

ISSN: 0067-2904

Essential-small Projective Modules

Mehdi S. Abbas, Mohammad F. Manhal*
Department of Mathematics, College of science, Mustansiriyah University, Baghdad, Iraq

Abstract

In this paper, we introduce the concept of e-small Projective modules as a generlization of Projective modules.

Keywords: projective modules, e-small submodules, e-small projective modules.

1. Introduction

A. K. Tiwary and K. N. Chaubey studied the concept of small projective modules as a proper generalization of projective modules [1]. In this paper, we introduce the concept of e-small Projective modules as a generlization of Projective modules. In this paper, all rings are associative and all modules are right and unitary. For definitions and notations in this paper we refer to [2] and [3].
2. e-small Projective

Definition 2.1

A module N is called e-small projective, if the following diagram is commutative:

Where g is an e-small epimorphism and f is a homomorphism.
Clearly every projective modules is e-small projective.
Proposition 2.2 For a module Q , the following statements are equivalent:
a. Q is e-small projective module;
b. For each e-small epimorphism $\mathrm{f}: \mathrm{N} \longrightarrow \mathrm{K}$, the functor $\operatorname{Hom}(\mathrm{I}, \mathrm{f}): \operatorname{Hom}(\mathrm{Q}$, $\mathrm{N}) \longrightarrow \operatorname{Hom}(\mathrm{Q}, \mathrm{K})$ is an epimmorphism;
c. For any e-small epimorphism $\mathrm{g}: \mathrm{B} \longrightarrow \mathrm{A}, \operatorname{goHom}(\mathrm{Q}, \mathrm{B})=\operatorname{Hom}(\mathrm{Q}, \mathrm{A})$;

Proof $(a) \Longrightarrow(b)$. Let $f: N \longrightarrow K$ be an e-small epimorphism and
$\psi \in \operatorname{Hom}(\mathrm{Q}, \mathrm{K})$. Since Q is e-small projective module there exists a homomorphism $\mathrm{h}: \mathrm{Q} \longrightarrow \mathrm{N}$, such that foh $=\psi$. Thus $\operatorname{Hom}(\mathrm{I}, \mathrm{f}) \circ \mathrm{h}=\boldsymbol{\psi}$, where $\mathrm{h} \in \operatorname{Hom}(\mathrm{Q}, \mathrm{N})$.therefore $\operatorname{Hom}(\mathrm{I}, \mathrm{f})$ is an epimorphism.

[^0](b) \Longrightarrow (c). Let $\mathrm{g}: \mathrm{B} \longrightarrow \mathrm{A}$ be an e-small epimorphism, by (b)
$\operatorname{Hom}(\mathrm{I}, \mathrm{g}): \operatorname{Hom}(\mathrm{Q}, \mathrm{B})$
$\longrightarrow \operatorname{Hom}(\mathrm{Q}, \mathrm{A})$ is an epimorphism.
Now, to show that $g \circ \operatorname{Hom}(\mathrm{Q}, \mathrm{B})=\operatorname{Hom}(\mathrm{Q}, \mathrm{A})$.
Let $\mathrm{f} \in \operatorname{Hom}(\mathrm{Q}, \mathrm{A})$ so there exists $\mathrm{f}_{1} \in \operatorname{Hom}(\mathrm{Q}, \mathrm{B})$ such that $\operatorname{Hom}(\mathrm{I}, \mathrm{g}) \circ \mathrm{f}_{1}=\mathrm{f}$.
i.e $g^{\circ} f_{1}=f$. Thus $f \in \operatorname{goHom}(Q, B)$; so $\operatorname{Hom}(Q, A) \leq \operatorname{goHom}(Q, B)$.

It is clear that $\operatorname{g\circ Hom}(\mathrm{Q}, \mathrm{B}) \leq \operatorname{Hom}(\mathrm{Q}, \mathrm{A})$.
$(\mathrm{c}) \Longrightarrow(\mathrm{a})$. Consider the following diagram:

Where A, B are any modules and f is any homomorphism since $\operatorname{goHom}(Q, A)=\operatorname{Hom}(Q, B)$ and f $\in \operatorname{Hom}(\mathrm{Q}, \mathrm{B})$.So there exists $\mathrm{h} \in \operatorname{Hom}(\mathrm{Q}, \mathrm{A})$, such that $\mathrm{goh}=\mathrm{f}$. Thus, Q is an e-small projective module.
Proposition 2.3 A module P is e-small projective if and only if for every homomorphism $\mathrm{f}: \mathrm{P} \longrightarrow$ B , and every e-small epimorphism $\mathrm{g}: \mathrm{A} \longrightarrow \mathrm{B}$ from an injective module A , there exists a homomorphism h: $\mathrm{P} \longrightarrow$ A such that \quad goh $=\mathrm{f}$.

