AL-Zangana and Shehab

Iraqi Journal of Science, 2018, Vol. 59, No.1B, pp: 360-368 DOI: 10.24996/ijs.2018.59.1B.14

ISSN: 0067-2904

Classification of k-Sets in PG(1, 25), for k = 4, ..., 13

Emad Bakr AL-Zangana, Elaf Abdul Satar Shehab*

Department of Mathematics, College of Science, Mustansiriyah University, Baghdad, Iraq.

Abstract

A *k*-set in the projective line is a set of *k* projectively distinct points. From the fundamental theorem over the projective line, all 3-sets are projectively equivalent. In this research, the inequivalent *k*-sets in PG(1,25) have been computed and each *k*-set classified to its (k - 1)-sets where k = 5, ..., 13. Also, the PG(1,25) has been splitting into two distinct 13-sets, equivalent and inequivalent.

Keywords: Projective line, *k*-set.

 $k=4,\ldots,13$ تصنيف المجاميعk في PG(1,25) عندما k

عماد بكر الزنكنة، ايلاف عبدالستار شهاب* قسم الرياضيات، كلية العلوم، الجامعة المستنصرية، بغداد، العراق.

الخلاصة

1. Introduction

The structure of projective line over the finite field F_q , PG(1,q), has been studied by many mathemations for small q. In 1998, the results about PG(1,q) for $2 \le q \le 13$ have been summarized by Hirschfeld in [1] where a full classification of PG(1,11) has been done by Sadeh in [2] and of PG(1,13)has been done by Ali in [3]. In [4], Al-Seraje gave a full classification of PG(1,17) and gave the inequivalents k-sets only on PG(1,16) and PG(1,23) in [5, 6]. Al .Zangana in [7] studied the geometry of line of order nineteen and the conic, where a full classification and its application to error correcting codes have been given. Also, Al .Zangana using the relation between conic and projective line the spectrum sizes of k-sets on PG(1,23) are given as a direct results from this relation in [8].

The aim of this research is to classify the projective line PG(1,25) and then splitting the line into two 13-sets some of them are equivalent and others are not.

^{*}Email: elafalani89@gmail.com

2. Basic Definitions and Results

A projective line PG(1,q) has q + 1 points which are one-dimensional subspaces of a two-dimensional vector space V(3,q) over the finite field F_q of q elements. These points also can be represented by $P(t_0,t_1), t_i \in F_q$. So,

$$PG(1,q) = \{P(t,1) \mid t \in F_a\} \cup \{P(1,0)\}.$$

Each point $P(t_0, t_1)$ with $t_0 \neq 0$ is determined by the non-homogeneous coordinate t_0/t_1 . The coordinate for P(1,0) is infinity, so the points of PG(1,q) can be represented by the set

$$F_q \cup \{\infty\} = \{\infty, \lambda_1, \lambda_2, \dots, \lambda_q \mid \lambda_i \in F_q \}.$$

Definition 2.1[1]

A projectivity PG(1,q) has given by 2×2 non-singular matrix A matrix F_q , denoted by M(A), such that

Y = AX, where $X = (x_0, x_1)$, $Y = (y_0, y_1)$ and $A = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$. If put $s = y_0/y_1$ and $t = x_0/x_1$, then the projectivity can be written as an equation

$$s = (at+b)/(ct+d).$$

Definition 2.2[1]

A k-set in the projective line PG(1, q) is a set of k projectively distinct points.

Theorem 2.3[1].(The Fundamental Theorem of Projective Geometry)

If $\{P_0, ..., P_{n+1}\}$ and $\{P'_0, ..., P'_{n+1}\}$ are both subsets of PG(n, q) of cardinality n + 2 such that no n + 1 points chosen from the same set lie in a hyperplane, then there exists a unique projectivity τ such that $P'_i = P_i \tau$ for i = 0, 1, ..., n + 1.

According to above theorem in the projective line, all 3-sets are projectively equivalent.

The following groups occur in this work and for more details about them see [9].

 Z_n = Cyclic group of order n.

 V_4 = Klein 4- group which is the direct product of two copies of the cyclic group of order 2.

 S_n = Symmetric group of degree n.

 A_n = Alternating group of degree n.

 D_n = Dihedral group of order $2n = \langle r, s | r^n = s^2 = (rs)^2 = 1 \rangle$.

During this paper the notation SG-type is used for the stabilizer group type, No. for the number of reputation of that group and the symbol Ord(g) refers to order of group element g.

