Al-Mayah and Rabee

Iraqi Journal of Science, 2018, Vol. 59, No.2A, pp: 660-669 DOI:10.24996/ijs.2018.59.2A.4

Application of Overall Index of Pollution (OIP) for the Evaluating of the Water Quality in Al-Gharraf River southern of Iraq

Wisam Th. Al-Mayah*, Adel M. Rabee

Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq.

Abstract

This comprehensive study investigates has been made to assess the water quality of Al-Gharraf River, which considered the main branch of Tigris River south of Iraq using the overall Index of Pollution (OIP), depending on 9 physical, chemical, and biological important parameters of water quality were analyzed: hydrogen ion concentration (pH), turbidity (NTU), total dissolved solid (TDS), dissolved oxygen (DO), biological oxygen demand (BOD5), total hardness (TH), sulfate (SO4), nitrate (NO3),and fecal coliform (FC), which measured monthly at twenty one stations on the river during 2016-2017. Water quality deterioration has occurred in the last ten stations, consequently, the health status of the river has changed from acceptable to heavily polluted, and the fecal coliform bacteria (FC) was the major factor that affects the quality of the wter river. In this paper concluded that the Al-Gharraf River was in class poor and the Al-Gharraf River water is relatively not suitable for direct public usage in all seasons.

Keywords: Overall Index of Pollution (OIP);Al-Gharraf River, Water Quality, WQI.

تطبيق دليل التلوث الشامل (OIP) لتقيم نوعية المياه السطحية في نهر الغراف جنوب العراق

وسام ثامر المياح*، عادل مشعان ربيع قسم علوم الحياة، كلية العلوم، جامعة بغداد، بغداد، العراق

الخلاصة

تم أجراء دراسة شاملة لتقييم نوعية مياه نهر الغراف الذي يعتبر الفرع الرئيسي لنهر دجلة جنوب العراق باستخدام المؤشر العام للتلوث (OIP) اعتمادا على 9 من المعايير الفيزيائية ، الكيميائية والبيولوجية لنوعية المياه وهي : الرقم الهيدروجني (pH)، العكورة (NTU)، مجموع المواد الصلبة الذائبة (TDS)، الأوكسجن الذائب (DO) والمتطلب الحيوي للأكسجين (BOD₅) ، العسرة الكلية (TH)، الكبريتات (SO₄)، النترات (NO₃)، والبكتريا البرازية (FC)، هذا المعايير تم قياسها شهريا في احدى وعشرون محطة على طول النهر خلال الفترة 2016–2017. وقد حدث تدهور في نوعية المياه في المحطة العشرة الأخيرة، وبالتالي تغيرت الحالة البيئية للنهر من مقبولة إلى شديدة التلوث، وكانت بكتيريا القولون البرازية هي العامل الرئيسي الذي يؤثر على نوعية مياه النهر.

Introduction

Water quality of rivers, lakes and reservoirs can be classified into various degrees indicating the beneficial uses to which it can be put to. The degrees are based on the permissible limits of water quality variables or criteria set by various authorities [1, and 2]. Water quality indices (WQIs) are tools

to determine conditions of water quality and, like any other tool require knowledge about principles and basic concepts of water and related issues. It is a well-known method of expressing water quality that offers a stable and reproducible unit of measure which responds to changes in the principal characteristics of water [3, and 4].

The OIP-WQI is a promising tool and efficient to study the effect of water quality changes along a the river. It is also a very useful tool for communicating the information on overall quality of water to the concerned citizens and policy makers. This could help to assess and solve local and regional surface water quality related problems [5, and 6].

The Al-Gharraf River is of essential importance for domestic, agricultural and industrial uses and its water masses are essential to satisfy requirements of Wasit and Dhi-Qar provinces. However, no published work was found to assess water quality of the Al-Gharraf River by using OIP-WQIs. Their study aimed at using nine ecological parameters in evaluating the quality of the Al-Gharraf River for public usage during four seasons.

Material and Methods

Study Area.

Tigris is one of the two main rivers feeding Iraq with essential quantities of freshwater. It splits, before passing Kut Dam into two major branches, the first branch called Al-Dijella River and the other branch Al-Gharraf River is penetrating Dhi- Qar governorate and directed towards Shatra town. The coordinates of Al-Gharraf are lies between the north latitude $(32^{\circ} 27' \text{ to } 31^{\circ} 2' \text{ N})$ and east longitude $(45^{\circ} 45' \text{ to } 46^{\circ} 4' \text{ E})$. Its basin populated by more than 2 million people using about 432000 m³/year of refined water and passing through an agricultural area of about 215019 h in the south west of Iraq within the sediment plain [7].