Proof $\Longrightarrow>$ Clear.

$\Longleftarrow>$ Let g be any e-small epimorphism from A onto B , where A, B are any modules, and $\mathrm{f}: \mathrm{P} \longrightarrow$ B be any homomorphism. Consider the following diagram:

Where E is injective module, $i: \mathrm{A} \longrightarrow \mathrm{E}$ is the inclusion homomorphism and $\pi: \mathrm{E} \longrightarrow \mathrm{E} / \operatorname{Ker}(\mathrm{g})$ is the nature epimorphism. E exists, since every module can be embedded in an injective module, [1]. Define $\ell: \mathrm{B} \longrightarrow \mathrm{E} / \operatorname{Ker}(\mathrm{g})$ by $\ell(\mathrm{b})=a+\operatorname{Ker}(\mathrm{g})$, for all $\mathrm{b} \in \mathrm{B}$, where $\mathrm{g}(a)=\mathrm{b}$.
Let $b, b \in \mathrm{~B}$, where $\mathrm{g}(a)=b$ and $\mathrm{g}(a)=\dot{b}$.
If $b=\dot{b}$ this implies $\mathrm{g}(a)=\mathrm{g}(a ́)$, which means that $a-\dot{a} \in \operatorname{Ker}(\mathrm{~g})$, so $a+\operatorname{Ker}(\mathrm{g})=\dot{a}+\operatorname{Ker}(\mathrm{g})$. So ℓ is well define. Clearly ℓ is a homomorphism.
By hypothesis, there exists a homomorphism h: $\mathrm{P} \longrightarrow \mathrm{E}$, such that $\pi \circ \mathrm{h}=\ell \circ \mathrm{f}$.
We claim that $h(P) \leq A$. To see this, let $w \in h(P)$,
So there exists $\mathrm{m} \in \mathrm{P}$, with $\mathrm{w}=\mathrm{h}(\mathrm{m})$. Now, $\pi \circ \mathrm{h}(\mathrm{m})=\ell \circ \mathrm{f}(\mathrm{m})$, where $\mathrm{f}(\mathrm{m})=\mathrm{g}(a)$. This implies that $\mathrm{h}(\mathrm{m})$ $-a \in \operatorname{Ker}(\mathrm{~g})$ and hence $\mathrm{h}(\mathrm{m}) \in \mathrm{A}$.
Let $\mathrm{h}^{*}: \mathrm{P} \longrightarrow$ A defined by $\mathrm{h}^{*}(\mathrm{x})=\mathrm{h}(\mathrm{x})$, for all $\mathrm{x} \in \mathrm{P}$.
Now, $\ell \circ \mathrm{f}=\pi \circ \mathrm{h}=\pi \circ i \circ h^{*}=\ell \circ \mathrm{g} \circ \mathrm{h}^{*}$.
T. P. that ℓ is monomorphism. Let $\ell(b)=\ell(b)$, where $b, b \in \mathrm{~B}$

So $a+\operatorname{Ker}(\mathrm{g})=\dot{a}+\operatorname{Ker}(\mathrm{g})$ where $\mathrm{g}(a)=b$ and $\mathrm{g}(a ́ a)=b$. Thus $\mathrm{a}-a ́ \in \operatorname{Ker}(\mathrm{~g})$ this implies that $\mathrm{g}(a)=$ $\mathrm{g}(\dot{a})$ and so $b=\bar{b}$, thus ℓ is monomorphism.
Hence P is an e-small projective module.

3 Some properties of e-small projective Modules

Proposition $3.1 \underset{\alpha \in \Lambda}{\oplus} M_{\alpha}$ is an e-small projective module if and only if M_{α} is an e-small projective module for each $\alpha \in \Lambda$.
Proof $\Rightarrow\rangle$ Suppose that $\underset{\alpha \in \Lambda}{\oplus} M_{\alpha}$ is an e-small projective and let $\alpha \in \Lambda$, consider the following diagram:

Where $\mathrm{g}: \mathrm{A} \longrightarrow \mathrm{B}$ is an e-small epimorphism, $\mathrm{f}: \mathrm{M}_{\alpha} \longrightarrow \mathrm{B}$ is a homomorphism, p_{α} : $\underset{\alpha \in \Lambda}{\oplus} \mathrm{M}_{\alpha} \longrightarrow \mathrm{M}_{\alpha}$ is the projection homomorpism and $\mathrm{i}_{\alpha}: \mathrm{M}_{\alpha} \longrightarrow \underset{\alpha \in \Lambda}{\oplus} \mathrm{M}_{\alpha}$ is the injective homomorphism. Since $\underset{\alpha \in \Lambda}{\oplus} M_{\alpha}$ is ane-small projective module, there exists a homomorphism h :
 $\mathrm{f} \circ \mathrm{p}_{\alpha} \circ \mathrm{i}_{\alpha}=\mathrm{f} \circ \mathrm{I}=\mathrm{f}$.
Hence M_{α} is an e-small projective module.
\Longleftrightarrow suppose that $\mathrm{M} \alpha$ is an e-small projective module, for each $\alpha \in \Lambda$, and consider the following diagram:

Where $\mathrm{g}: \mathrm{A} \longrightarrow \mathrm{B}$ is an e-small epimorphism, $\mathrm{f}: \underset{\alpha \in \Lambda}{\oplus} \mathrm{M}_{\alpha} \longrightarrow \mathrm{B}$ is a homomorphism and i_{α} : $\mathrm{M}_{\alpha} \longrightarrow \underset{\alpha \in \Lambda}{\oplus} \mathrm{M}_{\alpha}$ is the injective homomorphism since M_{α} is an e-small projective module for all $\alpha \in \Lambda$, there exists a homomorphism $\Psi \alpha: \mathrm{M} \alpha \longrightarrow \mathrm{A}$ for all $\alpha \in \Lambda$ such that $\mathrm{g} \circ \Psi_{\alpha}=\mathrm{f} \circ \mathrm{i}_{\alpha}$, for all $\alpha \in \Lambda$.
Define $\Psi: \underset{\alpha \in \Lambda}{\oplus} \mathrm{M} \alpha \longrightarrow \mathrm{A}$ by $\Psi(\mathrm{a})=\sum_{\alpha \in \Lambda} \Psi_{\alpha} \circ \mathrm{p}_{\alpha}\left(a_{\alpha}\right)$ for each a $\in \underset{\alpha \in \Lambda}{\oplus} \mathrm{M}_{\alpha}$,
$\operatorname{g\circ } \odot(\mathrm{a})=\mathrm{g}(\Psi(\mathrm{a}))=\mathrm{g}\left(\sum_{\alpha \in \Lambda} \Psi_{\alpha} \circ \mathrm{p}_{\alpha}\left(a_{\alpha}\right)\right)=\sum_{\alpha \in \Lambda} \mathrm{g} \circ \Psi_{\alpha} \circ \mathrm{p}_{\alpha}\left(a_{\alpha}\right)$
$=\sum_{\alpha \in \Lambda} \mathrm{f} \circ \mathrm{i}_{\alpha} \circ \mathrm{p}_{\alpha}\left(a_{\alpha}\right)=\mathrm{f}\left(\sum_{\alpha \in \Lambda} \mathrm{i}_{\alpha} \circ \mathrm{p}_{\alpha}\left(a_{\alpha}\right)\right)=\mathrm{f}(\mathrm{I}(\mathrm{a}))=\mathrm{f}(\mathrm{a})$ for each $\mathrm{a} \in \underset{\alpha \in \Lambda}{\oplus} \mathrm{M} \alpha$
Hence $\underset{\alpha \in \Lambda}{\oplus} \mathrm{M}_{\alpha}$ is an e-small projective module.
Proposition 3.2 An e-small projective module which has a projective cover is projective.
Proof Let Q be an e-small projective module. Let (P, f) be a protective cover for Q . consider the following diagram

Where $\mathrm{g}: \mathrm{A} \longrightarrow \mathrm{B}$ is an epimorphism, $\mathrm{f}_{1}: \mathrm{Q} \longrightarrow \mathrm{B}$ is a homomorphism and $\mathrm{I}: \mathrm{Q} \longrightarrow \mathrm{Q}$ is the identity. Since Q is an e-small projective module, there exists a homomorphism $\mathrm{h}_{1}: \mathrm{Q}$ P such that $f^{\circ} h_{1}=I$. But P is a projective module so, there exists a homomorphism $\mathrm{h}_{2}: \mathrm{P} \longrightarrow \mathrm{A}$, such that $g \circ h_{2}=f_{1} \circ$. Definition $h: Q \longrightarrow A$ by $h=h_{2} \circ h_{1}$. Now, $g \circ h=g \circ h_{2} \circ h_{1}=f_{1} \circ \circ \circ h_{1}=f_{1} \circ I=f_{1}$. Thus, Q is a projective module.

Recall that A submodule L of P is called P -cyclic submodule if it is the image of an element of End(P) [4].A module L is called N -principally injective if for any endomorphism Ψ of N , and every homomorphism from $\Psi(\mathrm{N})$ into L , can be extended to a homomorphism from N to $\mathrm{L}[4]$.