Definition 2.4[1]

The cross-ratio $\lambda = \{P_1, P_2; P_3, P_4\}$ of four ordered points $P_1, P_2, P_3, P_4 \in PG(1, q)$ with coordinates t_1, t_2, t_3, t_4 is

$$\lambda = \{P_1, P_2; P_3, P_4\} = \{t_1, t_2; t_3, t_4\} = (t_1 - t_3)(t_2 - t_4)/(t_1 - t_4)(t_2 - t_3).$$

Lemma 2.5[1]

The Cross- ratio has the property that

(i) $\lambda = \{t_1, t_2; t_3, t_4\} = \{t_2, t_1; t_4, t_3\} = \{t_3, t_4; t_1, t_2\} = \{t_4, t_3; t_2, t_1\}$. So, $\{P_1, P_2; P_3, P_4\}$ is invariant under a projective group of order four, given by

 $\{I, (P_1P_2)(P_3P_4), (P_1P_3)(P_2P_4), (P_1P_4)(P_2P_3)\} \cong V_4,$

(ii) the cross-ratio takes just six value under all 24 permutations of $\{P_1, P_2, P_3, P_4\}$,

 λ , $1/\lambda$, $1-\lambda$, $1/(1-\lambda)$, $(\lambda-1)/\lambda$, $\lambda/(\lambda-1)$,

(iii) $\lambda = \{t_1, t_2; t_3, t_4\}$ takes the values ∞ , 0 or 1 if and only if two of them are equal,

(iv) a projectivity is determined by the images of three points. Therefore, there exists a projectivity T = M(A) such that $Q_i = P_i A$, i = 1,2,3,4 if and only if the cross-ratios of the two sets of four points in the corresponding order are equal.

During this research, a 3-set is called a triad, a4-sets is a tetrad, a 5-set a pentad, a 6-set a hexad, a 7-set a heptad, an 8-set an octad, a 9-set a nonad, a 10-set a decad.

Definition 2.6[1]

Let λ be the cross ratio of a given order of a tetrad. The tetrad is called (i) harmonic, denoted by *H*, if $\lambda = 1/\lambda$ or $\lambda = \lambda/(\lambda - 1)$ or $\lambda = 1 - \lambda$; (ii) equianharmonic, denoted by E, if $\lambda = 1/(1 - \lambda)$ or, equivalently, $\lambda = (\lambda - 1)/\lambda;$

(iii) neither harmonic nor equianharmonic, denoted by N, if the cross-ratio is another value. Lemma 2.7[1]

(i) The cross-ratio of any harmonic tetrad has the values -1, 2, 1/2.

(ii) The cross-ratio of a tetrad of type E satisfies the equation

 $\lambda^2 + \lambda + 1 = 0.$ (1.1)

Therefore equianharmonic tetrads exist if and only if $\lambda^3 + 1 = 0$ has three solutions in F_q or $\lambda = -1$ is a unique solution of (1.1) in F_a .

In this research all tetrad containing the points ∞ , 0, 1 because

1- the value ∞ , 0, 1 cannot appear as the cross ratio of a tetrad whose four points are distinct,

2- three distinct points in PG(1, q) are projectively equivalent.

the cross-ratio $\lambda = \{\infty, 0; 1, t\} = t$, it is necessary to consider the elements $t \in F_q/\{0, 1\}$ and the corresponding tetrads { ∞ , 0, 1, *t*}.

Hence there are three classes of tetrads:

 $\chi_1 = \{ \text{tetrads of type } H \},\$

$$\chi_2 = \{ \text{tetrads of type } E \}, \\ \chi_3 = \{ \text{tetrads of type } N \}.$$

Lemma 2.8[1]

(i) in PG(1,q), $q = p^h$, p > 3, the number of harmonic tetrads n_H is

$$q(q^2-1)/8$$

and the stabilizer group G of each one is D_4 .

(ii) in PG(1, q), $q \equiv 1 \pmod{3}$, the number of equianharmonic tetrads n_E is

$$q(q^2 - 1)/12$$

and the stabilizer group G of each one is A_4 .

(iii) The stabilizer group of any tetrads in χ_3 is of type V_4 .

3. Algorithms

In this section, the algorithms that needed are described. Algorithm A describe the matrix transformation between two tetrads, Algorithm **B** describes the way to compute the inequivalent k-sets and Algorithm **C** describes the way to compute the stabilizer group of k-set.

