)=0$
Multiplication (3) by $d_{i}(x, y) \alpha m \gamma g_{i}(y, z) \delta$ for all $\delta \in \Gamma$ we get
$\sum_{i=1}^{n} d_{i}(x, y) \alpha m \gamma g_{i}(y, z) \delta D_{i}(w, y) \beta d_{i}(x, y) \alpha m \gamma g_{i}(y, z)=0$
Since M is semiprime we get
$\sum_{i=1}^{n} d_{i}(x, y) \alpha m \gamma g_{i}(y, z)=0$
$d_{n}(x, y) \Gamma M \Gamma g_{n}(y, z)=(0)$
Hence $d_{n}$ and $g_{n}$ are orthogonal symmetric higher bi-derivations.

## Proof: (v)

Since by (ii) $d_{n}(x, y) \alpha G_{n}(y, z)=0$
$G_{n}\left(d_{n}(x, y) \alpha G_{n}(y, z), m\right)=0$ for all $m \in M$
$\sum_{i=1}^{n} G_{i}\left(d_{i}(x, y) \alpha G_{i}(y, z), m\right)=0$
Replace $x$ by $x \beta w$ in (1) for all $\mathrm{w} \in \mathrm{M}, \beta \in \Gamma$ we get
$\sum_{i=1}^{n} G_{i}\left(d_{i}(\mathrm{x} \beta \mathrm{w}, y) \alpha G_{i}(y, z), m\right)=0$
$\sum_{i=1}^{n} G_{i}\left(d_{i}(\mathrm{x}, y) \beta d_{i}(w, y) \alpha G_{i}(y, z), m\right)=0$
$\sum_{i=1}^{n} G_{i}\left(d_{i}(x, y), m\right) \beta g_{i}\left(d_{i}(w, y), m\right) \alpha g_{i}\left(G_{i}(y, z), m\right)=0$
Replace $g_{i}\left(G_{i}(y, z), m\right)$ by $G_{i}\left(d_{i}(x, y), m\right)$ in (2) we get
$\sum_{i=1}^{n} G_{i}\left(d_{i}(x, y), m\right) \beta g_{i}\left(d_{i}(w, y), m\right) \alpha G_{i}\left(d_{i}(x, y), m\right)=0$
Since M is semiprime we get
$\sum_{i=1}^{n} G_{i}\left(d_{i}(x, y), m\right)=0$
Thus $G_{n} d_{n}=0$
And by (ii) $G_{n}(x, y) \alpha d_{n}(y, z)=0$
$d_{n}\left(G_{n}(x, y) \alpha d_{n}(y, z), m\right)=0$
$\sum_{i=1}^{n} d_{i}\left(G_{i}(x, y) \alpha d_{i}(y, z), m\right)=0$
Replace $x b y x \delta w$ in (4) for all $\delta \epsilon \Gamma$ we get
$\sum_{i=1}^{n} d_{i}\left(G_{i}(x \delta w, y) \alpha d_{i}(y, z), m\right)=0$
$\sum_{i=1}^{n} d_{i}\left(G_{i}(x, y) \delta g_{i}(w, y) \alpha d_{i}(y, z), m\right)=0$
$\sum_{i=1}^{n} d_{i}\left(G_{i}(x, y), m\right) \delta d_{i}\left(g_{i}(w, y), m\right) \alpha d_{i}\left(d_{i}(y, z), m\right)=0$
Replace $d_{i}\left(d_{i}(y, z), m\right)$ by $d_{i}\left(G_{i}(x, y), m\right)$ in (5) we get
$\sum_{i=1}^{n} d_{i}\left(G_{i}(x, y), m\right) \delta d_{i}\left(g_{i}(w, y), m\right) \alpha d_{i}\left(G_{i}(x, y), m\right)=0$
Since M is semiprime we get
$\sum_{i=1}^{n} d_{i}\left(G_{i}(x, y), m\right)=0$
Thus $d_{n} G_{n}=0$
From (3) and (6) we get

$$
\begin{equation*}
G_{n} d_{n}=d_{n} G_{n}=0 \tag{6}
\end{equation*}
$$

Similarly way to prove that $D_{n} g_{n}=g_{n} D_{n}=0$.

