Iraqi Journal of Science, 2018, Vol. 59, No.2A, pp: 711-723 DOI:10.24996/ijs.2018.59.2A.9

Orthogonal Generalized Symmetric Higher bi-Derivations on Semiprime Γ-Rings.

Salah Mahdi Salih, Samah Jaber Shaker^{*}

Department of Mathematics, College of Education, AL-Mustansirya University, Baghdad, Iraq.

Abstract

In this paper a Γ -ring M is presented. We will study the concept of orthogonal generalized symmetric higher bi-derivations on Γ -ring. We prove that if M is a 2-torsion free semiprime Γ -ring, D_n and G_n are orthogonal generalized symmetric higher bi-derivations associated with symmetric higher bi-derivations d_n and g_n respectively for all n ϵ N. Then the following relations are hold for all x, y, $z\epsilon M$, $\alpha\epsilon\Gamma$ and $n\epsilon$ N:

 $\begin{array}{l} (i) \ D_n(x,y) \alpha G_n(y,z) = G_n(x,y) \alpha D_n(y,z) = (0) \ \text{hence} \ D_n \ (x,y) \alpha \ G_n(y,z) + \\ G_n(x,y) \alpha D_n(y,z) = 0 \ . \\ (ii) \ d_n \ \text{and} \ G_n \ \text{are orthogonal} \ \text{and} \ d_n(x,y) \alpha G_n(y,z) = G_n(x,y) \alpha d_n(y,z) = (0) \ . \\ (iii) \ g_n \ \text{and} \ D_n \ \text{are orthogonal} \ \text{and} \ g_n(x,y) \alpha \ D_n(y,z) = D_n(x,y) \alpha g_n(y,z) = (0) \ . \\ (iv) \ d_n \ \text{and} \ g_n \ \text{are orthogonal} \ \text{symmetric higher bi-derivations} \ . \\ (v) \ d_n G_n = G_n d_n = 0 \ \text{and} \ g_n D_n = D_n g_n = 0 \ . \\ (vi) \ G_n D_n = D_n G_n = 0 \ . \end{array}$

Keywords: Symmetric Bi-derivations Γ -ring, higher bi-derivations Γ -ring, generalized higher bi-derivations Γ -ring ,orthogonal generalized symmetric higher bi-derivations Γ -ring .

تعامد المشتقات الثنائية المتناظرة على الحلقات شبه الأولية من النمط $-\Gamma$ تعميم

الخلاصة

في هذا البحث M هي حلقه من النمط $-\Gamma$. سوف ندرس مفهوم تعميم تعامد المشتقات الثنائية المتناظرة في هذا البحث M هي حلقه من النمط $-\Gamma$. سوف نبرهن اذا كانت M حلقة شبه اولية طليقة الالتواء من النمط على الحلقات شبه اولية من النمط $-\Gamma$. سوف نبرهن اذا كانت M حلقة شبه اولية طليقة الالتواء من النمط d_n, g_n مما تعميم للمشتقات الثنائية المتناظرة المرتبطة بالمشتقات الثنائية المتناظرة d_n, g_n معلى التوالي لكل n σ_n, G_n ما تعميم للمشتقات الثنائية متحققة لكل من x, y, z \in M , $\alpha \in \Gamma$. على التوالي لكل n \in N اذأ العلاقات الثنائية متحققة لكل من x, y, z \in M , $\alpha \in \Gamma$. (i) $D_n(x, y)\alpha G_n(y, z) = G_n(x, y)\alpha D_n(y, z) = (0)$ hence $D_n(x, y)\alpha G_n(y, z) + G_n(x, y)\alpha D_n(y, z) = 0$. (ii) d_n and G_n are orthogonal and $d_n(x, y)\alpha G_n(y, z) = G_n(x, y)\alpha d_n(y, z) = (0)$. (iii) g_n and D_n are orthogonal and $g_n(x, y)\alpha D_n(y, z) = D_n(x, y)\alpha g_n(y, z) = (0)$. (iv) d_n and g_n are orthogonal symmetric higher bi-derivations . (v) $d_n G_n = G_n d_n = 0$ and $g_n D_n = D_n g_n = 0$. (vi) $G_n D_n = D_n G_n = 0$.

1. Introducation

Let M and Γ be two additive abelian groups, M is called a Γ ring if the following conditions are satisfied for any $x, y, z \in M$ and $\alpha, \beta \in \Gamma$:

^{*}Email: samahjaber33@gmail.com

(i) $x\alpha y \in M$ (ii) $x\alpha(y+z) = x\alpha y + x\alpha z$ $x(\alpha + \beta)y = x\alpha y + x\beta y$ $(x + y)\alpha z = x\alpha z + y\alpha z$ (iii) $(x\alpha y)\beta z = x\alpha(y\beta z)$

The notion of a Γ -ring was first introduced by **Nobusawa** 1964 [1] and generalized by **Barnes** 1966 [2] as above definition .It is well known that every ring is Γ -ring . M is called prime if $x\Gamma M\Gamma y=0$ implies that x=0 or y=0 and its said to be *semiprime* if $x\Gamma M\Gamma x=0$ implies that x=0 for all $x, y \in M$, [3], also M is said to be n-torsion free if nx=0, $x \in M$ implies that x=0 where n is positive integer. In [4] **Jing** defined a derivation on Γ -ring as follows :"An additive mapping d:M \rightarrow M is said to be derivation on M if $d(x\alpha y)=d(x) \alpha y + x\alpha d(y)$ for all $x, y \in M$ and $\alpha \in \Gamma$ ".

Sapanci and Nakajima in [5] are defined a Jordan derivation on Γ -ring as follows: "An additive mapping d:M \rightarrow M is said to be Jordan derivation on Γ -ring if d(x α x) = d(x) α x +x α d(x) for all x ϵ M and $\alpha \epsilon \Gamma$. It is clear that every derivation of a Γ -ring M is Jordan derivation of M".

Ceven and Ozturk in [6] are defined a generalized derivation on Γ -ring as follows :" An additive mapping D:M \rightarrow M is said to be generalized derivation on M if there exists a derivation d:M \rightarrow M such that D(x α y)= D(x) α y+ x α d(y) for all x,y ϵ M and $\alpha \epsilon \Gamma$ ",also defined a Jordan generalized derivation on Γ -ring as follows:"An additive mapping D:M \rightarrow M is said to be Jordan generalized derivation if there exists a Jordan derivation d:M \rightarrow M such that D(x α x) = D(x) α x + x α d(x) for all x ϵ M and $\alpha \epsilon \Gamma$. It is clear that every generalized derivation on Γ -ring M is Jordan generalized derivation of M ".

Ashraf and Jamal in [7] are introduced the definition of orthogonal derivation on Γ -ring as follows :" Let d and g be two derivations on M are said to be orthogonal if $d(x) \Gamma M \Gamma g(y) = (0) = g(y) \Gamma M \Gamma d(x)$ for all x,y ϵM ", also Ashraf and Jamal are defined the orthogonal generalized derivation on Γ -ring as follows :" Let D and G be two generalized derivations on M is said to be orthogonal if $D(x) \Gamma M \Gamma G(y) = (0) = G(y) \Gamma M \Gamma D(x)$ for all x,y ϵM ".