Algorithm A

A projectivity $\mathcal{T} = M(A)$ in PG(1,q) is given by the equation tY = XA, where $Y = (y_0, y_1), X = (x_0, x_1), A = (t_{ij}), t \in F_a \setminus \{0\}$; that is, $x_0 t_{00} + x_1 t_{10} = t y_0,$

$$x_1 t_{10} + x_2 t_{11} = ty$$

Since any two triads are projective inequivalent to find a projectivity maps

P(1,0) to $P(a_0, a_1)$, P(0,1)to $P(b_0, b_1)$, P(1,1) to $P(c_0, c_1)$, the following procedure can be used. Let $\alpha, \rho \in F_q \setminus \{0\}$ and $(1,0)A = \alpha(a_0, a_1),$ $(0,1)A = \rho(b_0, b_1).$ Then $A = \begin{pmatrix} \alpha a_0 & \alpha a_1 \\ \rho b_0 & \rho b_1 \end{pmatrix}.$ Also, there is $\gamma \in F_q \setminus \{0\}$, such that $(1,1)A = \gamma(c_0, c_1)$. This gives a non-homogeneous system $\begin{pmatrix} a_0 & b_0 \\ a_1 & b_1 \end{pmatrix} \begin{pmatrix} \alpha \\ \rho \end{pmatrix} = \begin{pmatrix} \gamma c_0 \\ \gamma c_1 \end{pmatrix},$

and this system has a unique solution given by

$$\frac{\alpha}{D_1} = \frac{\rho}{D_2} = \frac{\gamma}{D_3}$$

where

 $D_1 = \begin{vmatrix} c_0 & b_0 \\ c_1 & b_1 \end{vmatrix}$, $D_2 = \begin{vmatrix} a_0 & c_0 \\ a_1 & c_1 \end{vmatrix}$, $D_3 = \begin{vmatrix} a_0 & b_0 \\ a_1 & b_1 \end{vmatrix} \neq 0$. Thus, $\frac{D_3}{\nu}A = \begin{pmatrix} D_1a_0 & D_1a_1\\ D_2b_0 & D_2b_1 \end{pmatrix}$ and $\tau = M(A)$. Therefore, the tetrad $K = \{P(1,0), P(0,1), P(1,1), P(k_0, k_1)\}$ equivalent to $K^* = \{P(a_0, a_1), P(b_0, b_1), P(c_0, c_1), P(d_0, d_1)\}$ if and only if $(k_0, k_1)A = t(d_0, d_1), t \in F_q \setminus \{0\}.$ Algorithm **B Input:** A_k **Output:** Λ_k 1: $A_{k+1} = \emptyset$ 2: for all AEA_kdo 3: for all $B \neq A \in A_k do$ 4if CR(A)=CR(B) and $|S_A|=|S_B|$ and Clas(A) = Clas(B) then Clas(H) is (k-1)-set types of H 5: Construct matrix transformation T_i from the tetrad t^* of A to tetrads t_i of B 6: if $AT_i \nleftrightarrow B$ for all *i* then 7: Add *B* to Λ_k 8: end if 9: end if 10: end for 11: end for

Algorithm C.

Let Par(A) be the set all distinct tetrads in a k-set A.

Input:A

Output:S_A

- 1: $S_A = \emptyset$
- 4: for all $t_i \in Par(A)$ do
- 5: Construct matrix transformation T_i from $t^* \in A$ to tetrads t_i
- 6: **if** $AT_i \rightarrow A$ **then**
- 7: Add T_i to S_A

8: end if

9: end for

4. Classification of The Projective Line PG(1, 25)

Lemma 2.5 turns out that among the $\binom{26}{4}$ = 14950 defrents tetrads in *PG*(1,25), there are exactly five classes of tetrads as shown below:

 $M_1 = \{\text{the class of } H \text{ tetrads}\} \{\infty, 0, 1, a\} \text{ for } a = \beta^6, \beta^{12}, \beta^{18};$

- $M_2 = \{\text{the class of Etetrads}\}\{\infty, 0, 1, b\} \text{ for } b = \beta^4, \beta^{20};$
- $M_3 = \{\text{the class of } N_1 \text{tetrads} \} \{\infty, 0, 1, c\} \text{ for } c = \beta, \beta^5, \beta^8, \beta^{16}, \beta^{19}, \beta^{23}; \}$
- $M_4 = \{\text{the class of } N_2 \text{tetrads} \} \{\infty, 0, 1, d\} \text{ for } d = \beta^2, \beta^{11}, \beta^{13}, \beta^{21}, \beta^{22}; \}$