## Proof: (vi)

Since $D_{n}$ and $G_{n}$ are orthogonal
$D_{n}(x, y) \Gamma M \Gamma G_{n}(y, z)=(0)$
$G_{n}\left(D_{n}(x, y) \Gamma M \Gamma G_{n}(y, z), r\right)=(0)$ for all $\mathrm{r} \in \mathrm{M}$
$\sum_{i=1}^{n} G_{i}\left(D_{i}(x, y) \alpha m \beta G_{i}(y, z), r\right)=0$
$\sum_{i=1}^{n} G_{i}\left(D_{i}(x, y), r\right) \alpha g_{i}(m, r) \beta g_{i}\left(G_{i}(y, z), r\right)=0$
Replace $g_{i}\left(G_{i}(y, z), r\right)$ by $G_{i}\left(D_{i}(x, y), r\right)$ we get
$\sum_{i=1}^{n} G_{i}\left(D_{i}(x, y), r\right) \alpha g_{i}(m, r) \beta G_{i}\left(D_{i}(x, y), r\right)=0$
Since M is semiprime we get
$\sum_{i=1}^{n} G_{i}\left(D_{i}(x, y), r\right)=0$
Thus $G_{n} D_{n}=0 \ldots$ (2)
And by $G_{n}(x, y) \Gamma M \Gamma D_{n}(y, z)=(0)$
$D_{n}\left(G_{n}(x, y) \Gamma M \Gamma D_{n}(y, z), r\right)=(0)$
$\sum_{i=1}^{n} D_{i}\left(G_{i}(x, y) \alpha m \beta D_{i}(y, z), r\right)=0$
$\sum_{i=1}^{n} D_{i}\left(G_{i}(x, y), r\right) \alpha d_{i}(m, r) \beta d_{i}\left(D_{i}(y, z), r\right)=0$
Replace $d_{i}\left(D_{i}(y, z), r\right)$ by $D_{i}\left(G_{i}(x, y), r\right)$ in (3) we get
$\sum_{i=1}^{n} D_{i}\left(G_{i}(x, y), r\right) \alpha d_{i}(m, r) \beta D_{i}\left(G_{i}(x, y), r\right)=0$
Since M is semiprime we get

```
\(\sum_{i=1}^{n} D_{i}\left(G_{i}(x, y), r\right)=0\)
Thus \(D_{n} G_{n}=0\)
```

From (2) and (4) we get
$G_{n} D_{n}=D_{n} G_{n}=0$

## Theorem (3.2):

Let $M$ be 2-torsion freesemiprime $\Gamma$-ring a $\alpha y \beta z=a \beta y \alpha z, D_{n}$ and $G_{n}$ are generalized symmetric higher bi-derivations associated with symmetric higher bi-derivations $d_{n}$ and $g_{n}$ respectively for all $\mathrm{n} \in \mathrm{N}$. Then the following relations are equivalent for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and $\alpha, \beta \in \Gamma$ :
(i) $D_{n}$ and $G_{n}$ are orthogonal
(ii) $D_{n}(x, y) \alpha G_{n}(y, z)+G_{n}(x, y) \alpha D_{n}(y, z)=0$
(iii) $d_{n}(x, y) \alpha G_{n}(y, z)+g_{n}(x, y) \alpha D_{n}(y, z)=0$

Proof: $(i) \Leftrightarrow(i i)$
Suppose that $D_{n}$ and $G_{n}$ are orthogonal
By Theorem (3-1) (i) we get
$D_{n}(x, y) \alpha G_{n}(y, z)=G_{n}(x, y) \alpha D_{n}(y, z)=0$
Hence $D_{n}(x, y) \alpha G_{n}(y, z)+G_{n}(x, y) \alpha D_{n}(y, z)=0$
Conversly, Let $D_{n}(x, y) \alpha G_{n}(y, z)+G_{n}(x, y) \alpha D_{n}(y, z)=0$
By Lemma (2-6) we get
Hence $D_{n}$ and $G_{n}$ are orthogonal