In [8] **Ozturk et al.** are defined a symmetric bi-derivation on Γ -ring M as follows: "A mapping d:MxM \rightarrow M is said to be symmetric if d(x,y)=d(y,x) for all x,y ϵ M. "A mapping f:M \rightarrow M defined by f(x)=d(x,x), where d:MxM \rightarrow M is a symmetric mapping, is called the trace of d and the trace f of d satisfies the relation f(x+y)=f(x)+f(y)+2d(x,y) for all x,y ϵ M. A symmetric bi-additive mapping on M×M into M is said to be symmetric bi-derivation on M if d(x α y,z)=d(x,z) α y +x α d(y,z) for all x,y,z ϵ M, $\alpha \epsilon \Gamma$ and d is said to be Jordan bi-derivation on M if d(x α x,y)= d(x,y) α x + x α d(x,y) for all x,y ϵ M, $\alpha \epsilon \Gamma$ ", and authers in [8] introduced the notion of generalized bi- derivation and Jordan generalized bi- derivation on Γ -ring as follows: "A symmetric bi-additive mapping D:MxM \rightarrow M is said to be generalized bi-derivation if there exists $d : M \times M \rightarrow M$ bi-derivation such that D(x α y,z)=D(x,z) α y + x α d(y,z) for all x,y,z ϵ M, $\alpha \epsilon \Gamma$, and D is said to be Jordan bi-derivation d:MxM \rightarrow M such that D(x α x,y)=D(x,y) α x + x α d(x,y) for all x,y,z ϵ M, $\alpha \epsilon \Gamma$ ".

Marir and Salih in [9] are introduced the concept of higher bi- derivation on Γ -ring M as follows : " Let $D=(d_i)_{i\in N}$ be a family of bi-additive mapping on on $M \times M$ into M is said to be higher biderivation if $d_n(x\alpha y, z\alpha w) = \sum_{i+j=n} d_i(x, z) \alpha d_j(y, w)$ for all x,y,z,w \in M, $\alpha \in \Gamma$ ", and $D=(d_i)_{i\in N}$ be a family of bi-additive mapping on MxM into M is said to be Jordan bi-derivation if dn $(x\alpha x, y\alpha y) = \sum_{i+j=n} d_i(x, y) \alpha d_j(x, y)$ for all x,y \in M, $\alpha \in \Gamma$, and authers in[9] are defined the generalized higher bi-derivation on Γ -ring M as follows: "Let $D=(D_i)_{i\in N}$ be a family of bi-additive mapping on $M \times M$ into M is said to be generalized higher bi-derivation if there exists a higher biderivation $d_n : M \times M \to M$ such that $D_n(x\alpha y, z\alpha w) = \sum_{i+j=n} D_i(x, z) \alpha d_j(y, w)$ for all x,y,z,w \in M, $\alpha \in$ Γ , and $D=(D_i)_{i\in N}$ be a family of bi-additive mapping on $M \times M$ into M is said to be Jordan generalized higher bi-derivation if there exists $d_n : M \times M \to M$ a Jordan higher bi-derivation such that $D_n(x\alpha x, y\alpha y) = \sum_{i+j=n} D_i(x, y) \alpha d_j(x, y)$ for all x,y \in M, $\alpha \in \Gamma$ ". In this paper we will extend of this results to present the concept of orthogonal generalized symmetric higher bi –derivations on *semiprime* Γ -ring, and we proved same of lemmas and theorems about arthogonality.

2. Orthogonal Generalized Symmetric Higher bi-Derivations on Semiprime Γ- Rings

In this section we will the definition of orthogonal generalized symmetric higher bi-derivations on a Γ -ring M and we introduced an example and some Lemmas used in our work. Now, we start with the following definition

Definition (2.1):

Let $D=(D_i)_{i\in\mathbb{N}}$ and $G=(G_i)_{i\in\mathbb{N}}$ are two generalized symmetric higher bi-derivations on Γ -ring M , then D_n and G_n are said to be **orthogonal** if for every x,y,z \in M , n \in N : $D_n(x,y) \Gamma M\Gamma G_n(y,z) = (0) = G_n(y,z) \Gamma M\Gamma D_n(x,y)$. Where $D_n(x,y) \Gamma M\Gamma G_n(y,z) = \sum_{i=1}^n D_i(x,y) \alpha m \beta G_i(y,z) = 0$ For all $m \in M$ and $\alpha, \beta \in \Gamma$.

The following example clarify orthogonal generalized higher bi-derivations on Γ -ring M.

Example (2. 2):

Let d_n and g_n are two symmetric higher bi-derivations on Γ -ring M. Put $M = M \times M$ and $\Gamma = \Gamma \times \Gamma$, we define d_n and g_n on M into itself such that $d_n((x,y)) = (d_n(x), 0)$ and $g_n((x,y)) = (0,g_n(y))$ for all $(x,y)\in M$ and $n\in N$. More over if (D_n, d_n) and (G_n, g_n) are generalized symmetric higher bi-derivations on M, we defined D_n and G_n on M into itself such that $D_n((x,y)) = (D_n(x), 0)$ and $G_n((x,y)) = (0, G_n(y))$ for all $(x,y)\in M$ and $n\in N$. Then (D_n, d_n) and (G_n, g_n) are generalized symmetric higher bi-derivations such that $D_n(x,y)\in M$ and $n\in N$. Then (D_n, d_n) and (G_n, g_n) are generalized symmetric higher bi-derivations such that D_n and G_n are orthogonal.

Lemma (2. 3): [11]

Let M be a 2-torsion free semiprime Γ -ring and a,b the elements of M. If for all $\alpha,\beta \in \Gamma$, then the following conditions are equivalent:

(i) $a\alpha M\beta b = 0$

(ii) $b\alpha M\beta a = 0$

(iii) $a\alpha M\beta b+b\alpha M\beta a=0$

(iv) $a\alpha M\beta b+b\alpha M\beta a=0$

If one of these conditions is fulfilled, then $a\alpha b = b\alpha a = 0$.

Lemma (2. 4): [10]

Let M be a 2-torsion free semiprime Γ -ring and a, b the elements of M such that a α M β b + b α M β a = 0 for all a, $\beta \in \Gamma$, then a α M β b = b α M β a = 0.

Lemma (2.5):

Let M be a *semiprime* Γ -ring .Suppose that D_n and G_n are bi-additive mappings satisfies $D_n(x,y)$ $\Gamma M \Gamma G_n(x,y)=(0)$ for all $x, y \in M$, $n \in \mathbb{N}$. Then $D_n(x,y) \Gamma M \Gamma G_n(y,z)=(0)$ for all $x, y, z \in M$ and $n \in \mathbb{N}$.