 $M_5 = \{\text{the class of } N_3 \text{tetrads}\}\{\infty, 0, 1, e\} \text{ for } e = \beta^7, \beta^9, \beta^{15}\beta^{14}, \beta^{10}, \beta^{17}.$ From Lemma 2.6 deduced that $|M_1| = 1950$, $|M_2| = 1300$, $|M_3| = |M_4| = |M_5| = 3900$. A represented one has been chosen from each class as shown below. The tetrad $H = \{\infty, 0, 1, \beta^{12}\}$ chosen from M_1 . The tetrad $E = \{\infty, 0, 1, \beta^4\}$ chosen from M_2 . The tetrad $N_1 = \{\infty, 0, 1, \beta\}$ chosen from M_3 . The tetrad $N_2 = \{\infty, 0, 1, \beta^2\}$ chosen from M_4 . The tetrad $N_3 = \{\infty, 0, 1, \beta^7\}$ chosen from M_5 . **Theorem 4.1.** On PG(1,25), there are (i) five projective distinct tetrads, see Table-1, (ii) 8projectively distinct pentads, see Table-2, (iii) 28projectively distinct hexads, see Table-3, (iv) 54projectively distinct heptads, see Table -4, (v) 131 projectively distinct octads, see Table-5, (vi) 225projectively distinct nonads, see Table-6, (vii) 398 projectively distinct decads, see Table-7, (viii) 531 projectively distinct t 11-sets, see Table-8, (ix) 692 projectively distinct 12- sets, see Table-9, (x) 714 projectively distinct 13- sets, see Table-10.

Table 1- Distinct tetrads on PG(1,25)

Туре	The tetrads	SG-type	
Турс		50-type	
Н	$\{\infty, 0, 1, \beta^{12}\}$	$D_4 = \langle (\beta^{12}t + \beta^{12})/(t + \beta^{12}), 1/\beta^{12}t \rangle$	
Ε	$\{\infty, 0, 1, \beta^4\}$	$A_4 = \langle (\beta^8 t + 1), \beta^4 / t \rangle$	
N ₁	$\{\infty, 0, 1, \beta\}$	$V_4 = \langle \beta/t, (\beta^{12}t+1)/(\beta^{11}t+1) \rangle$	
<i>N</i> ₂	$\{\infty, 0, 1, \beta^2\}$	$V_4 = \langle \beta^2 / t, (\beta^{12}t + 1) / (\beta^{10}t + 1) \rangle$	
N ₃	$\{\infty, 0, 1, \beta^7\}$	$V_4 = \langle \beta^7/t, (\beta^{12}t+1)/(\beta^5t+1) \rangle$	

Table 2-Inequivalent pentads

Туре	The pentads	SG-type
\mathcal{P}_1	$\{\infty$,0,1 , β^{12} , $\beta^{6}\}$	$Z_5 \rtimes Z_4 = \langle 1/(t+\beta^{12}), (t\beta^{18}+\beta^{12}) \rangle$
\mathcal{P}_2	$\{\infty, 0, 1, \beta^{12}, \beta\}$	Ι
\mathcal{P}_3	$\{\infty, 0, 1, \beta^{12}, \beta^2\}$	$Z_2 = \langle (t+1)/(t+\beta^{12}) \rangle$
\mathcal{P}_4	$\{\infty, 0, 1, \beta^{12}, \beta^3\}$	Ι
\mathcal{P}_5	$\{\infty, 0, 1, \beta^4, \beta^2\}$	$Z_2 = \langle \beta^4/t \rangle$
\mathcal{P}_6	$\{\infty, 0, 1, \beta^4, \beta^5\}$	$S_3 = \langle (\beta^8 t + 1), \beta^5 t / (t + \beta^{17}) \rangle$
\mathcal{P}_7	$\{\infty, 0, 1, \beta, \beta^2\}$	$Z_2 = \langle \beta^2 / t \rangle$
\mathcal{P}_8	$\{\infty, 0, 1, \beta, \beta^8\}$	$Z_2 = \langle t/(t+\beta^{12}) \rangle$