$$
(i) \Leftrightarrow(i i i)
$$

Suppose that $D_{n}$ and $G_{n}$ are orthogonal
By Lemma (2-8) we get

$$
\begin{equation*}
d_{n}(x, y) \alpha G_{n}(y, z)=0 \tag{1}
\end{equation*}
$$

And by Theorem (3-1) (i) we get

$$
\begin{equation*}
G_{n}(x, y) \alpha D_{n}(y, z)=0 \tag{2}
\end{equation*}
$$

$\sum_{i=1}^{n} G_{i}(x, y) \alpha D_{i}(y, z)=0$
Replace $x$ by $t \beta x$ in (2) for $t \epsilon M$ we get

$$
\begin{align*}
& \sum_{i=1}^{n} G_{i}(t \beta x, y) \alpha D_{i}(y, z)=0 \\
& \sum_{i=1}^{n} G_{i}(t, y) \beta g_{i}(x, y) \alpha D_{i}(y, z)=0 \tag{3}
\end{align*}
$$

Multiplication (3) by $g_{i}(x, y) \alpha D_{i}(y, z) \delta$ for all $\delta \epsilon \Gamma$ we get
$\sum_{i=1}^{n} g_{i}(x, y) \alpha D_{i}(y, z) \delta G_{i}(t, y) \beta g_{i}(x, y) \alpha D_{i}(y, z)=0$
Since M semiprime we get
$\sum_{i=1}^{n} g_{i}(x, y) \alpha D_{i}(y, z)=0$
$g_{n}(x, y) \alpha D_{n}(y, z)=0$
From (1) and (4) we get
$d_{n}(x, y) \alpha G_{n}(y, z)+g_{n}(x, y) \alpha D_{n}(y, z)=0$
Conversely, Let $d_{n}(x, y) \alpha G_{n}(y, z)+g_{n}(x, y) \alpha D_{n}(y, z)=0$
$\sum_{i=1}^{n} d_{i}(x, y) \alpha G_{i}(y, z)+g_{i}(x, y) \alpha D_{i}(y, z)=0$
Replace $x$ by $x \gamma t$ in (5) for all $\gamma \in \Gamma$ we get
$\sum_{i=1}^{n} d_{i}(x \gamma t, y) \alpha G_{i}(y, z)+g_{i}(x \gamma t, y) \alpha D_{i}(y, z)=0$
$\sum_{i=1}^{n} d_{i}(x, y) \gamma d_{i}(t, y) \alpha G_{i}(y, z)+g_{i}(x, y) \gamma g_{i}(t, y) \alpha D_{i}(y, z)=0$
Replacing $d_{i}(x, y)$ by $D_{i}(x, y)$ and $g_{i}(x, y)$ by $G_{i}(x, y)$ in (6) we get
$\sum_{i=1}^{n} D_{i}(x, y) \gamma d_{i}(t, y) \alpha G_{i}(y, z)+G_{i}(x, y) \gamma g_{i}(t, y) \alpha D_{i}(y, z)=0$
Replace $d_{i}(t, y)$ by $g_{i}(t, y)$ in (7) we get
$\sum_{i=1}^{n} D_{i}(x, y) \gamma g_{i}(t, y) \alpha G_{i}(y, z)+G_{i}(x, y) \gamma g_{i}(t, y) \alpha D_{i}(y, z)=0$
By Lemma (2-4) we get
$\sum_{i=1}^{n} D_{i}(x, y) \gamma g_{i}(t, y) \alpha G_{i}(y, z)=\sum_{i=1}^{n} G_{i}(x, y) \gamma g_{i}(t, y) \alpha D_{i}(y, z)=0$
Hence $D_{n}$ and $G_{n}$ are orthogonal

## Theorem (3. 3):

Let $M$ be 2-torsion free semiprime $\quad \Gamma$-ring a $\alpha y \beta z=a \beta y \alpha z, ~ D_{n}$ and $G_{n}$ are generalized symmetric higher bi-derivations associated with symmetric higher bi-derivations $d_{n}$ and $g_{n}$ respectively for all $\mathrm{n} \in \mathrm{N}$. Then $\mathrm{D}_{\mathrm{n}}$ and $\mathrm{G}_{\mathrm{n}}$ are orthogonal iff $D_{n}(x, y) \alpha G_{n}(y, z)=0$ for all $x, y, z \epsilon M, \alpha, \beta \in \Gamma$ and $d_{n} G_{n}=d_{n} g_{n}=0$.