Figure 1-Map of Al-Gharraf River showing the stations of the case study.

Field Sampling and Analytical Procedures

In the study, water samples were collected monthly during four seasons from December 2016 to November 2017, at twenty one stations along the Al-Gharraf River Figure-1. Samples were preserved and analyzed according to American Public Health Association [8]. Physical and chemical parameters

including water turbidity (NTU), total dissolved solid (TDS), dissolved oxygen (DO), and pH were measured in situ using a WTW multi-meter model Multi 340i. Biological oxygen demand (BOD₅) measured by winkler method. Total hardness (TH) was measured by Na_2EDTA complex metric titration. Sulphate (SO₄) and nitrate (NO₃) concentration was determined spectrophotometric-ally method. Fecal coliform bacteria (FC) were determined by the most probable number (MPN) method. **Estimating the OIP-WQIs**

The OIP-WQI was developed to use as a tool for simplifying and define the water quality data [9]. OIP creates a score to evaluate the surface water quality of Indian rivers based on measurements and classification of pH, BOD₅, dissolved oxygen, turbidity, total hardness, total dissolved solids, sulphate, nitrate and total coliforms. The model classified the river water to five categories as Excellent (pristine), Acceptable (requires disinfection), Slightly Polluted (requires filtration and disinfection), Polluted (requires special treatment and disinfection), and Heavily Polluted (cannot be used), according to Indian standards or WHO standard as presented in Table -1.

Classification	assification Excellent		Slightly pollution	Polluted	Heavily polluted
Class score	C1	C2	C3	C4	C5
Parameters		C	oncentration rang	ge	
рН	6.5–7.5	6–6.5 AND 7.5-8	5-6 AND 8-9	4.5–5 and 9- 9.5	<4.5 AND > 9.5
Turbidity NTU	5	10	100	250	>250
TDS mg/l	10	150	300	600	1200
DO %	88-112	75 - 125	50 - 150	20 - 200	<20 AND >200
BOD ₅ mg/l	1.5	3	6	12	24
TH mg/l	75	150	300	500	>500
SO ₄ mg/l	150	250	400	1000	>1000
NO ₃ mg/l	20	45	50	100	200
FC cfu	50	500	5000	10000	15000

Table 1- Water quality classification according to OIP methods

Finally, the mathematical expression of this OIP method [9] is given by:

$$OIP = \sum_{i=1}^{n} \frac{p_i}{n}$$

Where:

Pi = pollution index for ith parameter can be obtained from mathematical expressions for each of the parameter concentration levels as show in Table-2.

n = number of parameters.

Table 2-Mathematical equations for value function curves.

Parameters	Values	Mathematical equations
nII	≤7	$x = \exp(((7 - y)/(1.082)), y < 7$
рп	>7	$x = \exp((y - 7.0)/(1.082), y > 7$
Turbidity NTU	5-10	$\mathbf{x} = (\mathbf{y}/5)$
Turblaity NTO	10-500	x = (y + 43.9)/34.5
	≤500	x = 1
TDS mg/I	500-1500	$x = \exp((y - 500)/721.5)$
	<50	x=exp(-(y-98.33)/36.067)
DO%	50-100	x=-(y-107.58)/14.667
	100≥	x=(y-79.543)/19.054
	<2	x = 1
BOD ₅ mg/1	2-30	x = y/1.5
TH mg/l	75–500	$x = \exp(y + 42.5)/205.58$

	>500	x = (y + 500)/125				
50 mg/l	≤150	x = 1				
504 mg/1	150-2000	x = ((y/50) + (0.375)/2.5121				
NO ma/l	≤20	x = 1				
NO ₃ mg/1	20–50	$x = \exp((y - 145.16)/76.28)$				
	50-5000	x = (y/50) * 0.3010				
FC cfu	5000-15000	$\mathbf{x} = ((\mathbf{y}/50) - (50)/16.071$				
	>15000	x=(y/15000)+6				

Table 3-Summary of the water quality data of Al-Gharraf River over one year (December, 2016, to November, 2017