Туре	The hexad	Type of pentads	SG-type
	$\{\infty, 0, 1, \beta^{12}, \beta^6, \beta^{18}\}$		$S_5 = \langle (t+1), \beta^{12} t \rangle$
H_1		$\begin{array}{c} \mathcal{P}_1 \mathcal{P}_1 \mathcal{P}_1 \mathcal{P}_1 \mathcal{P}_1 \mathcal{P}_1 \end{array}$	
<i>H</i> ₂	$\{\infty, 0, 1, \beta^{12}, \beta^{6}, \beta\}$	$\mathcal{P}_1 \mathcal{P}_2 \mathcal{P}_2 \mathcal{P}_4 \mathcal{P}_4 \mathcal{P}_3$	
<i>H</i> ₃	$\{\infty, 0, 1, \beta^{12}, \beta, \beta^2\}$	$\mathcal{P}_2 \mathcal{P}_3 \mathcal{P}_7 \mathcal{P}_2 \mathcal{P}_7 \mathcal{P}_3$	$Z_2 = \langle \beta^{12}(t+1)/(\beta^{11}t+1) \rangle$
H_4	$\{\infty, 0, 1, \beta^{12}, \beta, \beta^3\}$	$\mathcal{P}_2\mathcal{P}_4\mathcal{P}_7\mathcal{P}_3\mathcal{P}_4\mathcal{P}_8$	I
H_5	$\{\infty, 0, 1, \beta^{12}, \beta, \beta^4\}$	$\mathcal{P}_2\mathcal{P}_4\mathcal{P}_4\mathcal{P}\mathcal{P}_8\mathcal{P}_3$	I
<i>H</i> ₆	$\{\infty, 0, 1, \beta^{12}, \beta, \beta^5\}$	$\mathcal{P}_2\mathcal{P}_2\mathcal{P}_6\mathcal{P}_4\mathcal{P}_6\mathcal{P}_4$	$Z_2 = \langle (t+1)/(t+\beta^{12}) \rangle$
<i>H</i> ₇	$\{\infty, 0, 1, \beta^{12}, \beta, \beta^7\}$	$\mathcal{P}_2\mathcal{P}_2\mathcal{P}_4\mathcal{P}_4\mathcal{P}_4\mathcal{P}_4$	$Z_2 = \langle (t+\beta^{12})/\beta^{12}(t+1) \rangle$
H ₈	$\{\infty, 0, 1, \beta^{12}, \beta, \beta^8\}$	$\mathcal{P}_2\mathcal{P}_4\mathcal{P}_8\mathcal{P}_4\mathcal{P}_2\mathcal{P}_8$	$Z_2 = \langle (\beta^{12}t + \beta^8)/(t+1) \rangle$
H ₉	$\{\infty, 0, 1, \beta^{12}, \beta, \beta^9\}$	$\mathcal{P}_2\mathcal{P}_4\mathcal{P}_2\mathcal{P}_7\mathcal{P}_7\mathcal{P}_4$	$Z_2 = \langle (\beta^{12}t+1)/(\beta^{11}t+1)\rangle$
<i>H</i> ₁₀	$\{\infty, 0, 1, \beta^{12}, \beta, \beta^{10}\}$	$\mathcal{P}_2\mathcal{P}_3\mathcal{P}_8\mathcal{P}_3\mathcal{P}_8\mathcal{P}_2$	$Z_2 = \langle (t+1)/(\beta^{14}t+\beta^{12})\rangle$
<i>H</i> ₁₁	$\{\infty,0,1,\beta^{12},\beta,\beta^{11}\}$	$\mathcal{P}_2\mathcal{P}_2\mathcal{P}_2\mathcal{P}_2\mathcal{P}_2\mathcal{P}_2\mathcal{P}_2$	$S_{3} = \langle (\beta^{11}(t+1)/(\beta^{11}t + 1), 1/\beta^{12}t \rangle$
<i>H</i> ₁₂	$\{\infty, 0, 1, \beta^{12}, \beta, \beta^{13}\}$	$\mathcal{P}_2\mathcal{P}_2\mathcal{P}_2\mathcal{P}_2\mathcal{P}_2\mathcal{P}_8\mathcal{P}_8$	$V_4 = \langle \beta^{12} t, \beta/t \rangle$
<i>H</i> ₁₃	$\{\infty, 0, 1, \beta^{12}, \beta, \beta^{14}\}$	$\mathcal{P}_2\mathcal{P}_3\mathcal{P}_2\mathcal{P}_7\mathcal{P}_2\mathcal{P}_8$	1
<i>H</i> ₁₄	$\{\infty, 0, 1, \beta^{12}, \beta, \beta^{15}\}$	$\mathcal{P}_2\mathcal{P}_4\mathcal{P}_8\mathcal{P}_5\mathcal{P}_6\mathcal{P}_8$	Ι