## Proof:

Suppose that $\mathrm{D}_{\mathrm{n}}$ and $\mathrm{G}_{\mathrm{n}}$ are orthogonal
By Theorem (2-7) we get
$D_{n}(x, y) \alpha G_{n}(y, z)=0$
And by Theorem (3-1) (i) we get
$G_{n}(x, y) \alpha d_{n}(y, z)=0$
$d_{n}\left(G_{n}(x, y) \alpha d_{n}(y, z), m\right)=0$
$\sum_{i=1}^{n} d_{i}\left(G_{n}(x, y) \alpha d_{i}(y, z), m\right)=0$
Replace $x$ by $x \beta t$ in (2) for all $t \in M$ we get
$\sum_{i=1}^{n} d_{i}\left(G_{i}(x \beta t, y) \alpha d_{i}(y, z), m\right)=0$
$\sum_{i=1}^{n} d_{i}\left(G_{i}(x, y) \beta g_{i}(t, y) \alpha d_{i}(y, z), m\right)=0$
$\sum_{i=1}^{n} d_{i}\left(G_{i}(x, y), m\right) \beta d_{i}\left(g_{i}(t, y), m\right) \alpha d_{i}\left(d_{i}(y, z), m\right)=0$
Replace $d_{i}\left(d_{i}(y, z), m\right)$ by $d_{i}\left(G_{i}(x, y), m\right)$ in (3) we get
$\sum_{i=1}^{n} d_{i}\left(G_{i}(x, y), m\right) \beta d_{i}\left(g_{i}(t, y), m\right) \alpha d_{i}\left(G_{i}(x, y), m\right)=0$
Since M is semiprime we get

$$
\begin{align*}
& \sum_{i=1}^{n} d_{i}\left(G_{i}(x, y), m\right)=0 \\
& d_{n} G_{n}=0 \tag{4}
\end{align*}
$$

Also by Theorem (3-1) (iv) we get
$g_{n}(x, y) Г М Г d_{n}(y, z)=(0)$
$d_{n}\left(g_{n}(x, y) \Gamma M \Gamma d_{n}(y, z), r\right)=(0)$ for all $r \in M$
$\sum_{i=1}^{n} d_{i}\left(g_{i}(x, y) \alpha m \beta d_{i}(y, z), r\right)=0$
$\sum_{i=1}^{n} d_{i}\left(g_{i}(x, y), r\right) \alpha d_{i}(m, r) \beta d_{i}\left(d_{i}(y, z), r\right)=0$
Replace $d_{i}(y, z)$ by $g_{i}(x, y)$ in (5) we get
$\sum_{i=1}^{n} d_{i}\left(g_{i}(x, y), r\right) \alpha d_{i}(m, r) \beta d_{i}\left(g_{i}(x, y), r\right)=0$
Since M is semiprime we get
$\sum_{i=1}^{n} d_{i}\left(g_{i}(x, y), r\right)=0$
$d_{n} g_{n}=0$
From (1) and (4), (6) we get
$D_{n}(x, y) \alpha G_{n}(y, z)=0$ and $d_{n} G_{n}=d_{n} g_{n}=0$
Conversely, suppose that $D_{n}(x, y) \alpha G_{n}(y, z)=0$
And $d_{n} G_{n}=0$
$\left(d_{n} G_{n}\right)(x \alpha y, z)=0$
$\sum_{i=1}^{n} d_{i}\left(G_{i}(x \alpha y, z), m\right)=0$ for all $\mathrm{m} \in \mathrm{M}$
$\sum_{i=1}^{n} d_{i}\left(G_{i}(x, z) \alpha g_{i}(y, z), m\right)=0$
$\sum_{i=1}^{n} d_{i}\left(G_{i}(x, z), m\right) \alpha d_{i}\left(g_{i}(y, z), m\right)=0$
Replacing $\left(G_{i}(x, z), m\right)$ by (x, y) and $d_{i}\left(g_{i}(y, z), m\right)$ by $G_{i}(y, z)$ in (8) we get
$\sum_{i=1}^{n} d_{i}(x, y) \alpha G_{i}(y, z)=0$
$d_{n}(x, y) \alpha G_{n}(y, z)=0$
From (7) and (9) we get
$D_{n}(x, y) \alpha G_{n}(y, z)=d_{n}(x, y) \alpha G_{n}(y, z)=0$
By Lemma (2-9) we get $D_{n}$ and $G_{n}$ are orthogonal