Seasons	Parameters	Turb. NTU	рН	TDS mg/l	DO %	BOD ₅ mg/l	TH mg/l	SO ₄ mg/l	NO ₃ mg/l	FC CFU
	Min	27	6.97	808.10	50	8.11	307.6	234.33	5.53	346
Winter	Max	87	7.35	4000.8	83	10.4	536	371.43	13.31	112100
	Mean	55.47	7.11	1153.9	66.65	9.39	418.1	312.23	9.41	34937.1
	Min	17.33	6.99	584.53	50	0.94	253.5	148.83	5.6766	223.33
Spring	Max	88.1	8.13	871.1	75	7.17	508.6	353.26	15.52	61000
	Mean	44.73	7.51	746.3	61.52	4.47	376.8	241.03	9.293	15631.59
	Min	13.83	7.177	464.42	48	2.066	243.3	121.6	3.26	200
Summer	Max	58.16	8.203	672.21	70	8.953	416.3	319.66	12.07	26700
	Mean	34.94	7.8	556.66	59.23	5.46	333.5	224.26	7.41	10365.22
	Min	26	6.517	788.48	50	2.23	321.3	253.66	7.51	236.6667
Autumn	Max	156	7.217	1045.1	71	8.35	667.4	457	27.83	63833.33
	Mean	76.92	7.002	912.4	61.3	5.23	481.5	351.60	14.88	31625.07

Result and Discussion

The calculated sub-index values for each parameters, and OIP-WQI and categorization are listed in Tabular [4, 5,6 and 7]. Four different seasons data were used to understand the seasonal variations in water quality of the Al-Gharraf River. All the OIP were computed for all the stations of the river. The major important parameters in this index model were pH, TDS, DO, BOD₅, SO₄, NO₃, turbidity, hardness, and fecal coliform.

Table 4-The calculate OIP-WQI of AL-Gharraf River during Winter (December, 2016, January,
February, 2017).

	Nama of Station		Individual parameter indices											
ID	Name of Station	Turb. NTU	рН	TDS mg/l	DO %	BOD ₅ mg/l	TH mg/l	SO ₄ mg/l	NO ₃ mg/l	FC CFU	WQI values			
S1	Ent. Kut	2.055	1.37	1.539	1.744	1	4.341	2.084	1	2.107	1.915			
S2	End Kut	2.693	1.15	1.708	2.494	1.367	2.115	2.82	1	14.45	3.31			
S 3	Ent. Al- Muwaffaqiyah	2.171	1.36	1.568	1.676	1	5.372	2.365	1	5.719	2.47			
S4	End Al- Muwaffaqiyah	2.896	1.11	1.722	2.017	1.727	5.461	2.845	1	19.26	4.226			
S5	Ent. Al-Hayy	2.287	1.3	1.58	1.676	1	1.065	2.474	1	9.15	2.392			
S6	Mid Al-Hayy	3.388	1.07	1.885	3.244	2.667	8.176	3.031	1	47.69	8.016			
S7	End Al-Hayy	2.49	1.27	1.614	2.221	1.58	9.034	2.522	1	12.82	3.839			

S8	Ent. Al-Fajr	2.403	1.3	1.589	2.63	1.353	4.297	2.353	1	9.334	2.917
S9	End Al-Fajr	3.417	1.12	1.829	3.039	2.633	4.383	2.824	1	17.87	4.235
S10	Ent. Qalat Sukar	2.78	1.24	1.62	1.949	1.613	5.667	2.609	1	17.2	3.964
S11	End Qalat Sukar	3.446	1.05	1.899	3.38	3.167	8.184	3.019	1	47.81	8.106
S12	Ent. Al-Rifai	2.751	1.23	1.728	2.767	2.14	1.689	2.673	1	17.37	3.704
S13	End Al-Rifai	3.186	1.09	1.877	3.039	2.653	8.152	2.927	1	19.13	4.784
S14	Ent. Al-Naser	2.925	1.09	1.756	3.244	3.033	1.48	2.928	1	19.28	4.081
S15	End Al-Naser	3.533	1.05	1.909	3.517	3.053	8.36	3.058	1	50.22	8.411
S16	Ent. Al-Shatrah	2.809	1.18	1.75	2.699	1.953	5.901	2.707	1	17.2	4.133
S17	Mid Al-Shatrah	4.084	1.01	0.501	3.926	3.967	8.664	3.241	1	63.54	9.992
S18	End Al-Shatrah	3.591	1.09	1.811	3.312	2.853	8.624	2.968	1	18.75	4.888
S19	Ent. Al-Gharraf	3.388	1.13	1.789	3.108	2.753	2.38	2.713	1	17.99	4.027
S20	Mid Al-Gharraf	3.852	1.02	1.929	3.585	3.84	8.4208	3.12	1	53.21	8.886
S21	End Al-Gharraf	3.475	1.11	1.834	3.312	2.76	5.203	2.75	1	18.53	4.442

