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Abstract 

     A  -set in the projective line is a set of   projectively distinct points. From the 

fundamental theorem over the projective line, all  -sets are projectively equivalent. In 

this research, the inequivalent  -sets in          have been computed and each  -set 

classified to its      -sets where           Also, the          has been splitting 

into two distinct   -sets, equivalent and inequivalent. 
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 الخلاصة
من النقاط  الاسقاطية المختلفة. من المبرهنة الاساسية   في الخط الاسقاطي هي مجموعة من   -المجموعة     

الغير متكافئة   -هي متكافئة اسقاطيا. في هذا البحث، المجموعات 3-على الخط الاسقاطي، كل المجموعات
ي عندما       -صنف الى المجموعات   -قد تم حسابها وكل واحدة من المجموعة          ف

، متكافئة وغير 31 -قد تم فصلها الى مجموعتين من المجموعات          . كذلك، الخط         
 متكافئة.

 
1. Introduction 

     The structure of projective line over the finite field   ,        , has been studied by many 

mathemations for small  . In 1998, the results about        for        have been summarized by 

Hirschfeld in [1] where a full classification of           has been done by Sadeh in [2] and of           
has been done by Ali in [3]. In [4], Al-Seraje gave a full classification of           and gave the 

inequivalents  -sets only on          and          in [5, 6]. Al .Zangana in [7] studied the geometry of 

line of order nineteen and the conic, where a full classification and its application to error correcting 

codes have been given. Also, Al .Zangana using the relation between conic and projective line the 

spectrum sizes of  -sets on          are given as a direct results from this relation in [8]. 

The aim of this research  is to classify the projective line          and then splitting the line into two   -

sets some of them are equivalent and others are not. 
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2. Basic Definitions and Results 

A projective line         has      points which are one-dimensional subspaces of a two-dimensional 

vector space       over the finite field   of   elements. These points also can be represented by 

           ∈  .So, 

                 ∈               

Each point          with       is determined by the non-homogeneous coordinate      . The 

coordinate for        is infinity, so the points of         can be represented by the set  

                         ∈       

Definition 2.1[1] 

     A projectivity         has given by    non-singular matrix   matrix   , denoted by     , such 

that  

     , where  =(  ,  ),  =(  ,  ) and   [
  
  

] . If put     /  and      /  , then the 

projectivity can be written as an equation  

                 
Definition 2.2[1] 

     A  -set in the projective  line         is a set of   projectively distinct points. 

Theorem 2.3[1].(The Fundamental Theorem of Projective Geometry) 

     If {             and    
       

     are both subsets of         of cardinality     such that no 

    points chosen from the same set lie in a hyperplane, then there exists a unique projectivity   such 

that   
      for                

According to above theorem in the projective line, all  -sets are projectively equivalent. 

The following groups occur in this work and for more details about them see [9]. 

    Cyclic group of order  . 

    Klein 4- group which is the direct product of two copies of the cyclic group of order 2. 

    Symmetric group of degree  . 

    Alternating group of degree    
    Dihedral group of order                         
During this paper the notation SG-type is used for the stabilizer group type, No. for the number of 

reputation of that group and the symbol Ord    refers to order of group element  . 

Definition 2.4[1] 

     The cross-ratio  ={  ,  ;  ,   } of four ordered points             ∈         with coordinates   ,   

,   ,   is 

           λ ={  ,  ;  ,   }={  ,   ;      }=(     )(     )/(     )(     ). 

Lemma 2.5[1] 

     The Cross- ratio has the property that  

(i) λ={  ,  ;  ,   }={  ,  ;  ,   }={  ,  ;  ,   }={  ,  ;  ,   }. So, {  ,   ;   ,   } is invariant under a 

projective group of order four, given by 

{ , (    )(    ),(    )(    ),(    )(    )}≅  , 

(ii) the cross-ratio takes just six value under all 24 permutations of {  ,   ,   ,   },  

λ,  1/λ,  1−λ,  1/(1−λ) , (λ−1)/λ , λ/(λ−1), 

(iii) λ={  ,  ;  ,   }takes the values     or 1 if and only if two of them are equal, 

(iv) a projectivity  is determined by the images of three points. Therefore, there exists a projectivity 

       such that                  if and only if the cross-ratios of the two sets of four points in 

the corresponding order are equal. 

During this research, a  -set is called a triad, a4-sets is a tetrad, a  -set a pentad, a  -set a hexad, a  -set a 

heptad, an  -set an octad, a  -set a nonad, a   -set a decad. 