## Theorem (3. 4):

Let M be a 2 -torsion free semiprime $\Gamma$-ring such that a $\alpha \mathrm{y} \beta \mathrm{z}=\mathrm{a} \beta \mathrm{y} \alpha \mathrm{z}$ and $D_{n}$ be a generalized symmetric higher bi-derivations associated with symmetric higher bi-derivations $d_{n}$ for all $\mathrm{n} \in \mathrm{N}$. If $D_{n}(x, y) \alpha D_{n}(y, z)=0$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{M}, \alpha, \beta \in \Gamma, \mathrm{n} \in \mathrm{N}$ then $D_{n}=d_{n}=0$.

## Proof:

Suppose that $D_{n}(x, y) \alpha D_{n}(y, z)=0$
$\sum_{i=1}^{n} D_{i}(x, y) \alpha D_{i}(y, z)=0$
Replace $z$ by $t \beta z$ in (1) for all $t \epsilon M, \beta \in \Gamma$ we get
$\sum_{i=1}^{n} D_{i}(x, y) \alpha D_{i}(y, t \beta z)=0$
$\sum_{i=1}^{n} D_{i}(x, y) \alpha D_{i}(y, t) \beta d_{i}(y, z)=0$
By Lemma (2-3) we get
$\sum_{i=1}^{n} D_{i}(x, y) \alpha d_{i}(y, z)=0$
Multiplication (2) by $\operatorname{di}(y, z) \delta$ for all $\delta \epsilon \Gamma$ we get
$\sum_{i=1}^{n} d_{i}(y, z) \delta D_{i}(x, y) \alpha d_{i}(y, z)=0$
Since $M$ is semiprime we get

$$
\begin{align*}
& \sum_{i=1}^{n} d_{i}(y, z)=0 \\
& d_{n}=0 \tag{3}
\end{align*}
$$

And multiplication (1) by $\delta D_{i}(\mathrm{x}, \mathrm{y})$ we get
$\sum_{i=1}^{n} D_{i}(x, y) \alpha D_{i}(y, z) \delta D_{i}(x, y)=0$
Since M is semiprime we get
$\sum_{i=1}^{n} D_{i}(x, y)=0$
$D_{n}=0$
From (3) and (4) we get

$$
\begin{equation*}
D_{n}=d_{n}=0 \tag{4}
\end{equation*}
$$

## Theorem (3.5):

Let $M$ be a 2-torsion free semiprime $\Gamma$-ring. Let $U$ be an ideal of $M$ and $V=A n n$. ( $U$ ) .If $\left(D_{n}, d_{n}\right)$ is generalized symmetric higher bi-derivations for all $n \in \mathrm{~N}$ such that $D_{n}(\mathrm{M}), d_{n}(\mathrm{M}) \mathrm{CU}$ then $D_{n}(\mathrm{~V})=d_{n}(\mathrm{~V})=0$.