Table 5-The calculate OIP-WQI of AL-Gharraf Rive	r during Spring(March, Ap	oril, May,2017).
--	---------------------------	------------------

	Name of Station	Individual parameter indices									
ID	Ivanie of Station	Turb.	nH	TDS	DO	BOD ₅	ТН	SO ₄	NO ₃	FC	WQI
		NTU	P	mg/l	%	mg/l	mg/l	mg/l	mg/l	CFU	values
S1	Ent. Kut	1.852	2.895	1.141	2.221	1	1.849	1.419	1	1.565	1.66
S2	End Kut	2.345	1.807	1.327	2.767	2.153	3.759	2.187	1	16.53	3.764
S 3	Ent. Al- Muwaffaqiyah	1s.983	2.79	1.193	2.358	1.453	3.666	1.614	1	5.9	2.44
S4	End Al- Muwaffaqiyah	2.803	1.558	1.52	2.903	2.373	2.199	2.285	1	19.75	4.044
S5	Ent. Al-Hayy	2.13	2.738	1.211	2.63	1.54	6.612	1.708	1	6.02	2.843
S6	Mid Al-Hayy	3.33	1.725	1.482	3.38	4.727	5.084	2.597	1	35.67	6.555
S7	End Al-Hayy	3.339	1.295	1.617	3.244	3.82	1.039	2.402	1	17.03	3.866
S8	Ent. Al-Fajr	2.171	2.688	1.314	2.699	1.747	5.428	1.608	1	14.45	3.678
S9	End Al-Fajr	3.446	1.17	1.65	3.585	4.173	1.855	2.418	1	29.33	5.403
S10	Ent. Qalat Sukar	3.099	1.382	1.591	3.039	3.833	6.388	2.339	1	10.58	3.694
S11	End Qalat Sukar	2.664	2	1.596	3.449	3.213	9.482	2.45	1	43.11	7.663
S12	Ent. Al-Rifai	2.322	2.615	1.327	3.176	2.593	1.056	1.722	1	7.591	2.60
S13	End Al-Rifai	2.678	2.276	1.528	3.449	4.047	2.9	2.378	1	34.62	6.097
S14	Ent. Al-Naser	2.417	2.451	1.357	3.244	2.92	5.901	1.976	1	8.338	3.289
S15	End Al-Naser	2.658	2.474	1.36	2.835	2.74	4.08	1.884	1	52.33	7.929
S16	Ent. Al-Shatrah	3.293	1.128	1.63	3.585	4.193	1.01	2.585	1	17.89	4.035
S17	Mid Al-Shatrah	4.122	1.047	1.708	3.926	4.9	8.214	3.038	1	58.67	9.625
S18	End Al-Shatrah	3.258	1.709	1.526	3.449	4.48	4.304	2.364	1	27.33	5.491
S19	Ent. Al-Gharraf	3.417	1.307	1.58	3.517	4.56	2.537	2.617	1	17.6	4.237
S20	Mid Al-Gharraf	2.301	2.543	1.335	2.903	1.967	7.891	1.781	1	55.27	8.555
S21	End Al-Gharraf	3.748	1.138	1.65	3.721	4.767	3.303	2.729	1	18.07	4.458