H ₁₅	$\{\infty, 0, 1, \beta^{12}, \beta, \beta^{16}\}$	$\mathcal{P}_2\mathcal{P}_4\mathcal{P}_2\mathcal{P}_5\mathcal{P}_4\mathcal{P}_5$	$Z_2 = \langle (t + \beta^{13})/(t + \beta^{12}) \rangle$
H ₁₆	$\{\infty, 0, 1, \beta^{12}, \beta, \beta^{20}\}$	$\mathcal{P}_2\mathcal{P}_4\mathcal{P}_6\mathcal{P}_7\mathcal{P}_7\mathcal{P}_5$	Ι
H ₁₇	$\{\infty,0,1,\beta^{12},\beta,\beta^{21}\}$	$\mathcal{P}_2\mathcal{P}_4\mathcal{P}_4\mathcal{P}_5\mathcal{P}_2\mathcal{P}_5$	$Z_2 = \langle (t + \beta^9) / (t + \beta^{12}) \rangle$
H ₁₈	$\{\infty, 0, 1, \beta^{12}, \beta, \beta^{22}\}$	$\mathcal{P}_2\mathcal{P}_3\mathcal{P}_7\mathcal{P}_5\mathcal{P}_8\mathcal{P}_5$	Ι
<i>H</i> ₁₉	$\{\infty,0,1,\beta^{12},\beta,\beta^{23}\}$	$\mathcal{P}_2\mathcal{P}_2\mathcal{P}_7\mathcal{P}_7\mathcal{P}_2\mathcal{P}_2$	$V_4 = \langle 1/t, (\beta t + \beta^{12})/(t + \beta^{13}) \rangle$
H ₂₀	$\{\infty,0,1,\beta^{12},\beta^2,\beta^4\}$	$\mathcal{P}_3\mathcal{P}_4\mathcal{P}_5\mathcal{P}_4\mathcal{P}_3\mathcal{P}_5$	$Z_2 = \langle (\beta^{12}t + \beta^4)/(t+1) \rangle$
H ₂₁	$\{\infty,0,1,\beta^{12},\beta^2,\beta^9\}$	$\mathcal{P}_3\mathcal{P}_4\mathcal{P}_5\mathcal{P}_3\mathcal{P}_4\mathcal{P}_5$	$Z_2 = \langle (\beta^{10}t+1)/(\beta^{22}t+\beta^{22}) \rangle$
H ₂₂	$\{\infty, 0, 1, \beta^{12}, \beta^2, \beta^{10}\}$	$\mathcal{P}_3\mathcal{P}_3\mathcal{P}_4\mathcal{P}_4\mathcal{P}_4\mathcal{P}_4$	$V_4 = \langle 1/\beta^{12}t, (t+1)/(t+\beta^{12}) \rangle$
H ₂₃	$\{\infty, 0, 1, \beta^{12}, \beta^2, \beta^{14}\}$	$\mathcal{P}_3\mathcal{P}_3\mathcal{P}_3\mathcal{P}_3\mathcal{P}_3\mathcal{P}_5\mathcal{P}_5$	$V_4 = \langle \beta^{12} t, \beta^2 / t \rangle$
H ₂₄	$\{\infty, 0, 1, \beta^{12}, \beta^2, \beta^{15}\}$	$\mathcal{P}_4\mathcal{P}_4\mathcal{P}_4\mathcal{P}_4\mathcal{P}_6\mathcal{P}_6$	$V_4 = \langle \beta^2 t, \beta^3 / t \rangle$
H ₂₅	$\{\infty, 0, 1, \beta^{12}, \beta^2, \beta^{16}\}$	$\mathcal{P}_4 \mathcal{P}_4 \mathcal{P}_7 \mathcal{P}_5 \mathcal{P}_5 \mathcal{P}_7$	$Z_2 = \langle (t+\beta^{12})/\beta^{12}(t+1) \rangle$
H ₂₆	$\{\infty, 0, 1, \beta^{12}, \beta^2, \beta^{20}\}$	$\mathcal{P}_4\mathcal{P}_4\mathcal{P}_5\mathcal{P}_8\mathcal{P}_5\mathcal{P}_8$	$Z_2 = \langle (t+1)/(t+\beta^{12}) \rangle$
H ₂₇	$\{\infty, 0, 1, \beta, \beta^2, \beta^{13}\}$	$\mathcal{P}_7 \mathcal{P}_7 \mathcal{P}_7 \mathcal{P}_7 \mathcal{P}_7 \mathcal{P}_7 \mathcal{P}_7$	$S_3 = \langle (\beta^4 t + 1)/(\beta^3 t + 1), \beta^3/t \rangle$
H ₂₈	$\{\infty,0,1,\beta,\beta^8,\beta^{15}\}$	$\mathcal{P}_8\mathcal{P}_8\mathcal{P}_8\mathcal{P}_8\mathcal{P}_8\mathcal{P}_8\mathcal{P}_8$	$\begin{split} S_3 &= \langle 1/\beta^6(t+\beta^3), \\ (t+\beta^{13})/(t+\beta^{12}) \rangle \end{split}$