## Proof:

If $\mathrm{x}, \mathrm{y} \in \mathrm{V}, \alpha \in \Gamma$ then (xy) $\alpha \mathrm{U}=0$
By hypothesis we have
$d_{n}(\mathrm{M}) \subset \mathrm{U} \Longrightarrow d_{n}(\mathrm{U}) \subset \mathrm{U}$
Hence $0=D_{n}(x \alpha z, y)$
$0=\sum_{i=1}^{n} D_{i}(x \alpha z, y)$
$0=\sum_{i=1}^{n} D_{i}(x, y) \alpha d_{i}(z, y)$
Multiplication (1) by $\beta D_{i}(x, y)$ for all $\beta \epsilon \Gamma$ we get
$0=\sum_{i=1}^{n} D_{i}(x, y) \alpha d_{i}(z, y) \beta D_{i}(x, y)$
Since M is semiprime we get
$0=\sum_{i=1}^{n} D_{i}(x, y) \in U \cap V$
$D_{n}(x, y)=0$
Similarly, since (x y) $\alpha \mathrm{U}=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{V}, \alpha \in \Gamma$
$0=d_{n}(x \alpha z, y)$
$0=\sum_{i=1}^{n} d_{i}(x \alpha z, y)$
$0=\sum_{i=1}^{n=1} d_{i}(x, y) \alpha d_{i}(z, y)$
Multiplication (2) by $\beta d_{i}(x, y)$ we get
$0=\sum_{i=1}^{n} d_{i}(x, y) \alpha d_{i}(y, z) \beta d_{i}(x, y)$
Since M is semiprime we get
$0=\sum_{i=1}^{n} d_{i}(x, y) \in U \cap V$
$d_{n}(x, y)=0$

## Theorem (3.6):

Let $M$ be 2-torsion free semiprime $\quad \Gamma$-ring $x \alpha y \beta z=x \beta y \alpha z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$, $D_{n}$ and $G_{n}$ are generalized symmetric higher bi-derivations associated with symmetric higher biderivations $d_{n}$ and $g_{n}$ respectively for all $n \in N$. Then $D_{n}$ and $g_{n}$ as well as $G_{n}$ and $d_{n}$ are orthogonal iff $D_{n}=d_{n}=0$ or $G_{n}=g_{n}=0$.

## Proof:

Suppose that $D_{n}$ and $g_{n}$ as well as $G_{n}$ and $d_{n}$ are orthogonal
By Theorem (3-1) (iii) we get

$$
\begin{align*}
& D_{n}(x, y) \alpha g_{n}(y, z)=0 \\
& \sum_{i=1}^{n} D_{i}(x, y) \alpha g_{i}(y, z)=0 \tag{1}
\end{align*}
$$

Multiplication (1) by $\beta D_{i}(x, y)$ for all $\beta \epsilon \Gamma$ we get
$\sum_{i=1}^{n} D_{i}(x, y) \alpha g_{i}(y, z) \beta D_{i}(x, y)=0$
Since M is semiprime we get

$$
\begin{align*}
& \sum_{i=1}^{n} D_{i}(x, y)=0 \\
& D_{n}=0 \tag{2}
\end{align*}
$$

And by Theorem (3-1) (ii) we get

$$
\begin{align*}
& d_{n}(x, y) \alpha G_{n}(y, z)=0 \\
& \sum_{i=1}^{n} d_{i}(x, y) \alpha G_{i}(y, z)=0 \tag{3}
\end{align*}
$$

Multiplication (3) by $\beta d_{i}(x, y)$ we get
$\sum_{i=1}^{n} d_{i}(x, y) \alpha G_{i}(y, z) \beta d_{i}(x, y)=0$
Since M is semiprime we get

$$
\begin{align*}
& \sum_{i=1}^{n} d_{i}(x, y)=0 \\
& d_{n}=0 \tag{4}
\end{align*}
$$

Now, by Theorem (3-1) (iii) we get

$$
\begin{align*}
& g_{n}(x, y) \alpha D_{n}(y, z)=0 \\
& \sum_{i=1}^{n} g_{i}(x, y) \alpha D_{i}(y, z)=0 \tag{5}
\end{align*}
$$

Multiplication (5) by $\beta g_{i}(x, y)$ we get
$\sum_{i=1}^{n} g_{i}(x, y) \alpha D_{i}(y, z) \beta g_{i}(x, y)=0$
Since M is semiprime we get

$$
\begin{align*}
& \sum_{i=1}^{n} g_{i}(x, y)=0 \\
& g_{n}=0 \tag{6}
\end{align*}
$$