	Nama of Station			In	dividual	parame	ter indic	es			OIP-
ID	Name of Station	Turb.	nH	TDS	DO	BOD ₅	ТН	SO ₄	NO ₃	FC	WQI
		NTU	P	mg/l	%	mg/l	mg/l	mg/l	mg/l	CFU	value
S1	Ent. Kut	1.751	3.17	1	2.562	1.713	8.505	1	1	1.324	2.448
S2	End Kut	1.82	3	1.002	2.562	1.447	8.288	1.427	1	15.88	4.048
S 3	Ent. Al- Muwaffaqiyah	2.055	2.79	1.013	2.767	2.153	3.666	1.699	1	5.71	2.539
S4	End Al- Muwaffaqiyah	2.461	2.64	1.098	3.108	2.9	1.171	2.211	1	23.84	4.492
S5	Ent. Al-Hayy	2.113	2.84	1.077	2.835	3.293	1.907	1.819	1	7.826	2.746
S6	Mid Al-Hayy	3.214	2.08	1.18	3.721	5.3	1.32	2.394	1	40.69	6.766
S7	End Al-Hayy	2.983	2.21	1.176	3.449	5.127	3.007	2.308	1	10.58	3.538
S8	Ent. Al-Fajr	2.113	3	1.01	2.903	1.987	1.214	1.708	1	7.826	2.529
S9	End Al-Fajr	2.968	2.54	1.125	3.176	4.9	1.646	2.315	1	32.93	5.845
S10	Ent. Qalat Sukar	2.49	2.82	1.04	2.971	3.207	1.769	1.781	1	5.6	2.519
S11	End Qalat Sukar	2.586	2.64	1.136	3.517	4.34	8.988	2.434	1	45.81	8.05
S12	Ent. Al-Rifai	2.417	2.74	1.088	3.244	3.387	4.187	1.598	1	3.36	2.558
S13	End Al-Rifai	2.606	2.5	1.116	3.449	3.48	3.062	2.02	1	39.55	6.531
S14	Ent. Al-Naser	2.461	2.74	1.103	3.312	4.153	2.376	1.964	1	16.97	4.008
S15	End Al-Naser	2.875	2.43	1.123	3.926	4.08	5.623	2.275	1	52.11	8.382
S16	Ent. Al-Shatrah	2.223	2.84	1.025	3.039	2.027	8.857	1.781	1	35.24	6.448
S17	Mid Al-Shatrah	3.577	1.38	1.319	4.037	6.047	8.306	2.872	1	61.97	10.06
S18	End Al-Shatrah	2.823	1.95	1.189	3.926	5.373	2.38	2.485	1	47.49	7.623
S19	Ent. Al-Gharraf	2.948	2.28	1.148	3.858	4.553	2.228	2.393	1	37.33	6.115
S20	Mid Al-Gharraf	3.125	1.62	1.202	7.335	5.713	5.316	2.691	1	58.61	9.623
S21	End Al-Gharraf	2.954	2.06	1.153	3.517	4.16	6.056	2.49	1	37.32	6.745

Table 6-The calculate OIP-WQI of AL-Gharraf River during Summer (June, July, August, 2017).

Table	7- The	calculate	OIP-WQI	of	AL-Gharraf	River	during	Autumn	(September,	October,
Novem	ber, 20	17).					_		_	

	Name of			In	dividual	parame	ter indice	es			OIP-
ID	Station	Turb.	рН	TDS	DO	BOD ₅	TH	SO ₄	NO ₃	FC	WQI
		NTU	P	mg/l	%	mg/l	mg/l	mg/l	mg/l	CFU	value
S1	Ent. Kut	2.171	1.272	1.525	2.494	1.687	6.377	2.299	1	4.107	2.548
S2	End Kut	2.8957	1.107	1.867	3.108	2.473	5.31	3.22	1	15.38	4.04
S 3	Ent. Al- Muwaffaqiyah	2.258	1.295	1.573	2.562	1.967	3.015	2.307	1	10.58	2.951
S 4	End Al- Muwaffaqiyah	3.2435	1.087	1.885	3.039	2.74	8.16	3.31	1	16.05	4.502
S 5	Ent. Al-Hayy	2.3159	1.272	1.626	2.63	1.987	2.714	2.34	1	11.2	3.009
S 6	Mid Al-Hayy	4.0841	1.019	1.95	3.244	4.847	8.712	3.469	1	85.25	12.62
S7	End Al-Hayy	2.7507	1.214	1.678	3.039	2.593	2.938	2.496	1	23.02	4.526
S 8	Ent. Al-Fajr	2.5478	1.283	1.623	2.835	2.427	1.852	2.45	1	19.04	3.895
S9	End Al-Fajr	3.9391	1.038	1.91	2.971	4.74	8.5232	3.424	1	64.09	10.18
S10	Ent. Qalat Sukar	2.9826	1.149	1.668	2.767	2.7	2.611	2.817	1	20.53	4.248
S11	End Qalat Sukar	5.2435	1.019	1.981	3.312	5.213	9.0008	3.541	0.195	93.96	13.72
S12	Ent. Al-Rifai	3.2435	1.181	1.674	3.108	3.407	1.24	2.955	1	36.71	6.058
S13	End Al-Rifai	3.9971	1.057	1.792	3.244	4.487	8.312	3.406	1	70.31	10.85