Table 3-Inequivalent of hexads

Table 4-Stabilizer group type of heptads

SG-type	No.
Ι	32
Z ₂	18
Z_3	3
Z ₆	1

Table 5-Stabilizer group type of octads

SG-type	No.
Ι	78
Z ₂	39
V4	8
S ₃	2
D4	1
D ₆	1
<i>D</i> 8	1
S4	1

Table 6-Stabilizer group type of nonads

SG-type	No.
Ι	180
Z ₂	37
<i>S</i> ₃	3
Z ₃	1
Z_4	1
Z ₈	1

Table 7-Stabilizer group type of decads

SG-type	No.
Ι	294
Z ₂	2
Z ₃	6
V_4	10
D_4	2
D ₅	1
A_4	1
D ₈	1

Table 8-tabilizer group type of 11- sets

SG-type	No.
Ι	463
Z ₂	62
Z ₃	2
S ₃	3
D ₅	1

Table 9-Stabilizer group type of 12- sets

SG-type	No.
Ι	559
Z ₂	110
Z ₃	2
V_4	15
S ₃	3
D ₆	1
D ₁₂	2

SG-type	No.
Ι	626
Z ₂	74
Z ₃	8
Z ₆	1
Z ₁₂	1
Z_4	3
D ₁₃	1

Table 10-Stabilizer group type of 13- sets

In the following examples, some k-sets have been chosen where $k = 9, \dots, 13$ with unique largest size of stabilizer group.

Example 4.2

(i) There is unique nonads $\mathcal{K} = \{\infty, 0, 1, \beta, \beta^4, \beta^5, \beta^6, \beta^{12}, \beta^{20}\}$ with stabilizer group of type Z_8 as given below.

$$Z_8 = <\beta(\beta^8 t + 1) >$$

(ii) There is a unique decad $\mathcal{R} = \{\infty, 0, 1, \beta, \beta^2, \beta^5, \beta^6, \beta^{10}, \beta^{12}, \beta^{18}\} \text{ with stabilizer group of type}$ $D_8 = <\beta^3 t/(\beta^2 t + 1), (\beta^{12} t + \beta^{12}) >.$ (iii) There is a uniqe11-set $\mathcal{H} = \{\infty, 0, 1, \beta, \beta^2, \beta^4, \beta^6, \beta^7, \beta^{12}, \beta^{16}, \beta^{18}\} \text{ with stabilizer group of type}$ $D_5 = <1/(t+1), (\beta^{12}t + \beta^4)/(\beta^{11}t + 1) >.$ (vi) There is a uniqe12-set $\mathcal{J} = \{\infty, 0, 1, \beta, \beta^2, \beta^3, \beta^6, \beta^9, \beta^{12}, \beta^{14}, \beta^{18}, \beta^{19}\} \text{ with stabilizer group of type}$ $D_6 = <(\beta^{18}t + \beta^6)/(\beta^{18}t + 1), (\beta^6t + \beta^{12})/(t + \beta^{18}) >.$ (iv) There is a unique 13-set $\mathcal{F} = \{\infty, 0, 1, \beta, \beta^2, \beta^3, \beta^4, \beta^6, \beta^{11}, \beta^{12}, \beta^{16}, \beta^{17}, \beta^{22}\} \text{ with stabilizer group of type}$ $D_{13} = <1/\beta^8(t + \beta^{13}), (\beta^{12}t + \beta).$

5. Splitting

Each 13-set K_i and its complement K_i^c splitting PG(1,25). The stabilizer group G_{K_i} of K_i also fixes the complement K_i^c . If PG(1,25) split into two 13-sets $K = \{K_i, K_i^c\}$, then the stabilizer group of the partition K is as follows.

(i) If K_i projectively inequivalent to its complement K_i^c , then $G_{K_i^c}$ is G_{K_i} and the stabilizer group of the splitting is also G_{K_i} .

(ii) If K_i projectively equivalent to its complement K_i^c then the stabilizer group of the splitting is G_{K_i} union of all linear transformation between K_i and K_i^c . In this case, the stabilizer of the splitting generated always by two element one of them belong to G_{K_i} and other is projectivity between K_i and K_i^c .