And by Theorem (3-1) (ii) we get

$$
\begin{align*}
& G_{n}(x, y) \alpha d_{n}(y, z)=0 \\
& \sum_{i=1}^{n} G_{i}(x, y) \alpha d_{i}(y, z)=0 \tag{7}
\end{align*}
$$

Multiplication (7) by $\beta G_{i}(x, y)$ we get

$$
\sum_{i=1}^{n} G_{i}(x, y) \alpha d_{i}(y, z) \beta G_{i}(x, y)=0
$$

## Since M is semiprime we get

$$
\begin{align*}
& \sum_{i=1}^{n} G_{i}(x, y)=0 \\
& G_{n}=0 \tag{8}
\end{align*}
$$

From (2), (4) and (6), (8) we get
$D_{n}=d_{n}=0$ or $G_{n}=g_{n}=0$
Conversly, suppose that $D_{n}=d_{n}=0$ or $G_{n}=g_{n}=0$
$D_{n}(x \alpha z, y)=0$
$g_{n}\left(D_{n}(x \alpha z, y), m\right)=0$
$\sum_{i=1}^{n} g_{i}\left(D_{i}(x \alpha z, y), m\right)=0$
$\sum_{i=1}^{n} g_{i}\left(D_{i}(x, y) \alpha d_{i}(z, y), m\right)=0$
$\sum_{i=1}^{n} g_{i}\left(D_{i}(x, y), m\right) \alpha g_{i}\left(d_{i}(z, y), m\right)=0$
Replacing $g_{i}\left(D_{i}(x, y), m\right)$ by $(x, y)$ and $\left(d_{i}(z, y), m\right)$ by $(y, z)$ in
(9) we get

$$
\sum_{i=1}^{n} D_{i}(x, y) \alpha g_{i}(y, z)=0
$$

$D_{n}(x, y) \alpha g_{n}(y, z)=0$
By Theorem (3-1) (iii)
Hnce $D_{n}$ and $g_{n}$ are orthogonal
Similarly , if $G_{n}=g_{n}=0$ we get
Hence $G_{n}$ and $d_{n}$ are orthogonal

## Theorem (3.7):

Let $M$ be a 2-torsion free semiprime $\Gamma$-ring, $D_{n}$ and $G_{n}$ are generalized symmetric higher biderivations for all $n \in N$.Suppose that $D_{n} \Gamma G_{n}=G_{n} \Gamma D_{n}$, then $D_{n}-G_{n}$ and $D_{n}+G_{n}$ are orthogonal .

