Iraqi Journal of Science, 2018, Vol. 59, No.1B, pp: 377-382 DOI: 10.24996/ijs.2018.59.1B.16

ISSN: 0067-2904

Essential-Small M-Projective Modules

Mehdi S. Abbas, Mohammad F. Manhal

Department of Mathematics, College of Science, AL- Mustansiriyah University, Baghdad, Iraq

Abstract

In this paper, we introduce the concept of e-small M-Projective modules as a generalization of M-Projective modules.

Keywords: e-small M-projective modules, M-projective modules

مقاسات جوهرية صغيرة اسقاطية من النمط-M

مهدى صادق عباس، محمد فرحان منهل

قسم الرياضيات، كلية العلوم، الجامعة المستنصرية، بغداد، العراق.

الخلاصة

في هذا البحث قدمنا مفهوم مقاسات جوهرية صغيرة اسقاطية من النمط-M كأعمام لمفهوم المقاسات الأسقاطية من النمط-M .

1. Introduction

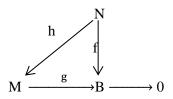
In this paper, all rings are associative and all modules are right and unitary. A submodule L of a module A is called small (for short L≪A) if L+K=A then K=A, for any submodule K of A, Rad(M) is the sum of all small submodules of A. A module A is called B-projective if for each epimorphism g: $B \longrightarrow N$ and each homomorphism $f : A \longrightarrow N$, there exists a homomorphism $h : A \longrightarrow B$ such that $g \circ h = f$. For the previous terminologies see [1]. A submodule N of A is called e-small in A (denoted by $N \ll_c A$) if N+L=A with L is essential submodule in A implies that N=A; Rad_c(A) is the sum of all e-small submodules of A. An epimorphism with e-small kernel is called e-small epimorphism [2]. In an indecomposable module, A proper submodule is e-small if and only if it is small [3]. A module M is said to be e-hollow if every proper submodule N of M is e-small [4].

2. e-small M-Projective

In this section, we introduce the concept of e-small M-projective modules and give some characterization of this concept.

Definition 2.1

A module N is called e-small M-projective, if there is a homomorphism h such that the following diagram commute.



^{*}Email: mf.alalawy@gmail.com

where g is an e-small epimorphism and f is a homomorphism.

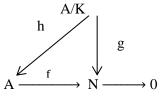
Clearly an M-projective module is e-small M-projective, but the reverse is not true in general.

Proposition 2.2 In an indecomposable module A the following are equivalent:

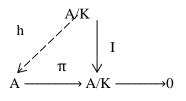
a. Rad(A)=(0).

b. A/K is an e-small A-projective module, where K is a nonzero proper submodule of A. Furthermore A/K can't be A-projective module.

Proof a \longrightarrow b Let Rad(A)=(0) and K is a nonzero proper submodule of A, consider the following diagram:

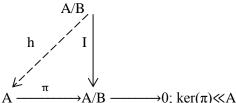


where f: A \longrightarrow N is an e-small epimorphism and g :A/K \longrightarrow N is a homomorphism. Since A is an indecomposable module. Then Rad_e(A) = Rad(A). By using (a) we get Rad_e(A)=0. Then ker(f)=0, hence f is an isomorphism. Define h: A/K \longrightarrow A by h=f⁻¹°g. So f°h=f°f⁻¹°g=I_N°g=g. Thus A/K is e-small A-projective which is not A-projective, since if A/K is A-projective, then we have the following commutative diagram:



Where $\pi \circ h = I$, thus π is split, therefore $A = K \oplus Im(h)$, which is a contradiction.

 $b \longrightarrow a$ Let B be a nonzero small submodule of A, by (b) we have the following commutative diagram:



Thus π is split, therefore A=B \oplus Im(h), but B \ll A, therefore A=Im(h) which means that B=(0), so Rad(A)=(0).

Example 2.3

Z as Z-module is indecomposable module and Rad(Z) = 0, by (2.2) Z_n is e-small Z-projective which is not Z-projective for each integer n > 1.

Proposition 2.4

Let U and M be modules. Then the following statements are equivalent:

a. U is an e-small M-projective module;

b. For every short exact sequence $0 \longrightarrow K \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0$, where g is e-small epimorphism, the sequence

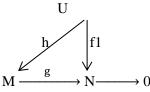
 $0 \xrightarrow{\text{Hom}(\text{I},\text{g})} \text{Hom}(\text{U}, \text{K}) \xrightarrow{\text{Hom}(\text{I},\text{f})} \text{Hom}(\text{U}, \text{M}) \xrightarrow{\text{Hom}(\text{I},\text{g})} \text{Hom}(\text{U}, \text{N}) \xrightarrow{\text{O}} 0$ is short exact;

c. For every e-small submodule K of M, every homomorphism

h: U \longrightarrow M/K factor through the epimorphism π : M \longrightarrow M/K.