Definition 2.6[1] 

     Let λ be the cross ratio of a given order of a tetrad. The tetrad is called 

 (i) harmonic, denoted by  , if  =1   or           or        
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(ii) equianharmonic, denoted by  , if           or, equivalently, 

           
(iii) neither harmonic nor equianharmonic, denoted by  , if the cross-ratio is another value. 

Lemma 2.7[1] 

(i) The cross-ratio of any harmonic tetrad has the values         .  

(ii) The cross-ratio of a tetrad of type   satisfies the equation 

                         (1.1) 

     Therefore equianharmonic tetrads exist if and only if        has three solutions in    or      is 

a unique solution of (1.1) in   . 

In this research all tetrad containing the points  ,  , 1 because  

1- the value  ∞, 0, 1 cannot appear as the cross ratio of a tetrad whose four points are distinct, 

2- three distinct points in         are projectively equivalent. 

the cross-ratio  ={ ,        , it is  necessary to consider the elements   ∈        } and the 

corresponding tetrads            
Hence  there are three classes of tetrads: 

                      , 
                          
                           

Lemma 2.8[1] 

(i)  in        ,         ,  the number of harmonic tetrads    is  

          

and the stabilizer group  of each one is   . 

(ii) in        ,     mod   , the number of equianharmonic tetrads    is  

           

and the stabilizer group   of each one is   . 

(iii) The stabilizer group of any tetrads in    is of type   . 

3. Algorithms 

In this section, the algorithms that needed are described. Algorithm A describe the matrix transformation 

between two tetrads, Algorithm B describes the way to compute the inequivalent  -sets and Algorithm C 

describes the way to compute the stabilizer group of  -set. 

Algorithm A 

A projectivity        in         is given by the equation  

     , 

where          ,          ,        ,  ∈       ; that is,  

               , 

                                                                              
Since  any two triads are projective inequivalent  to find a projectivity maps  

      to         , 

      to         , 
      to         , 

the following procedure can be used.  

Let    ∈        and 

               , 
               . 
Then  

  (
      

      
). 

Also , there is  ∈       , such that               . This gives a non- homogeneous system 

(
    

    
) (

 
 )  (

   
   

), 
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and this system has a unique solution given by 
 

  
 

 

  
 

 

  
 

where 

   |
    

    
|     |

    
    

|     |
    

    
|   . 

Thus, 
  

 
  (

        

        
) 

and       .Therefore, the tetrad 

                                  
equivalent to 

                                         
if and only if 

                 ,  ∈       . 

Algorithm B 

Input:    

Output:    

1:        

2: for all A∈A_kdo          
3: for all      ∈                             
4if   CR(A)=CR(B) and  |S_A |=|S_B|    and                 then         is      -set types 

of    

5: Construct matrix transformation    from the tetrad     of   to tetrads    of   

6: if       for all   then 

7: Add   to     

8: end if 

9: end if 

10: end for 

11: end for 

Algorithm C. 

 

Let        be the set all distinct tetrads in a  -set   . 

Input:  

Output:   

1:      

4: for all  ∈       do 

5: Construct matrix transformation    from    ∈   to tetrads    
6: if     then 

7: Add    to     

8: end if 

9: end for 

4. Classification of The Projective Line          

     Lemma 2.5 turns out that among the (  
 
)        defrents tetrads in         , there are exactly five 

classes of tetrads as shown below: 

    the class of   tetrads}           for             ; 

    the class of  tetrads}          for         ; 

    the class of   tetrads}           for                      ; 

    the class of   tetrads}           for                     ; 
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    the class of   tetrads}          for                       .  

From Lemma2.6 deduced that |  |     , |  |     , |  |               . 

A  represented one has been chosen from each class as shown below. 

The tetrad                chosen from   . 

The tetrad               chosen from   . 

The tetrad               chosen from   . 

The tetrad                chosen from   . 

The tetrad                chosen from   . 

Theorem 4.1. On          , there are 

(i)  five projective  distinct tetrads, see Table-1, 

(ii) 8projectively distinct pentads, see Table-2, 

(iii) 28projectively distinct hexads, see Table-3, 

(iv) 54projectively distinct heptads, see Table -4, 

(v) 131 projectively distinct octads, see Table-5, 

(vi) 225projectively distinct nonads , see Table-6, 

(vii) 398 projectively distinct decads , see Table-7, 

 (viii) 531 projectively distinct t 11-sets, see Table-8, 

(ix) 692 projectively distinct 12- sets, see Table-9, 

(x) 714 projectively distinct 13- sets, see Table-10. 