## Proof:

Suppose that $\mathrm{D}_{\mathrm{n}} \Gamma \mathrm{G}_{\mathrm{n}}=\mathrm{G}_{\mathrm{n}} \Gamma \mathrm{D}_{\mathrm{n}}$, then for $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ :
$=\left[\left(D_{n}+G_{n}\right) \Gamma\left(D_{n}-G_{n}\right)+\left(D_{n}-G_{n}\right) \Gamma\left(D_{n}+G_{n}\right)\right](x, y)$
$=\left[\left(D_{n}+G_{n}\right) \Gamma\left(D_{n}-G_{n}\right)\right](x, y)+\left[\left(D_{n}-G_{n}\right) \Gamma\left(D_{n}+G_{n}\right)\right](x, y)$
$=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\left(\mathrm{D}_{\mathrm{i}}+\mathrm{G}_{\mathrm{i}}\right) \alpha\left(\mathrm{D}_{\mathrm{i}}-\mathrm{G}_{\mathrm{i}}\right)\right](\mathrm{x}, \mathrm{y})+\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\left(\mathrm{D}_{\mathrm{i}}-\mathrm{G}_{\mathrm{i}}\right) \alpha\left(\mathrm{D}_{\mathrm{i}}+\mathrm{G}_{\mathrm{i}}\right)\right](\mathrm{x}, \mathrm{y})$ for all $\alpha \in \Gamma$
$=\sum_{i=1}^{n}\left(D_{i} \alpha D_{i}-D_{i} \alpha G_{i}+G_{i} \alpha D_{i}-G_{i} \alpha G_{i}\right)(x, y)+\sum_{i=1}^{n}\left(D_{i} \alpha D_{i}+D_{i} \alpha G_{i}-G_{i} \alpha D_{i}-G_{i} \alpha G_{i}\right)(x, y)=$
$\sum_{i=1}^{n} D_{i}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})-\mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{G}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})+\mathrm{G}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{D}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})-\mathrm{G}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}) \alpha \mathrm{G}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})+$
$\sum_{i=1}^{n} D_{i}(x, y) \alpha D_{i}(x, y)+D_{i}(x, y) \alpha G_{i}(x, y)-G_{i}(x, y) \alpha D_{i}(x, y)-G_{i}(x, y) \alpha G_{i}(x, y)$
Therefore $\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\left(\mathrm{D}_{\mathrm{i}}+\mathrm{G}_{\mathrm{i}}\right) \alpha\left(\mathrm{D}_{\mathrm{i}}-\mathrm{G}_{\mathrm{i}}\right)\right](\mathrm{x}, \mathrm{y})+\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\left(\mathrm{D}_{\mathrm{i}}-\mathrm{G}_{\mathrm{i}}\right) \alpha\left(\mathrm{D}_{\mathrm{i}}+\mathrm{G}_{\mathrm{i}}\right)\right]=0$
By Lemma (2-4) we get
$\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\left(\mathrm{D}_{\mathrm{i}}+\mathrm{G}_{\mathrm{i}}\right) \alpha\left(\mathrm{D}_{\mathrm{i}}-\mathrm{G}_{\mathrm{i}}\right)\right](\mathrm{x}, \mathrm{y})=0=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\left(\mathrm{D}_{\mathrm{i}}-\mathrm{G}_{\mathrm{i}}\right) \alpha\left(\mathrm{D}_{\mathrm{i}}+\mathrm{G}_{\mathrm{i}}\right)\right](\mathrm{x}, \mathrm{y})$
Thus $D_{n}-G_{n}$ and $D_{n}+G_{n}$ are orthogonal

## References

1. Nobusawa, N. 1964. On Generalization of the Ring Theory. Osaka J. Math., 1: 81-89.
2. Barnes, W.E. 1966. On The $\Gamma$-Rings of Nobusawa. Pacific J. Math. 18: 411-422.
3. Kyuno, S. 1978. On Prime Gamma Rings. Pacific J. of Math., 75: 185-190.
4. Jing, F.J. 1987. On Derivations of Г-Ring. QUFU Shi Fan Daxue Xuebeo Ziran Kexue Ban, 13(4): 159-161.
5. Sapanci, M. and Nakajima, A. 1997. Jordan Derivations on Complately Prime Gamma Rings. Math., Japoncia , 46(1): 47-51.
6. Cenven, Y. and M. A. Ozturk, M. A. 2004. On Jordan Generalized Derivations in Gamma Rings. Hacettepe J. of Mathematics and Statistics, 33: 11-14.
7. Ashraf, M. and Jamal, M.R. 2010. Orthogonal Derivations in Gamma Ring. Advance in Algebra, 3(1): 1-6.
8. Ozturk, M.A., Sapanci, M., Soyturk, M. and Kim, K.H. 2000. Symmetric Bi-Derivation Prime Gamma Rings. Scientiae Mathematicae, 3(2): 273-281.
9. Marir, A.M. and Salih, S.M. 2016. Higher Bi-Derivations on Prime Gamma Rings. M.SC. Thesis Education College, AL-Mustansiriya Univ.
10. Chakraborty, S. and Paul, A.C. 2008. On Jordan K-derivations of $2-$ Torsion free Prime $\Gamma$ NRings. Punjap University J. of Math., 40: 97-101.
11. Dutta, T.K. and Sardar, S.K. 2000. Semiprime Ideal and Irreducible Ideal of $\Gamma$-Semi rings. Novi Sad J. Math. 30(1): 97-108.

[^0]:    *Email: samahjaber33@gmail.com