Proof $a \rightarrow b$) It is enough to show that, Hom(I,g) is an epimorphism.

Let $f_1 \in Hom(U, N)$ and consider the following diagram:



Since g is an e-small epimorphism and U is an e-small M-projective module, there exists a homomorphism h:U \longrightarrow M such that goh=f₁.

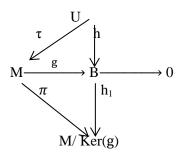
 $b \longrightarrow c$) Let K be an e-small submodule of M and let h:U $\longrightarrow M/K$ be an epimorphism. Consider the following exact sequence:

 $0 \longrightarrow K \xrightarrow{i} M \xrightarrow{\pi} M/K \longrightarrow 0$

where i is the inclusion homomorphism and π is the natural epimorphism.

By (b) the Hom(I, π):Hom(U, M) \longrightarrow Hom(U, M/K) is an epimorphism. This implies, the existence of a homomorphism $f \in Hom(U,M)$ such that $h = Hom(I,\pi)(f) = \pi \circ f$.

 $c \longrightarrow a$) Let g: M $\longrightarrow B$ be an e-small epimorphism and let h:U $\longrightarrow B$ be any homomorphism. Consider the following diagram:



where $\pi: M \longrightarrow M/\text{Ker}(g)$ is the natural epimorphism and $h_1:B \longrightarrow M/\text{Ker}(g)$ is the usual isomorphism. By (c), there exists a homomorphism $\tau: U \longrightarrow M$ such that $\pi \circ \tau = h_1 \circ h$. One can easily check that $h_1 \circ g = \pi$. Now, $h_1 \circ g \circ \tau = \pi \circ \tau = h_1 \circ h$. Thus $g \circ \tau = h$ since h_1 is an isomorphism. **Definition 2.5**

Let A and B be modules and $\Psi: A \longrightarrow B$ be an e-small epimorphism, Ψ is called e-small Mepimorphism, if there exists a homomorphism h: A $\longrightarrow M$, such that Ker(Ψ) \cap Ker(h)=(0). **Proposition 2.6**

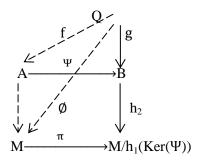
Let M, Q be modules, then the following are equivalent:

a. Q is e-small M-projective.

b. Given any e-small M-epimmorphism $\Psi: A \longrightarrow B$ and a homomorphism g: Q $\longrightarrow B$, there exists f: Q $\longrightarrow A$ such that $\Psi \circ f = g$.

Proof $a \rightarrow b$) Let $\Psi: A \rightarrow B$ be an e-small M-epimorphism and let

g: $Q \longrightarrow B$ be a homomorphism, consider the following diagram:

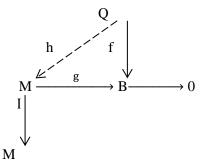


Since Ψ is e-small M-epimorphism, so, there exists a homomorphism

 h_1 : A → M such that Ker(Ψ)∩Ker(h_1)=(0), where π :M→M/ h_1 (Ker(Ψ)) is the natural epimorphism.

Define $h_2:B \longrightarrow M/h_1(Ker(\Psi))$ by $h_2(b)=h_1(a)+h_1(Ker(\Psi))$ Where $\Psi(a) = b$, for all $b \in B$. h_2 is homomorphism, by e-small M-projective of Q, there exists a homomorphism $\emptyset: Q \longrightarrow M$ such that $\pi \circ \emptyset = h_2 \circ g$. Define f: Q \longrightarrow A by $f(x) = a + a_1, a \in A \& a_1 \in \text{Ker}(\Psi)$. So $(\Psi \circ f)(x) = \Psi(f(x)) = \Psi(a+a_1) = \Psi(a) = g(x)$, thus $\Psi \circ f = g$.