(1)

Proof:

Suppose that $D_n(x, y) \Gamma M \Gamma G_n(x, y) = (0)$ $D_n(x, y) \Gamma M \Gamma G_n(x, y) = \sum_{i=1}^n D_i(x, y) \alpha m \beta G_i(x, y) = 0$ for all $\alpha, \beta \epsilon \Gamma$ Replace x by x+z in (1) for all $z \epsilon M$ we get
$$\begin{split} & \sum_{i=1}^{n} D_i(x+z,y) \alpha m \beta G_i(x+z,y) = 0 \\ & \sum_{i=1}^{n} [D_i(x,y) + D_i(z,y)] \alpha m \beta [G_i(x,y) + G_i(z,y)] = 0 \\ & \sum_{i=1}^{n} D_i(x,y) \alpha m \beta G_i(x,y) + D_i(x,y) \alpha m \beta G_i(z,y) + D_i(z,y) \alpha m \beta G_i(z,y) = 0 \end{split}$$

By equation (1) we get $\sum_{i=1}^{n} D_{i}(x, y) \alpha m \beta G_{i}(z, y) + D_{i}(z, y) \alpha m \beta G_{i}(x, y) = 0$ $\sum_{i=1}^{n} D_{i}(x, y) \alpha m \beta G_{i}(z, y) = -\sum_{i=1}^{n} D_{i}(z, y) \alpha m \beta G_{i}(x, y)$ Multiplication (2) by $\gamma t \delta \sum_{i=1}^{n} D_{i}(x, y) \alpha m \beta G_{i}(z, y)$ for all teM and $\gamma, \delta \epsilon \Gamma$ we get $\sum_{i=1}^{n} D_{i}(x, y) \alpha m \beta G_{i}(z, y) \gamma t \delta \sum_{i=1}^{n} D_{i}(x, y) \alpha m \beta G_{i}(z, y) = 0$ (2)

Since M is semiprime we get $\sum_{i=1}^{n} D_i(x, y) \alpha m \beta G_i(z, y) = 0$ Replace $G_i(z, y)$ by $G_i(y, z)$ in (3) we get $\sum_{i=1}^{n} D_i(x, y) \alpha m \beta G_i(y, z) = 0$ Hence $D_n(x, y) \Gamma M \Gamma G_n(y, z) = (0)$

(3)

Lemma (2.6):

Let M be a 2-torsion free semiprime Γ -ring such that $a\alpha y\beta z=a\beta y\alpha z$, two generalized symmetric higher bi-derivations D_n and G_n associated with two symmetric higher bi-derivations d_n and g_n respectively for all neN. Then D_n and G_n are orthogonal if and only if $D_n(x,y)\alpha G_n(y,z)+G_n(x,y)\alpha D_n(y,z)=0$ for all $x,y,z\in M$, neN and $\alpha,\beta\in\Gamma$.

Proof:

Suppose that $D_n(x, y)\alpha G_n(y, z) + G_n(x, y)\alpha D_n(y, z) = 0$ $\sum_{i=1}^n D_i(x, y)\alpha G_i(y, z) + G_i(x, y)\alpha D_i(y, z) = 0$ (1) Replace x by x β w in (1) for all w ϵ M we get $\sum_{i=1}^n D_i(x, y)\alpha G_i(y, z) + G_i(x\beta w, y)D_i(y, z) = 0$ (2) Replace d_i(w, y) by g_i(w, y)\alpha G_i(y, z) + G_i(x, y)\beta g_i(w, y)\alpha D_i(y, z) = 0
(2)

By Lemma (2-4) we get $\sum_{i=1}^{n} D_{i}(x, y)\beta g_{i}(w, y)\alpha G_{i}(y, z) = \sum_{i=1}^{n} G_{i}(x, y)\beta g_{i}(w, y)\alpha D_{i}(y, z) = 0$ (3) Replace $g_{i}(w, y)$ by m in (3) for all $m \in M$ we get $D_{n}(x, y) \Gamma M \Gamma G_{n}(y, z) = G_{n}(x, y) \Gamma M \Gamma D_{n}(y, z) = (0)$

Thus D_n and G_n are orthogonal Conversely, suppose that D_n and G_n are orthogonal $D_n(x,y) \Gamma M \Gamma G_n(y,z)=(0)=G_n(x,y) \Gamma M \Gamma D_n(y,z)$ $\sum_{i=1}^n D_i(x,y) \alpha m \beta G_i(y,z) = 0 = \sum_{i=1}^n G_i(x,y) \alpha m \beta D_i(y,z)$ $\sum_{i=1}^n D_i(x,y) \alpha m \beta G_i(y,z) + G_i(x,y) \alpha m \beta D_i(y,z) = 0$

By Lemma (2-3) we get $\sum_{i=1}^{n} D_i(x, y) \alpha G_i(y, z) = \sum_{i=1}^{n} G_i(x, y) \alpha D_i(y, z) = 0$ $\sum_{i=1}^{n} D_i(x, y) \alpha G_i(y, z) + G_i(x, y) \alpha D_i(y, z) = 0$ Hence $D_n(x, y) \alpha G_n(y, z) + G_n(x, y) \alpha D_n(y, z) = 0$

Lemma (2.7):

Let M be a 2-torsion free semiprime Γ -ring such that $a\alpha y\beta z=a\beta y\alpha z$, two generalized symmetric higher bi-derivations D_n and G_n associated with two symmetric higher bi-derivations d_n and g_n respectively for $n \in N$. Then D_n and G_n are orthogonal if and only if $D_n(x,y)\alpha G_n(y,z)=0$ or $G_n(x,y)\alpha D_n(y,z)=0$ for all $x,y,z\in M,n\in N$ and $\alpha,\beta\in\Gamma$.

Proof:

Suppose that $D_n(x, y)\alpha G_n(y, z) = 0$ $D_n(x, y)\alpha G_n(y, z) = \sum_{i=1}^n D_i(x, y)\alpha G_i(y, z) = 0$ (1)

Replace x by x β w in (1) for all w \in M we get $\sum_{i=1}^{n} D_i(x\beta w, y)\alpha G_i(y, z) = 0$ $\sum_{i=1}^{n} D_i(x, y)\beta d_i(w, y)\alpha G_i(y, z) = 0$

Replace $d_i(w, y)$ by m for all $m \in M$ we get $\sum_{i=1}^n D_i(x, y)\beta m \alpha G_i(y, z) = 0$

Hence we get the require result.

Similarly way if $G_n(x, y)\alpha D_n(y, z) = 0$ we get D_n and G_n are orthogonal.

Conversely, suppose that D_n and G_nare orthogonal

$$\begin{split} & D_n(x,y)\Gamma M\Gamma G_n(y,z)=(0)\\ & \sum_{i=1}^n D_i\left(x,y\right)\alpha m\beta G_i(y,z)=0\\ & By \ Lemma\ (2-3)\ we\ get\\ & \sum_{i=1}^n D_i(x,y)\alpha G_i(y,z)=0\\ & Hence\ D_n(x,y)\alpha G_n(y,z)=0\\ & And\ by\ G_n(x,y)\Gamma M\Gamma G_n(y,z)=(0)\\ & \sum_{i=1}^n G_i(x,y)\alpha m\beta D_i(y,z)=0\\ & By\ Lemma\ (2-3)\ we\ get\\ & \sum_{i=1}^n G_i(x,y)\alpha D_i(y,z)=0\\ & Thus\ G_n(x,y)\ \alpha D_n(y,z)=0 \end{split}$$

Lemma (2.8):

Let M be a 2-torsion free semiprime Γ -ring $a\alpha y\beta z = a\beta y\alpha z$, two generalized symmetric higher bi-derivations D_n and G_n associated with two symmetric higher bi-derivations d_n and g_n respectively for $n \in \mathbb{N}$. Then D_n and G_n are orthogonal iff $D_n(x, y)\alpha g_n(y, z) = 0$ or $d_n(x, y)\alpha G_n(y, z) = 0$ for all $x, y, z \in M, \alpha, \beta \in \Gamma$ and $n \in \mathbb{N}$.