S14	Ent. Al-Naser	3.2145	1.159	1.739	3.039	3.233	4.141	3.143	1	31.24	5.767
S15	End Al-Naser	4.8957	1.077	1.965	3.38	5.313	8.96	3.588	0.199	97.69	14.12
S16	Ent. Al- Shatrah	3.8232	1.149	1.773	3.244	3.527	1.983	3.136	1	37.33	6.33
S17	Mid Al- Shatrah	6.3739	1.558	2.165	3.926	5.833	9.512	3.883	0.23	117.6	16.79
S18	End Al- Shatrah	5.0116	1.128	1.823	3.653	4.193	8.3024	3.206	0.195	90.22	13.08
S19	Ent. Al- Gharraf	4.7507	1.181	1.758	3.312	3.547	8.1256	3.019	1	44.54	7.917
S20	Mid Al- Gharraf	5.5623	1.488	2.029	3.721	5.307	8.8016	3.671	0.214	114.9	16.18
S21	End Al- Gharraf	4.9536	1.149	1.86	3.517	4.053	8.228	3.187	0.196	108	15.02

It was noticed, from tables above, that the OIP-WQI for the first ten stations of the Al-Gharraf River (Entrance Kut, End Kut, Entrance Al-Muwaffaqiyah, End Al-Muwaffaqiyh, Entrance Al-Hayy, End Al-Hayy, Entrance Fajir, End Fajer) were fluctuated in their classifications between Acceptable, (1 - 2) and polluted, (4 - 8), except in End Fajer station during October, (OIP = 12) and November (OIP = 9) which was classified as heavily polluted, (8–16). The reason for this fluctuations in the water quality index at these stations was the fluctuation in fecal coliform bacteria (more than 59000 CFU), total hardness (more than 560 mg/l), sulphate (more than 420 mg/l), and nitrate (more than 19.5 mg/l), as a result of direct domestic and industrial effluents.

Also, the water quality at Mid Al-Hayy, End Qalat Suker, End Rifai and End Naser stations during year 2017 was polluted, OIP (4 – 8, less than 11), during January, March, April, June, and July while it was slightly polluted, OIP (2 – 4, more than 3), during May, and October, and heavily polluted, OIP (8 – 16, less than 14), during December,2016, February,August, September, and November. According to OIP-WQI values, river water at these stations, clearly appear the unsuitability of water for human consumption. The comparatively high level of turbidity (> 130 NTU), total dissolved solid (> 980 mg/l), hardness (>620 mg/l), and sulfates (>430 mg/l), indicates the water is not suitable for domestic use without elaborate treatment. The Al-Gharraf River can be used for boating or other recreational activities because of the good dissolved oxygen concentration (>5 mg/l).

On the other hand, the water quality at stations of Entrance Qalat Suker, Entrance Rifai, and Entrance Naser, improved during May and July, to be acceptable, (OIP =2). The main reason for this improvement was decreasing of the values of total hardness (320 mg/l), total dissolved solids (528 mg/l), sulfates (205 mg/l), nitrate (6.5 mg/l) and turbidity (42 NTU).

The water quality for stations Mid Al-Shatrah, End Shatrah and Mid Al-Gharraf was classified as heavily polluted (OIP, more than 9) during year 2016-2017, except for End Al-Shatrah during December, 2016 (OIP=7), May,2017 (OIP= 5) and June,2017 (OIP= 7.5), where it was classified as polluted. The increase in OIP-WQI value in the three stations is a reflection of different types of pollutants entering its basin due to natural reasons and various anthropogenic activities such as discharge of untreated domestic sewage and runoff water from agricultural lands near the banks of the Al-Gharraf River.

Furthermore, no studies has been done on OIP-WQI related to Iraqi Rivers, but this the study is coincided with findings of Fulazzaky [10],found the OIP-WQI between 2-15 in Citarum River in Malaysia, which was classified as Acceptable to heavily polluted, Akkoyunlu and Akiner [11], found the OIP-WQI value between 6-17 in Sapanca Lake in Turkey, which was classified as polluted to heavily polluted, Rangeti et al., [12], found the OIP-WQ between 11-18 in Yamuna River in Indi, which was classified as heavily polluted, and Dede et al., [13],found OIP-WQI value between 3-8 in Kirmir River in Turkey, which was classified as Slightly polluted to polluted.