 

  Table 1- Distinct tetrads on          

Type The tetrads SG-type 

  { ,0,1,   }    〈                         〉 

  {        }    ⟨(     )     ⟩ 

   {       }    ⟨                    )⟩ 

   {             ⟨                      ⟩ 

   {             ⟨                     ⟩ 

 

  Table 2-Inequivalent pentads 

Type The pentads SG-type 

           ,   ,  }       〈                    〉 

     ,0 ,1  ,   , }   

         ,   ,  }    〈             〉 

         ,   ,  }   

            ,  }    〈    〉 

            ,  }    〈                    〉 

            ,  }    〈    〉 

           ,  }    〈         〉 
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  Table 3-Inequivalent of hexads 

Type The hexad Type of pentads SG-type 

   {                }                 〈          〉 

   {            , }                

   {              }                 〈                  〉 

   {              }                

   {              }               

   {              }                 =〈             〉 

   {              }                 〈                〉 

   {              }                 〈               〉 

   {              }                 〈                 〉 

    {               }                 〈                〉 

    {               }              
   〈               

          〉 

    {               }                 〈        〉 

    {               }                

    {               }                

    {               }                  〈               〉 

    {               }                

    {               }                  〈              〉 

    {               }                

    {               }                 〈                    〉 

    {               }                 〈               〉 

    {               }                 〈                   〉 

    {                }                 〈                    〉 

    {                }                 〈         〉 

    {                }                 〈        〉 

    {                }                 〈                〉 

    {                }                 〈             〉 

    {              }                 〈                    〉 

    {              }              
   〈            

               〉 
 

  Table 4-Stabilizer group type of heptads 

SG-type No. 

  32 

   18 

   3 

   1 
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  Table 5-Stabilizer group type of octads 

SG-type No. 

  78 

   39 

   8 

   2 

   1 

   1 

   1 

   1 

 

  Table 6-Stabilizer group type of nonads 

SG-type No. 

  180 

   37 

   3 

   1 

   1 

   1 

 

  Table 7-Stabilizer group type of decads 

SG-type No. 

  294 

   2 

   6 

   10 

   2 

   1 

   1 

   1 

 

  Table 8-tabilizer group type of   - sets 

SG-type No. 

  463 

   62 

   2 

   3 

   1 

  

 Table 9-Stabilizer group type of   - sets 

SG-type No. 

  559 

   110 

   2 

   15 

   3 

   1 

    2 
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  Table 10-Stabilizer group type of 13- sets 

SG-type No. 

  626 

   74 

   8 

   1 

    1 

   3 

    1 

      

     In the following examples, some  -sets have been chosen where          with unique largest size 

of stabilizer group. 

Example 4.2 

(i) There is unique nonads                               with stabilizer group of type    as given 

below. 

              
(ii) There is a unique decad 

                                 with  stabilizer group of type  

                            . 

(iii) There is a uniqe11-set 

                                    with stabilizer group of type 

           ,                    . 

(vi) There is a uniqe12-set  

                                         with  stabilizer group of type 

                                         . 

(iv) There is a unique 13-set 

                                            with stabilizer group of type 

                         . 

5. Splitting  

Each 13-set    and its complement   
 splitting         . The stabilizer group     of    also fixes the 

complement   
 . If           split into two 13-sets         

  , then the stabilizer group of the 

partition   is as follows. 

(i) If    projectively inequivalent to its complement   
 , then    

  is     and     the stabilizer group of the 

splitting is also    . 

(ii) If     projectively equivalent to its complement   
  then the stabilizer group of the splitting is    

union of all linear transformation between    and  
 . In this case, the stabilizer of the splitting generated 

always by two element one of them belong to    and other is projectivity between    and  
 . 

Theorem 5.1 

     The projective line          has 

(i) 158 projectively distinct partitions into two equivalent 13-sets(  ).  

(ii) 556 projectively distinct partition into inequivalent 13-sets (   ). 

The partitions details are given in the following table. 
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  Table 11-Partition of           into two 13-sets 

      ≅   
       {     

 } 

   :120   :506 

  :26   :48 

  :6   :2 

  :3  

  :1  

   :1  

   :1  

     The group     has one element of order 1, 27 element of order 2, 12 element of order 13, 12 element 

of order 26. 

Example 5.2 

(i) The unique 13-set                                              which has stabilizer group of 

type    〈                 ⁄ 〉  formed with its complement 

   
                                                     splitting as  the projective line such 

that    ≅    
 . The projective equation which maps    to    

  is given as follows. 

        

     
  

This splitting has stabilizer group of type    is generated by the following two elements: 

  
       

      
   

        

     
  

(ii) The 13-set                                              has stabilizer group of type 

  formed with its complement     
                                                     splitting  

the projective line such that        
   

Here    is generated by the element 
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