Proof:

Suppose that $D_n(x, y) \alpha g_n(y, z) = 0$ $D_n(x, y) \alpha g_n(y, z) = \sum_{i=1}^n D_i(x, y) \alpha g_i(y, z) = 0$ (1)

Replace z by $w\beta z$ in (1) for all $w \in M$ we get $\sum_{i=1}^{n} D_i(x, y) \alpha g_i(y, w\beta z) = 0$ $\sum_{i=1}^{n} D_i(x, y) \alpha g_i(y, w) \beta g_i(y, z) = 0$

Replace $g_i(y, z)$ by $G_i(y, z)$ in (2) we get $\sum_{i=1}^{n} D_i(x, y) \alpha g_i(y, w) \beta G_i(y, z) = 0$

By Lemma (2-3) we get

 $\sum_{i=1}^{n} D_i(x, y) \alpha G_i(y, z) = 0$ $D_n(x, y) \alpha G_n(y, z) = 0$ By Lemma (2-7) we get D_n and G_n are orthogonal.

Similarly we if $d_n(x, y)\alpha G_n(y, z) = 0$ we get D_n and G_n are orthogonal.

Conversely, suppose that D_n and G_n are orthogonal.

(2)

(2)

By Lemma (2-7) we get $D_n(x, y) \alpha G_n(y, z) = 0$ $\sum_{i=1}^n D_i(x, y) \alpha G_i(y, z) = 0$

Replace z by $w\beta z$ in (3) for all $w \in M$ we get $\sum_{i=1}^{n} D_i(x, y) \alpha G_i(y, w\beta z) = 0$ $\sum_{i=1}^{n} D_i(x, y) \alpha G_i(y, w) \beta g_i(y, z) = 0$

By Lemma (2-3) we get $\sum_{i=1}^{n} D_i(x, y) \alpha g_i(y, z) = 0$ Hence $D_n(x, y) \alpha g_n(y, z) = 0$

And replace x by $w\beta x$ in (3) we get $\sum_{i=1}^{n} D_i (w\beta x, y) \alpha G_i(y, z) = 0$ $\sum_{i=1}^{n} D_i(w, y) \beta d_i(x, y) \alpha G_i(y, z) = 0$

(4)

(3)

Multiplication (4) by $d_i(x, y)\alpha G_i(y, z)\delta$ for all $\delta\epsilon\Gamma$ we get $\sum_{i=1}^n d_i(x, y)\alpha G_i(y, z)\delta D_i(w, y)\beta d_i(x, y)\alpha G_i(y, z) = 0$ Since M is *semiprime* we get $\sum_{i=1}^n d_i(x, y)\alpha G_i(y, z) = 0$ Hence $d_n(x, y)\alpha G_n(y, z) = 0$

Lemma (2.9):

Let M be a 2-torsion free *semiprime* Γ -ring $a\alpha y\beta z = a\beta y\alpha z$, two generalized symmetric higher bi-derivations D_n and G_n associated with two symmetric higher biderivations d_n and g_n respectively for all $n \in \mathbb{N}$. Then D_n and G_n are orthogonal if and only if $D_n(x, y)\alpha G_n(y, z) = d_n(x, y)\alpha G_n(y, z) = 0$ for all $x, y, z \in \mathbb{N}$, $\alpha \in \Gamma$ and $n \in \mathbb{N}$.

Proof:

Suppose that D_n and G_n are orthogonal By Lemma (2-7) we get $D_n(x, y) \alpha G_n(y, z) = 0$ (1)

And by Lemma (2-8) we get $d_n(x, y) \alpha G_n(y, z) = 0$ (2) From (1) and (2) we get $D_n(x, y) \alpha G_n(y, z) = d_n(x, y) \alpha G_n(y, z) = 0$

Conversely, suppose that $D_n(x, y)\alpha G_n(y, z) = 0$ By Theorem (2-7) we get Hence D_n and G_n are orthogonal Now, if $d_n(x, y)\alpha G_n(y, z) = 0$ By Theorem (2-8) we get D_n and G_n are orthogonal.

3. Main Results

In this section, we present and study some basic Theorems of orthogonal generalized symmetric higher bi-derivations on Γ -ring M.

Theorem (3. 1):

Let M is a 2-torsion free *semiprime* Γ -ring $a\alpha y\beta z = a\beta y\alpha z$, D_n and G_n are orthogonal generalized symmetric higher bi-derivations associated with symmetric higher bi-derivations d_n and g_n respectively for all n ϵ N. Then the following relations are hold for all x, y, z ϵM , α , $\beta \epsilon \Gamma$ and n ϵ N.

(i) $D_n(x,y)\alpha G_n(y,z) = G_n(x,y)\alpha D_n(y,z) = 0$ hence $D_n(x,y)\alpha G_n(y,z) + G_n(x,y)\alpha D_n(y,z) = 0$.

(ii) d_n and G_n are orthogonal and $d_n(x, y)\alpha G_n(y, z) = G_n(x, y)\alpha d_n(y, z) = (0)$. (iii) g_n and D_n are orthogonal and $g_n(x, y)\alpha$ $D_n(y, z) = D_n(x, y)\alpha g_n(y, z) = (0)$. (iv) d_n and g_n are orthogonal symmetric higher bi-derivations. (v) $d_n G_n = G_n d_n = 0$ and $g_n D_n = D_n g_n = 0$. (vi) $G_n D_n = D_n G_n = 0$. **Proof**: (*i*) Suppose that D_n and G_n are orthogonal By Lemma (2-7) we get $D_n(x, y)\alpha G_n(y, z) = 0$ and $G_n(x, y)\alpha D_n(y, z) = 0$ $D_n(x, y)\alpha G_n(y, z) = G_n(x, y)\alpha D_n(y, z) = 0$ Hence $D_n(x, y)\alpha G_n(y, z) + G_n(x, y)\alpha D_n(y, z) = 0$

Proof: (*ii*)

Suppose that D_n and G_n are orthogonal	
By Lemma (2-8) we get	
$d_n(x, y)\alpha G_n(y, z) = 0$	(1)
$\sum_{i=1}^{n} d_i(x, y) \alpha G_i(y, z) = 0$	(2)
Replace $x by x\beta w$ in (2) $w \in M, \beta \in \Gamma$ we get	
$\sum_{i=1}^{n} d_i(x\beta w, y) \alpha G_i(y, z) = 0$	
$\sum_{i=1}^{n} d_i(x, y)\beta d_i(w, y)\alpha G_i(y, z) = 0$	(3)
Replace $d_i(w, y)$ by m in (3) m \in M we get	
$\sum_{i=1}^{n} d_i(x, y) \beta m \alpha G_i(y, z) = 0$	(4)
And from (i) $G_n(x, y)\alpha D_n(y, z) = 0$	
$\sum_{i=1}^{n} D_i(x, y) \alpha G_i(y, z) = 0$	(5)
Replace $z by w\beta z$ in (5) we get	
$\sum_{i=1}^{n} G_i(x, y) \alpha D_i(y, w\beta z) = 0$	
$\sum_{i=1}^{n} G_i(x, y) \alpha D_i(y, w) \beta d_i(y, z) = 0$	
By Lemma (2-3) we get	
$\sum_{i=1}^{n} G_i(x, y) \alpha d_i(y, z) = 0$	
$G_n(x, y)\alpha d_n(y, z) = 0$	(6)
And by $\sum_{i=1}^{n} G_i(x, y) \alpha d_i(y, z) = 0$, replace z by w βz we get	
$\sum_{i=1}^{n} G_i(x, y) \alpha d_i(y, w\beta z) = 0$	
$\sum_{i=1}^{n} G_i(x, y) \alpha d_i(y, w) \beta d_i(y, z) = 0$	(7)
Replace $\alpha d_i(y, w)\beta$ by $\beta d_i(w, y)\alpha$ in (7) we get	
$\sum_{i=1}^{n} G_i(x, y)\beta d_i(w, y)\alpha d_i(y, z) = 0$	(8)
Replace $d_i(w, y)$ by m in (8) we get	
$\sum_{i=1}^{n} G_i(x, y) \beta m \alpha d_i(y, z) = 0$	(9)
From (4) and (9) we get D_n and G_n are orthogonal	
From (1)and (6) we get	
$G_n(x, y)\alpha d_n(y, z) = d_n(x, y)\alpha G_n(y, z) = 0$	