Theorem 5.1

The projective line PG(1,25) has

(i) 158 projectively distinct partitions into two equivalent 13-sets(EQ).

(ii) 556 projectively distinct partition into inequivalent 13-sets (NEQ).

The partitions details are given in the following table.

$EQ: \{K_i \cong K_i^c\}$	$NEQ: \{K_i \not\cong K_i^c\}$
Z ₂ :120	I :506
V ₄ :26	Z ₂ :48
<i>S</i> ₃ :6	Z ₃ :2
D ₄ :3	
D ₆ :1	
D ₁₂ :1	
G ₅₂ :1	

Table 11-Partition of PG(1,25) into two 13-sets

The group G_{52} has one element of order 1, 27 element of order 2, 12 element of order 13, 12 element of order 26.

Example 5.2

(i) The unique 13-set $K_{j_1} = \{\infty, 0, 1, \beta, \beta^2, \beta^3, \beta^6, \beta^8, \beta^9, \beta^{12}, \beta^{14}, \beta^{18}, \beta^{19}\}$ which has stabilizer group of type $Z_6 = \langle (\beta^{18}t + \beta^6)/(\beta^{18}t + 1) \rangle$ formed with its complement $K_{j_1}{}^c = \{\beta^4, \beta^5, \beta^7, \beta^{10}, \beta^{11}, \beta^{13}, \beta^{15}, \beta^{16}, \beta^{17}, \beta^{20}, \beta^{21}, \beta^{22}, \beta^{23}\}$ splitting as the projective line such that $K_{j_1} \cong K_{j_1}{}^c$. The projective equation which maps K_{j_1} to $K_{j_1}{}^c$ is given as follows.

$$\frac{\beta^5(t+\beta^9)}{t+\beta^{17}}$$

This splitting has stabilizer group of type D_6 is generated by the following two elements:

$$a = \frac{\beta^{18}t + \beta^6}{\beta^{18}t + 1}, b = \frac{\beta^5(t + \beta^9)}{t + \beta^{17}}.$$

(ii) The 13-set $K_{j_2} = \{\infty, 0, 1, \beta, \beta^2, \beta^3, \beta^4, \beta^6, \beta^7 \beta^{12}, \beta^{14}, \beta^{16}, \beta^{18}\}$ has stabilizer group of type Z_3 formed with its complement $K_{j_2}^c = \{\beta^5, \beta^8, \beta^9, \beta^{10}, \beta^{11}, \beta^{13}, \beta^{15}, \beta^{17}, \beta^{19}, \beta^{20}, \beta^{21}, \beta^{22}, \beta^{23}\}$ splitting the projective line such that $K_{j_2} \ncong K_{j_2}^c$.

Here Z_3 is generated by the element

$$c = \frac{t + \beta^{15}}{\beta^{14}(\beta^8 t + 1)}$$

References

- 1. Hirschfeld, J. W. P. **1998.** *Projective geometries over finite fields*. 2nd ed, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York.
- 2. Sadah, A. R. 1984. The classification of *k*-arcs and cubic surfaces with twenty-seven lines over the finite field of eleven elements. Ph.D. Thesis, School of Mathematical and Physical Sciences, University of Sussex, UK.
- **3.** Ali, A. H. **1993.** *Classification of arcs in the Galois plane of order thirteen.* Ph.D. Thesis, School of Mathematical and Physical Sciences, University of Sussex, UK.
- 4. Hirschfeld, J. W. P. and Al-Seraji, N. A. 2013. The geometry of the line of order seventeen and its application to error-correcting codes. *Al-Mustansiriyah J. Sci.*, 24(5): 217-230.
- 5. Al-Seraji, N. A. 2014. Classification of the projective line over Galois field of order sixteen. *Al-Mustansiriyah J. Sci.*, 25(1): 119-128.
- 6. Al-Seraji, N. A. 2015. Classification of the projective line over Galois field of order 23. *Journal of college of education, Al-Mustansiriyah University*,3.
- 7. Al-Zangana, E. B. 2016. Classification of the projective line of order nineteen and its application to error-correcting codes. *Basrah Journal of Science* (A), 34(3):196-211.
- 8. Al-Zangana, E. B. 2016. Results in projective geometry PG(r, 23), r = 1,2. Iraqi Journal of Science, 57(2A): 964-971.
- 9. Thomas, A. D. and Wood, G. V. 1980. *Group tables*. Shiva Mathematics Series; 2. Shiva Publishing Ltd.