Figures-(2, 3, 4, 5 and 6): display the water quality index (WQI) for public uses according to Overall Index Pollution (OIP-WQI) for the twenty one stations along the Al-Gharraf River during the period from December, 2016 to November, 2017.

Figure 2-OIP-WQI at twenty one sampling stations on Al-Gharraf River during Winter.

Figure 3- OIP-WQI at twenty one sampling stations on Al-Gharraf River during Sprin

Figure 4- OIP-WQI at twenty one sampling stations on Al-Gharraf River during Summer.

Figure 5- OIP-WQI at twenty one sampling stations on Al-Gharraf River during Autumn.

Figure 6-Spatial distribution of OIP-WQI of the Al-Gharraf River during 2016-2017.

Conclusion

The results of the study revealed that the Al-Gharraf river water can be used for public consumption after the elaborate treatment. On other hand, the shortage of water in the river and discharge domestic sewage and runoff water from agricultural have negatively impacted on the quality of water. The study showed that application of OIP is a useful tool in assessing the overall quality of river. Therefore, water quality evaluating using OIP tool could help to assess and solve local and regional water quality related problems along river.

References

- 1. Al-Saffar, A. E. A. 2001. "Proposed Water Quality Management system for Tigris River", Ph.D, thesis, Civil Engineering, University of Baghdad, Iraq.
- 2. Asadollahfardi, G. 2015. Application of water quality indicess to define surface water quality in Tehran. *Int J Water*, 5(1): 51–69.
- **3.** Nikbakht, M. **2004**. "The Effect Assessment of Ahvaz No.1, 2 Water Treatment Plant on Karoon Water Quality", M.Sc. Thesis, Environmental Engineering Department Ahvaz: IA University.
- **4.** Giriyappanavar, B. S. and Patil, R. R. **2013.** Application of CCME WQI in Assessisng Water Quality for Fort Lake of Belgaum, Karnataka. *Indian J. of Appl. Rese.*,**3**(4). ISSN 2249-555X.
- 5. Shukla, K., A., Ojha, C.S.P. and Garg, R.D. 2017. Application of Overall Index of Pollution (OIP) for the Assessment of the Surface Water Quality in the Upper Ganga River Basin, India. *Water Science and Technology Library* 75, DOI 10.1007/978-3-319-55125-8_12.
- 6. Ban, X., Wu, Q., Pan, B., Du, Y. and Feng, Q. 2014. Application of composite water quality identification index on the water quality evaluation in spatial and temporal variations: a case study in Honghu Lake, China. *Environ. Monit. Assess.* **186**(7): 4237–4247.
- MOA&I 1991 Ministry of Agriculture and Irrigation Republic of Iraq, State Commission for Irrigation and Reclamation Projects, Al-Furat Center for Studies and Designs of Irrigation Projects, East Gharraf Project AL-Hai South Zone, Sector (A), irrigation & drainage system of the main canal and drainage pumping station, July 1991.
- **8.** APHA, AWWA and WFF **2005.** *Standard Methods for the Examination of Water and wastewater*, 21th ed., edited by Eaton, A. D American Water Work Association and Water Environment Federation, USA.
- **9.** Sargaonkar. A. and Deshpande, V. **2003.** Development of an Overall Index of Pollution for Surface Water Based on a General Classification Scheme in Indian Context, *Environ.Monit. and Assess..***89**(1): 43-67.
- **10.** Fulazzaky, M., A. **2010.** Water quality evaluation system to assess the status and the suitability of the Citarum river water to different uses. *Environ Monit Assess (2010)*,**168**: 669–684.
- **11.** Akkoyunlu, A. and Akiner, M.E. **2012.** 'Pollution evaluation in streams using water quality indices: a case study from Turkey's Sapanca Lake Basin', *Ecological Indicators, J.* **18**: 501–511.
- 12. Rangeti, I., Dzwairo, B., Barratt, G.J., Otieno, F.A.O. 2015. Ecosystem-specific water quality indices. Afr. J. Aquat. Sci. 40(3): 227–234.
- Dede, O., T., Telci L., T. and Aral M., M. 2017. The Use of Water Quality Index Models for the Evaluation of Surface Water Quality: A Case Study for Kirmir Basin, Ankara, Turkey. *Water Qual Expo Health*, 5(2): 41–56.