Proof: (iii)

Similarly way used in the proof of (ii)

Proof: (iv)

From (i) $D_n(x, y) \alpha G_n(y, z) = 0$	
$\sum_{i=1}^{n} D_i(x, y) \alpha G_i(y, z) = 0$	(1)
<i>Replacing x by w</i> βx <i>and z by w</i> γz <i>in</i> (1) <i>for all</i> $\gamma \in \Gamma$ we get	
$\sum_{i=1}^{n} D_i(w\beta x, y) \alpha G_i(y, w\gamma z) = 0$	
$\sum_{i=1}^{n} D_i(w, y)\beta d_i(x, y)\alpha G_i(y, w)\gamma g_i(y, z) = 0$	(2)
Replace $G_i(y, w)$ by m in (2) for all m \in M we get	
$\sum_{i=1}^{n} D_i(w, y)\beta d_i(x, y)\alpha m\gamma g_i(y, z) = 0$	(3)
Multiplication (3) by $d_i(x, y)\alpha m\gamma g_i(y, z)\delta$ for all $\delta\epsilon\Gamma$ we get	

 $\sum_{i=1}^{n} d_i(x, y) \alpha m \gamma g_i(y, z) \delta D_i(w, y) \beta d_i(x, y) \alpha m \gamma g_i(y, z) = 0$ Since M is *semiprime* we get $\sum_{i=1}^{n} d_i(x, y) \alpha m \gamma g_i(y, z) = 0$ $d_n(x, y) \Gamma M \Gamma g_n(y, z) = (0)$ Hence d_n and g_n are orthogonal symmetric higher bi-derivations.

Proof: (v)

Thus $G_n D_n = 0$ (2)

And by $G_n(x, y)\Gamma M \Gamma D_n(y, z) = (0)$ $D_n(G_n(x, y)\Gamma M \Gamma D_n(y, z), r) = (0)$ $\sum_{i=1}^n D_i(G_i(x, y)\alpha m\beta D_i(y, z), r) = 0$

Since M is *semiprime* we get

 $\sum_{i=1}^{n} D_i(G_i(x, y), r) \alpha d_i(m, r) \beta d_i(D_i(y, z), r) = 0$

Replace $d_i(D_i(y,z),r)$ by $D_i(G_i(x,y),r)$ in (3) we get $\sum_{i=1}^n D_i(G_i(x,y),r) \alpha d_i(m,r) \beta D_i(G_i(x,y),r) = 0$

F1001: (V)	
Since by (ii) $d_n(x, y)\alpha G_n(y, z) = 0$	
$G_n(d_n(x, y)\alpha G_n(y, z), m) = 0$ for all $m \in M$	
$\sum_{i=1}^{n} G_i(d_i(x, y) \alpha G_i(y, z), m) = 0$	(1)
Replace $x by x\beta w$ in (1) for all $w \in M$, $\beta \in \Gamma$ we get	
$\sum_{i=1}^{n} G_i(d_i(\mathbf{x}\beta \mathbf{w}, \mathbf{y})\alpha G_i(\mathbf{y}, \mathbf{z}), m) = 0$	
$\sum_{i=1}^{n} G_i(d_i(\mathbf{x}, \mathbf{y})\beta d_i(\mathbf{w}, \mathbf{y})\alpha G_i(\mathbf{y}, \mathbf{z}), \mathbf{m}) = 0$	
$\sum_{i=1}^{n} G_i(d_i(x, y), m) \beta g_i(d_i(w, y), m) \alpha g_i(G_i(y, z), m) = 0$	(2)
Replace $g_i(G_i(y, z), m)$ by $G_i(d_i(x, y), m)$ in (2) we get	
$\sum_{i=1}^{n} G_i(d_i(x, y), m) \beta g_i(d_i(w, y), m) \alpha G_i(d_i(x, y), m) = 0$	
Since M is <i>semiprime</i> we get	
$\sum_{i=1}^{n} G_i(d_i(x, y), m) = 0$	
Thus $G_n d_n = 0$	(3)
And by (ii) $G_n(x, y)\alpha d_n(y, z) = 0$	
$d_n(G_n(x, y)\alpha d_n(y, z), m) = 0$	
$\sum_{i=1}^{n} d_i(G_i(x, y)\alpha d_i(y, z), m) = 0$	(4)
Replace <i>xby</i> $x\delta w$ in (4) for all $\delta \epsilon \Gamma$ we get	
$\sum_{i=1}^{n} d_i (G_i(x \delta w, y) \alpha d_i(y, z), m) = 0$	
$\sum_{i=1}^{n} d_i(G_i(x, y)\delta g_i(w, y)\alpha d_i(y, z), m) = 0$	
$\sum_{i=1}^{n} d_i(G_i(x,y),m) \delta d_i(g_i(w,y),m) \alpha d_i(d_i(y,z),m) = 0$	(5)
Replace $d_i(d_i(y, z), m)$ by $d_i(G_i(x, y), m)$ in (5) we get	
$\sum_{i=1}^{n} d_i(G_i(x,y),m) \delta d_i(g_i(w,y),m) \alpha d_i(G_i(x,y),m) = 0$	
Since M is <i>semiprime</i> we get	
$\sum_{i=1}^{n} d_i(G_i(x, y), m) = 0$	
Thus $d_n G_n = 0$	(6)
From (3) and (6) we get	
$G_n d_n = d_n G_n = 0$	
Similarly way to prove that $D_n g_n = g_n D_n = 0$.	
Proof: (vi)	
Since D_n and G_n are orthogonal	
$D_n(x, y)\Gamma M\Gamma G_n(y, z) = (0)$	
$G_n(D_n(x, y)\Gamma M\Gamma G_n(y, z), r) = (0)$ for all $r \in M$	
$\sum_{i=1}^{n} G_i(D_i(x, y) \alpha m \beta G_i(y, z), r) = 0$	
$\sum_{i=1}^{n} G_i(D_i(x, y), r) \alpha g_i(m, r) \beta g_i(G_i(y, z), r) = 0$	(1)
Replace $g_i(G_i(y,z),r)$ by $G_i(D_i(x,y),r)$ we get	
$\sum_{i=1}^{n} G_i(D_i(x, y), r) \alpha g_i(m, r) \beta G_i(D_i(x, y), r) = 0$	
Since M is semiprime we get	
$\sum_{i=1}^{n} G_i(D_i(x, y), r) = 0$	

(3)

 $\sum_{i=1}^{n} D_i(G_i(x, y), r) = 0$ Thus $D_n G_n = 0$

From (2) and (4) we get $G_n D_n = D_n G_n = 0$

Theorem (3.2):