 $b \rightarrow a$) Let g: M $\rightarrow B$ be an e-small epimophism and let f:Q $\rightarrow B$ be any homomorphism. Consider the following diagram:



g is an e-small M-epimorphism, since there exists the identity I: M ------ M such that $\text{Ker}(I) \cap \text{Ker}(g) = (0).$

By (b), there exists a homomorphism $h:Q \longrightarrow M$ such that $g \circ h=f$. **Corollary 2.7**

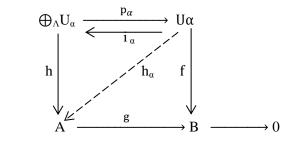
Let Q, M be modules. If Q is an e-small M-projective. Then any e-small M-epimorphism \rightarrow Q splits, where A is R-module. Moreover if A is indecomposable then g is isomorphism. g:A — 3. Some properties of e-small M-projective Modules

In this section we give some basic properties of e-small M-projective module

Proposition 3.1

Let A be a module and $\{U_{\alpha} \mid \alpha \in \Lambda\}$ be a family of modules. Then $\bigoplus_{\Lambda} U_{\alpha}$ is an e-samll Aprojective if and only if every $U\alpha$ is an e-small A-projective.

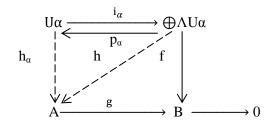
Proof \implies) Let $\bigoplus_{\Lambda} U_{\alpha}$ be an e-small A-projective and let $\alpha \in \Lambda$ consider the following diagram:



Where g: A \longrightarrow B is an e-small epimorphism, f: U_{α} \longrightarrow B is any homomorphism, p_{α} and i_{α} are the projection and injection homomorphisms respectively. Since $\bigoplus_{\Delta} U_{\alpha}$ is e-small Aprojective, then there exists a homomorphism h: $\bigoplus_{\Lambda} U_{\alpha} \longrightarrow A$ such that $g \circ h = f \circ p_{\alpha}$.

١

Define $h_{\alpha} : U_{\alpha} \longrightarrow A$ by $h_{\alpha} = h \circ i_{\alpha}$. So $g \circ h_{\alpha} = g \circ h \circ i_{\alpha} = f \circ p_{\alpha} \circ i_{\alpha} = f \circ I = f$. \iff) Let $g : A \longrightarrow B$ be an e-small epimorphism and let $f : \bigoplus_{\Lambda} U_{\alpha} \longrightarrow B$ be a homomorphism. For each $\alpha \in \Lambda$, consider the following diagram:



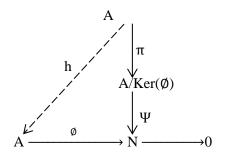
Where i_{α} and p_{α} are the injection and projection homomorphism, since U_{α} is e-small A-projective, for each $\alpha \in \Lambda$. Therefore there exists a homomorphism $h_{\alpha}: U_{\alpha} \longrightarrow A$, such that $g \circ h_{\alpha} = f \circ i_{\alpha}$ for each $\alpha \in \Lambda$.

Define h: $\bigoplus_{\Lambda} U_{\alpha} \longrightarrow A$ by $h(a) = \sum_{\alpha \in \Lambda} h_{\alpha} \circ p_{\alpha}(a)$, where $a \in A$, clearly $g \circ h = f$. Hence $\bigoplus_{\Lambda} U_{\alpha}$ is an e-small A-projective module.

Proposition 3.2

Let A be e-small A-projective module and let \emptyset :A \longrightarrow Nbe an e-small epimorphism, then there exists $h \in End(A)$ such that $h(Ker(\emptyset)) \leq Ker(\emptyset)$.

Proof : Let \emptyset : A \longrightarrow N be an e-small epimorphism, consider the following diagram :

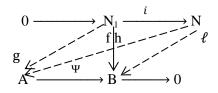


Where $\Psi : A/\text{Ker}(\emptyset) \longrightarrow N$ is the usual isomorphism defined by $\Psi(m+\text{ker}(\emptyset)) = \emptyset(m)$ for all $m \in A$ and π is the natural epimorphism. Since A is e-small A-projective module, there exists a homomorphism h: A \longrightarrow A such that $\emptyset \circ h = \Psi \circ \pi$. Now it is easy to show that $h(\text{Ker}(\emptyset)) \leq \text{Ker}(\emptyset)$. Recall that a submodule B of A is called A-cyclic submodule if it is the image of an element of End(A) [5].

Proposition 3.3

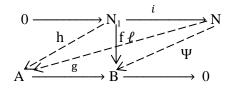
Let A, N be modules. If N is an e-small A-projective and every A-cyclic submodule of A is N-injective, then A is N-injective and every submodule of N is an e-small A-projective. The converse is true if A is e-hollow module.