Let M be 2-torsion freesemiprime Γ -ring $a\alpha\gamma\beta z = a\beta\gamma\alpha z$, D_n and G_n are generalized symmetric higher bi-derivations associated with symmetric higher bi-derivations d_n and g_n respectively for all $n\in N$. Then the following relations are equivalent for all $x, y\in M$ and $\alpha, \beta\in\Gamma$:

$(i)D_n$ and G_n are orthogonal	
$(ii)D_n(x,y)\alpha G_n(y,z) + G_n(x,y)\alpha D_n(y,z) = 0$	
$(iii)d_n(x,y)\alpha G_n(y,z) + g_n(x,y)\alpha D_n(y,z) = 0$	
Proof: (<i>l</i>) \Leftrightarrow (<i>l</i>)	
Suppose that D_n and G_n are orthogonal	
By Theorem $(3-1)(t)$ we get	
$D_n(x, y)\alpha G_n(y, z) = G_n(x, y)\alpha D_n(y, z) = 0$	
Hence $D_n(x, y)\alpha G_n(y, z) + G_n(x, y)\alpha D_n(y, z) = 0$	
Conversity, Let $D_n(x, y) \alpha G_n(y, z) + G_n(x, y) \alpha D_n(y, z) = 0$	
By Lemma (2-6) we get	
Hence D_n and G_n are orthogonal	
$(l) \Leftrightarrow (ll)$	
Suppose that D_n and G_n are orthogonal By Lemma (2, 8) we get	
By Lemma (2-8) we get $d_1(u, v) = 0$	(1)
$a_n(x, y)a_n(y, z) = 0$	(1)
And by Theorem (3-1) (1) we get $C_{1}(t) = 0$	
$G_n(x, y) \alpha D_n(y, z) = 0$ $\sum_{n=1}^{n} G_n(x, y) \alpha D_n(y, z) = 0$	(2)
$\sum_{i=1}^{n} G_i(x, y) dD_i(y, z) = 0$ Parlage x by the in (2) for t of we get	(2)
$\sum_{n=0}^{n} C(t P_n x) = 0$	
$\sum_{i=1}^{n} G_i(\iota p x, y) dD_i(y, z) = 0$ $\sum_{i=1}^{n} G_i(\iota p x, y) dD_i(v, z) = 0$	(2)
$\sum_{i=1}^{n} G_i(l, y) \beta g_i(x, y) dD_i(y, z) = 0$ Multiplication (2) by $g_i(x, y) dD_i(y, z) \in for all \delta \in \mathbb{F}$ we get	(3)
Multiplication (5) by $g_i(x, y) dD_i(y, z) \delta f di d \delta \epsilon$ we get $\sum_{i=1}^{n} g_i(x, y) dD_i(y, z) \delta f (x, y) dD_i(y, z) = 0$	
$\sum_{i=1}^{n} g_i(x, y) dD_i(y, z) \partial G_i(t, y) \beta g_i(x, y) dD_i(y, z) = 0$	
Since M semiprime we get	
$\sum_{i=1}^{n} g_i(x, y) \alpha D_i(y, z) = 0$	
$g_n(x, y)\alpha D_n(y, z) = 0$	(4)
From (1) and (4) we get	
$d_n(x, y)\alpha G_n(y, z) + g_n(x, y)\alpha D_n(y, z) = 0$	
Conversely, Let $d_n(x, y)\alpha G_n(y, z) + g_n(x, y)\alpha D_n(y, z) = 0$	
$\sum_{i=1}^{n} d_i(x, y) \alpha G_i(y, z) + g_i(x, y) \alpha D_i(y, z) = 0$	(5)
Replace x by xyt in (5) for all $\gamma \in \Gamma$ we get	
$\sum_{i=1}^{n} d_i(x\gamma t, y) \alpha G_i(y, z) + g_i(x\gamma t, y) \alpha D_i(y, z) = 0$	
$\sum_{i=1}^{n} d_i(x, y) \gamma d_i(t, y) \alpha G_i(y, z) + g_i(x, y) \gamma g_i(t, y) \alpha D_i(y, z) = 0$	(6)
Replacing $d_i(x, y)$ by $D_i(x, y)$ and $g_i(x, y)$ by $G_i(x, y)$ in (6) we get	
$\sum_{i=1}^{n} D_i(x, y) \gamma d_i(t, y) \alpha G_i(y, z) + G_i(x, y) \gamma g_i(t, y) \alpha D_i(y, z) = 0$	(7)
Replace $d_i(t, y)$ by $g_i(t, y)$ in (7) we get	
$\sum_{i=1}^{n} D_i(x, y) \gamma g_i(t, y) \alpha G_i(y, z) + G_i(x, y) \gamma g_i(t, y) \alpha D_i(y, z) = 0$	
By Lemma (2-4) we get	
$\sum_{i=1}^{n} D_i(x, y) \gamma g_i(t, y) \alpha G_i(y, z) = \sum_{i=1}^{n} G_i(x, y) \gamma g_i(t, y) \alpha D_i(y, z) = 0$	
Hence D_n and G_n are orthogonal	

(4)

Theorem (3. 3):

Let M be 2-torsion free *semiprime* Γ -ring $a\alpha y\beta z = a\beta y\alpha z$, D_n and G_n are generalized symmetric higher bi-derivations associated with symmetric higher bi-derivations d_n and g_n respectively for all $n \in N$. Then D_n and G_n are orthogonal iff $D_n(x, y)\alpha G_n(y, z) = 0$ for all $x, y, z \in M$, $\alpha, \beta \in \Gamma$ and $d_n G_n = d_n g_n = 0$.

Proof:

Suppose that D_n and G_n are orthogonal	
By Theorem (2-7) we get	
$D_n(x, y)\alpha G_n(y, z) = 0$	(1)
And by Theorem (3-1) (i) we get	
$G_n(x,y)\alpha d_n(y,z) = 0$	
$d_n(G_n(x,y)\alpha d_n(y,z),m) = 0$	
$\sum_{i=1}^{n} d_i (G_n(x, y) \alpha d_i(y, z), m) = 0$	(2)
Replace x by $x\beta t$ in (2) for all $t\in M$ we get	
$\sum_{i=1}^{n} d_i (G_i(x\beta t, y)\alpha d_i(y, z), m) = 0$	
$\sum_{i=1}^{n} d_i (G_i(x, y)\beta g_i(t, y)\alpha d_i(y, z), m) = 0$	
$\sum_{i=1}^{n} d_i(G_i(x,y),m)\beta d_i(g_i(t,y),m)\alpha d_i(d_i(y,z),m) = 0$	(3)
Replace $d_i(d_i(y, z), m)$ by $d_i(G_i(x, y), m)$ in (3) we get	
$\sum_{i=1}^{n} d_i(G_i(x,y),m)\beta d_i(g_i(t,y),m)\alpha d_i(G_i(x,y),m) = 0$	
Since M is semiprime we get	
$\sum_{i=1}^{n} d_i(G_i(x, y), m) = 0$	
$d_n G_n = 0$	(4)
Also by Theorem (3-1) (iv) we get	
$g_n(x,y)\Gamma M\Gamma d_n(y,z) = (0)$	
$d_n(g_n(x, y)\Gamma M\Gamma d_n(y, z), r) = (0)$ for all $r \in M$	
$\sum_{i=1}^{n} d_i(g_i(x, y) \alpha m \beta d_i(y, z), r) = 0$	
$\sum_{i=1}^{n} d_i(g_i(x, y), r) \alpha d_i(m, r) \beta d_i(d_i(y, z), r) = 0$	(5)
Replace $d_i(y, z)$ by $g_i(x, y)$ in (5) we get	
$\sum_{i=1}^{n} d_i(g_i(x,y),r) \alpha d_i(m,r) \beta d_i(g_i(x,y),r) = 0$	
Since M is <i>semiprime</i> we get	
$\sum_{i=1}^{n} d_i(g_i(x, y), r) = 0$	
$d_n g_n = 0$	(6)
From (1) and (4), (6) we get	
$D_n(x, y)\alpha G_n(y, z) = 0$ and $d_n G_n = d_n g_n = 0$	
Conversely, suppose that $D_n(x, y) \alpha G_n(y, z) = 0$	(7)
And $d_n G_n = 0$	
$(d_n G_n)(x \alpha y, z) = 0$	
$\sum_{i=1}^{n} d_i(G_i(x\alpha y, z), m) = 0$ for all m \in M	
$\sum_{i=1}^{n} d_i (G_i(x, z) \alpha g_i(y, z), m) = 0$	
$\sum_{i=1}^{n} d_i(G_i(x,z),m) \alpha d_i(g_i(y,z),m) = 0$	(8)
Replacing $(G_i(x, z), m)$ by (x, y) and $d_i(g_i(y, z), m)$ by $G_i(y, z)$ in (8) we get	
$\sum_{i=1}^{n} d_i(x, y) \alpha G_i(y, z) = 0$	
$\frac{1}{d_n(x,y)\alpha G_n(y,z)} = 0$	(9)
From (7) and (9) we get	
$D_n(x, y)\alpha G_n(y, z) = d_n(x, y)\alpha G_n(y, z) = 0$	
By Lemma (2-9) we get D_n and G_n are orthogonal	

Theorem (3. 4):

Let M be a 2-torsion free *semiprime* Γ -ring such that $a\alpha\gamma\beta z = a\beta\gamma\alpha z$ and D_n be a generalized symmetric higher bi-derivations associated with symmetric higher bi-derivations d_n for all $n \in \mathbb{N}$. If $D_n(x, y)\alpha D_n(y, z) = 0$ for all x, y, z $\in \mathbb{M}$, $\alpha, \beta \in \Gamma, n \in \mathbb{N}$ then $D_n = d_n = 0$.

(1)

(2)

Proof:

Suppose that
$$D_n(x, y) \alpha D_n(y, z) = 0$$

$$\sum_{i=1}^{n} D_i(x, y) \alpha D_i(y, z) = 0$$
(1)
Replace z by $t\beta z$ in (1) for all $t \in M$, $\beta \in \Gamma$ we get

$$\sum_{i=1}^{n} D_i(x, y) \alpha D_i(y, t\beta z) = 0$$
By Lemma (2-3) we get

$$\sum_{i=1}^{n} D_i(x, y) \alpha d_i(y, z) = 0$$
(2)
Multiplication (2) by $di(y, z)\delta$ for all $\delta \in \Gamma$ we get

$$\sum_{i=1}^{n} d_i(y, z)\delta D_i(x, y) \alpha d_i(y, z) = 0$$
Since M is semiprime we get

$$\sum_{i=1}^{n} d_i(y, z) = 0$$
(3)
And multiplication (1) by $\delta D_i(x, y)$ we get

$$\sum_{i=1}^{n} D_i(x, y) \alpha D_i(y, z) \delta D_i(x, y) = 0$$
Since M is semiprime we get

$$\sum_{i=1}^{n} D_i(x, y) \alpha D_i(y, z) \delta D_i(x, y) = 0$$
Since M is semiprime we get

$$\sum_{i=1}^{n} D_i(x, y) \alpha D_i(y, z) \delta D_i(x, y) = 0$$
Since M is semiprime we get

$$\sum_{i=1}^{n} D_i(x, y) = 0$$
(4)
From (3) and (4) we get

$$D_n = d_n = 0$$

Theorem (3.5):

Let M be a 2-torsion free *semiprime* Γ -ring. Let U be an ideal of M and V= Ann. (U) .If (D_n, d_n) is generalized symmetric higher bi-derivations for all $n \in \mathbb{N}$ such that $D_n(M)$, $d_n(M)$ CU then $D_n(V) = d_n(V) = 0$.

Proof:

If $x, y \in V$, $\alpha \in \Gamma$ then $(x \ y) \alpha \cup = 0$ By hypothesis we have $d_n(\mathbf{M}) \subset \mathbf{U} \Longrightarrow d_n(\mathbf{U}) \subset \mathbf{U}$ Hence $0 = D_n (x \alpha z, y)$ $0 = \sum_{i=1}^{n} D_i \left(x \alpha z, y \right)$ $0 = \sum_{i=1}^{n} D_i(x, y) \alpha d_i(z, y)$ Multiplication (1) by $\beta D_i(x, y)$ for all $\beta \epsilon \Gamma$ we get $0 = \sum_{i=1}^{n} D_i(x, y) \alpha d_i(z, y) \beta D_i(x, y)$ Since M is semiprime we get $0 = \sum_{i=1}^{n} D_i(x, y) \in U \cap V$ $D_n(x,y) = 0$ Similarly, since $(x y)\alpha U = 0$ for all $x, y \in V$, $\alpha \in \Gamma$ $0 = d_n(x\alpha z, y)$ $0 = \sum_{i=1}^{n} d_i(x\alpha z, y)$ $0 = \sum_{i=1}^{n} d_i(x, y) \alpha d_i(z, y)$ Multiplication (2) by $\beta d_i(x, y)$ we get $0 = \sum_{i=1}^{n} d_i(x, y) \alpha d_i(y, z) \beta d_i(x, y)$ Since M is semiprime we get $0 = \sum_{i=1}^n d_i(x, y) \ \epsilon \ U \cap V$ $d_n(x, y) = 0$

Theorem (3.6):

Let M be 2-torsion free semiprime Γ -ring $x\alpha y\beta z = x\beta y\alpha z$ for all x, y, $z\in M$ and α , $\beta\in\Gamma$, D_n and G_n are generalized symmetric higher bi-derivations associated with symmetric higher bi-derivations d_n and g_n respectively for all $n \in N$. Then D_n and g_n as well as G_n and d_n are orthogonal iff $D_n = d_n = 0$ or $G_n = g_n = 0$.

Proof:

Suppose that D_n and g_n as well as G_n and d_n are orthogonal By Theorem (2, 1) (iii) we get	
$D_{1}(m, n) = 0$	
$D_n(x, y)ag_n(y, z) = 0$ $\sum_{n=0}^{n} D_n(x, y)ag_n(y, z) = 0$	(1)
$\sum_{i=1}^{N} D_i(x, y) dy_i(y, z) = 0$ Multiplication (1) by $\partial D_i(x, y)$ for all $\partial_i \in \Gamma$ we get	(1)
$\sum_{i=1}^{n} \sum_{j=1}^{n} (x, y) \alpha_{j} (x, y) = 0$	
$\sum_{i=1}^{n} D_i(x, y) dy_i(y, z) \beta D_i(x, y) = 0$ Since M is coming we get	
Since M is semiprime we get $\sum_{n=0}^{n} p_n(x,y) = 0$	
$\sum_{i=1}^{\infty} D_i(x, y) = 0$	(2)
$D_n = 0$	(2)
And by Theorem $(3-1)$ (11) we get	
$a_n(x, y)a_{u_n}(y, z) = 0$	(2)
$\sum_{i=1}^{n} a_i(x, y) \alpha G_i(y, z) = 0$	(3)
Multiplication (3) by $\beta a_i(x, y)$ we get	
$\sum_{i=1}^{n} a_i(x, y) \alpha G_i(y, z) \beta a_i(x, y) = 0$	
Since M is <i>semiprime</i> we get	
$\sum_{i=1}^{n} d_i(x, y) = 0$	
$d_n = 0$	(4)
Now, by Theorem (3-1) (iii) we get	
$g_n(x, y)\alpha D_n(y, z) = 0$	
$\sum_{i=1}^{n} g_i(x, y) \alpha D_i(y, z) = 0$	(5)
Multiplication (5) by $\beta g_i(x, y)$ we get	
$\sum_{i=1}^{n} g_i(x, y) \alpha D_i(y, z) \beta g_i(x, y) = 0$	
Since M is <i>semiprime</i> we get	
$\sum_{i=1}^{n} g_i(x, y) = 0$	
$g_n = 0$	(6)
And by Theorem (3-1) (ii) we get	
$G_n(x, y)\alpha d_n(y, z) = 0$	
$\sum_{i=1}^{n} G_i(x, y) \alpha d_i(y, z) = 0$	(7)
Multiplication (7) by $\beta G_i(x, y)$ we get	
$\sum_{i=1}^{n} G_i(x, y) \alpha d_i(y, z) \ \beta G_i(x, y) = 0$	
Since M is <i>semiprime</i> we get	
$\sum_{i=1}^{n} G_i(x, y) = 0$	
$G_n = 0$	(8)
From (2), (4) and (6),(8) we get	
$D_n = d_n = 0 \text{ or } G_n = g_n = 0$	
Conversly, suppose that $D_n = d_n = 0$ or $G_n = g_n = 0$	
$D_n(x\alpha z, y) = 0$	
$g_n(D_n(x\alpha z, y), m) = 0$	
$\sum_{i=1}^{n} g_i(D_i(x\alpha z, y), m) = 0$	
$\sum_{i=1}^{n} g_i(D_i(x, y)\alpha d_i(z, y), m) = 0$	
$\sum_{i=1}^{n} g_i(D_i(x, y), m) \alpha g_i(d_i(z, y), m) = 0$	(9)
Replacing $g_i(D_i(x, y), m)$ by (x, y) and $(d_i(z, y), m)$ by (y, z) in	
(9) we get	
$\sum_{i=1}^{n} D_i(x, y) \alpha g_i(y, z) = 0$	
$D_n(x, y)\alpha g_n(y, z) = 0$	
By Theorem (3-1) (iii)	
Hnce D_n and g_n are orthogonal	
Similarly, if $G_n = g_n = 0$ we get	
Hence G_n and d_n are orthogonal	

Theorem (3.7):

Let M be a 2-torsion free semiprime Γ -ring, D_n and G_n are generalized symmetric higher biderivations for all n ϵ N.Suppose that $D_n\Gamma G_n=G_n\Gamma D_n$, then $D_n - G_n$ and $D_n + G_n$ are orthogonal.

Proof:

Suppose that $D_n\Gamma G_n = G_n\Gamma D_n$, then for $x, y \in M$: $= [(D_n + G_n)\Gamma(D_n - G_n) + (D_n - G_n)\Gamma(D_n + G_n)](x, y)$ $= [(D_n + G_n)\Gamma(D_n - G_n)](x, y) + [(D_n - G_n)\Gamma(D_n + G_n)](x, y)$ $= \sum_{i=1}^{n} [(D_i + G_i)\alpha(D_i - G_i)](x, y) + \sum_{i=1}^{n} [(D_i - G_i)\alpha(D_i + G_i)](x, y) \text{ for all } \alpha \in \Gamma$ $= \sum_{i=1}^{n} (D_i \alpha D_i - D_i \alpha G_i + G_i \alpha D_i - G_i \alpha G_i)(x, y) + \sum_{i=1}^{n} (D_i \alpha D_i + D_i \alpha G_i - G_i \alpha G_i)(x, y) =$ $\sum_{i=1}^{n} D_i(x, y)\alpha D_i(x, y) - D_i(x, y)\alpha G_i(x, y) + G_i(x, y)\alpha D_i(x, y) - G_i(x, y)\alpha G_i(x, y) +$ $\sum_{i=1}^{n} D_i(x, y)\alpha D_i(x, y) + D_i(x, y)\alpha G_i(x, y) - G_i(x, y)\alpha D_i(x, y) - G_i(x, y)\alpha G_i(x, y)$ Therefore $\sum_{i=1}^{n} [(D_i + G_i)\alpha(D_i - G_i)](x, y) + \sum_{i=1}^{n} [(D_i - G_i)\alpha(D_i + G_i)] = 0$ By Lemma (2-4) we get $\sum_{i=1}^{n} [(D_i + G_i)\alpha(D_i - G_i)](x, y) = 0 = \sum_{i=1}^{n} [(D_i - G_i)\alpha(D_i + G_i)](x, y)$ Thus $D_n - G_n$ and $D_n + G_n$ are orthogonal

References

- 1. Nobusawa, N. 1964. On Generalization of the Ring Theory. Osaka J. Math., 1: 81-89.
- 2. Barnes, W.E. 1966. On The Γ-Rings of Nobusawa. Pacific J. Math. 18: 411-422.
- 3. Kyuno, S. 1978. On Prime Gamma Rings. Pacific J. of Math., 75: 185-190.
- **4.** Jing, F.J. **1987.** On Derivations of Γ-Ring. *QUFU Shi Fan Daxue Xuebeo Ziran Kexue Ban*, **13**(4): 159-161.
- 5. Sapanci, M. and Nakajima, A. 1997. Jordan Derivations on Complately Prime Gamma Rings. *Math., Japoncia*, 46(1): 47-51.
- 6. Cenven, Y. and M. A. Ozturk, M. A. 2004. On Jordan Generalized Derivations in Gamma Rings. *Hacettepe J. of Mathematics and Statistics*, 33: 11-14.
- Ashraf, M. and Jamal, M.R. 2010. Orthogonal Derivations in Gamma Ring. Advance in Algebra, 3(1): 1-6.
- 8. Ozturk, M.A., Sapanci, M., Soyturk, M. and Kim, K.H. 2000. Symmetric Bi-Derivation Prime Gamma Rings. *Scientiae Mathematicae*, 3(2): 273-281.
- 9. Marir, A.M. and Salih, S.M. 2016. Higher Bi-Derivations on Prime Gamma Rings. M.SC. Thesis Education College, AL-Mustansiriya Univ.
- **10.** Chakraborty, S. and Paul, A.C. **2008**. On Jordan K-derivations of 2 –Torsion free Prime Γ N-Rings. *Punjap University J. of Math.*, **40**: 97-101.
- **11.** Dutta, T.K. and Sardar, S.K. **2000.** Semiprime Ideal and Irreducible Ideal of Γ-Semi rings. *Novi Sad J. Math.* **30**(1): 97-108.