Proof : Let N be an e-small A-projective and suppose that every A-cyclic submodule is N-injective. Since A is trivially A-cyclic, then A is N-injective. Let Ψ :A \longrightarrow B be a homomorphism, where N₁ is a submodule of N. consider the following diagram:



Where $i:N_1 \longrightarrow N$ is the inclusion homomorphism since B is A-cyclic module, thus by our hypothesis B is N-injective module. Therefore, there exists a homomorphism $\ell:N \longrightarrow B$ such that $\ell \circ i=f$, but N is an e-small A-projective module, so there exists a homomorphism $h: N_1 \longrightarrow A$ such that $\Psi \circ h = \ell$. Define g: $N_1 \longrightarrow A$ by $g = h \circ i$. Now, $\Psi \circ h \circ i = \ell \circ i=f$.

The converse holds if A is e-hollow. Suppose that A is N-injective and every submodule of N is an esmall A-projective. Thus N is an e-small A-projective module. Let B be A-cyclic submodule of A. Consider the following diagram:



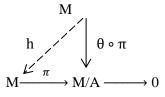
Where *i*: $N_1 \longrightarrow N$ is the inclusion homomorphism and $f:N_1 \longrightarrow B$ is any homomorphism and $g:A \longrightarrow B$ is the required epimorphism into B, since B is A-cyclic module. Clear that g is an e-small epimorphism. By the assumption, N_1 is an e-small A-projective module. Thus, there exists homomorphism $h:N_1 \longrightarrow A$ such that $g \circ h=f$, but A is N-injective, so there exists a homomorphism $\ell: \mathbb{N} \longrightarrow A$ such that $\ell \circ i = h$. Define $\Psi: \mathbb{N} \longrightarrow B$ by $\Psi = g \circ \ell$. Now, $\Psi \circ i = g \circ \ell \circ i = g \circ h = f$.

Recall that A submodule N of a module A is called small pseudo stable, if for any epimorphism $f:A \longrightarrow M$, and any small epimorphism $g:A \longrightarrow M$, with $N \le \ker(g) \cap \ker(f)$, there exists $h \in \operatorname{End}(A)$ such that $f = g \circ h$, then $h(N) \le N$ [6].

Proposition 3.4

If K is a small pseudo stable submodule of a module M, where M is e-small M-projective and A \ll K, then K/A is a small pseudo submodule of M/A.

Proof : Let $f:M/A \longrightarrow B$ be an e-small epimorphism and let $g:M/A \longrightarrow B$ be an epimorphism with $K/A \le \ker(f) \cap \ker(g)$, there exists $\theta \in \operatorname{End}(M/A)$ such that $g = f \circ \theta$.Let $\pi:M \longrightarrow M/A$ be the natural epimorphism. Consider the following diagram:



Since M is e-small M-projective, there exists a homomorphism h:M $\longrightarrow M$, such that $\pi \circ h = \theta \circ \pi$. Now $g \circ \pi = f \circ \theta \circ \pi = f \circ \pi \circ h$.

Hence $g \circ \pi(K) = g(K/A)=0$ and $f \circ \pi(K) = f(K/A) = 0$.

Therefore $K \leq \text{Ker}(g \circ \pi) \cap \text{ker}(f \circ \pi)$, but K is a small pseudo stable submodule of M. Hence h(K) $\leq K$. Now, $\theta(K/A) = \theta \circ \pi(K) = \pi \circ h(K) \leq \pi(K) = K/A$.

References

- 1. Wisbauer 1991. Foundations of Modules and Rings theory. Gordan and Breach Reading.
- 2. Zhou, Zhang, 2011. Small-Essential Submodules and Morita Duality. *Southeast Asian Bulletin of Mathematics*, 53: 1051-1062.
- 3. Inaam M. A., Hadi, Sameeah H. Aidi. 2015. On e-small submodules. *Ibn Al-Haitham Jour. For pure & Appl.Sci.* 28(3): 214-222.
- 4. Inaam M. A. Hadi, Sameeah H. Aidi. 2015. e-Hollow modules Inter. *Journal of Advanced Sci.* and Tec. Research, 3: 2245-9954
- 5. Sanh, N.V., Shum, K.P., S. Dhompong, S. and Wongwai, S. 1999. On Qausi-Principally Injective Modules. *Algebra Colloquium*, 6(3): 269-276.
- **6.** Bharadwaj, P.C. **2009.** Small Pseudo Projective Modules. *International Journal of Algebra*, **3**(6): 259-264.