Definition 3.3

A module P is called e-small factor of a module L , if there exists an e-small epimorphism from L to P.
Proposition 3.4 Let P be an e-small projective module. The following are equivalent:
1- Every P -cyclic submodule of P is an e-small projective;
2- Every e-small factor module of an P-principally injective module is P- principally injective;
3- Every e-small factor module of an injective module is P -principally injective.
Proof $1 \rightarrow 2\rangle$ Let $\mathrm{g}: \mathrm{A} \longrightarrow \mathrm{B}$ be an e-small epimorphism, where A is P- principally injective module. Consider the following diagram:

Where f: $\Psi(\mathrm{P}) \longrightarrow \mathrm{B}$ is a homomorphism, $\Psi \in \operatorname{End}(\mathrm{P})$ and $\mathrm{t}: \Psi(\mathrm{P}) \longrightarrow \mathrm{P}$ is inclusion homomorphism. $\mathrm{By}(1), \Psi(\mathrm{P})$ is an e-small projective module so, there exists a hmomorphism $\mathrm{h}: \Psi(\mathrm{P})$ \longrightarrow A such that goh $=f$. Now, since A is P-principally injective, there exists a homomorphism h_{1} : $\mathrm{P} \longrightarrow$ A such that $\mathrm{h}_{1} \circ \mathrm{t}=\mathrm{h}$. Define $\mathrm{h}_{2}: \mathrm{P} \longrightarrow \mathrm{B}$ by $\mathrm{h}_{2}=\mathrm{g} \circ \mathrm{h}_{1}$. Now, $\mathrm{h}_{2} \circ \mathrm{t}=\mathrm{g} \circ \mathrm{h}_{1} \circ \mathrm{ot}=\mathrm{g} \circ \mathrm{h}=\mathrm{f}$.
$2 \rightarrow 3$) Clear.
$3 \rightarrow 1$) By propositions (2.3).
Proposition 3.5 Let Q be a module and C is adirect summand of Q , such that $\mathrm{A} \cap \mathrm{C} \ll \mathrm{A}$, where $\mathrm{A} \leq$ Q , if $\mathrm{A}+\mathrm{C}$ is an e-small projective module, then $\mathrm{A} \cap \mathrm{C}=(0)$.
Proof Consider the following natural epimorphism: $\pi_{1}: \mathrm{A} \longrightarrow \mathrm{A} / \mathrm{A} \cap \mathrm{C} ; \pi_{2}: \mathrm{A}+\mathrm{C} \longrightarrow \mathrm{A}+\mathrm{C} /$ C by second isomorphism theorem $\mathrm{A} / \mathrm{A} \cap \mathrm{C} \simeq \mathrm{A}+\mathrm{C} / \mathrm{C}$. Since C is a direct summand of Q so, $\mathrm{Q}=\mathrm{C} \oplus \mathrm{K}_{1}$, Where $\mathrm{K}_{1} \leq \mathrm{Q}$, by modular law $\mathrm{Q} \cap(\mathrm{C}+\mathrm{A})=\left(\mathrm{C} \oplus \mathrm{K}_{1}\right) \cap(\mathrm{A}+\mathrm{C})$ So, $\mathrm{A}+\mathrm{C}=\mathrm{C} \oplus\left(\mathrm{K}_{1} \cap(\mathrm{~A}+\mathrm{C})\right.$), so C is a direct summand of $\mathrm{A}+\mathrm{C}$. $\mathrm{By}(3.1)\left(\mathrm{K}_{1} \cap(\mathrm{~A}+\mathrm{C})\right)$ is an e-small projective module and hence $\mathrm{A}+\mathrm{C} / \mathrm{C}$ is an e-small projective module and so is $\mathrm{A} / \mathrm{A} \cap \mathrm{C}$.
Thus $\pi_{1}: \mathrm{A} \longrightarrow \mathrm{A} / \mathrm{A} \cap \mathrm{C}$ splits, so $\mathrm{A}=\operatorname{Ker}\left(\pi_{1}\right) \oplus \mathrm{L}$, where $\mathrm{L} \leq \mathrm{A}$, but $\mathrm{A} \cap \mathrm{C} \ll \mathrm{A}$, therefore $\mathrm{A} \cap \mathrm{C}=$ (0).

The converse of (3.5) is no true in general as the following example.
Example 3.6 In Z_{2} as Z-module, clearly $\{\overline{0}\}$ is a direct summand of Z_{2} and $\{\overline{0}\} \cap Z_{2}=(0) \ll Z_{2}$, but Z_{2} is not e-small projective as Z -module.

References

1. Tiwary, A.K. and Chaubey, K.N. 1985. Small Projective Module. Indian J. Pure Appl. Math, 16(2), 133-138.
2. Wisbauer, R. 1991. Foundations of Modules and Rings theory, Gordon and Breach Science Publishers, Reading.
3. Zhou, D.X. and Zhang, X.R. 2011. Small-Essential Submodules and Morita Duality, Southeast Asian Bulletin of Mathematics 53: 1051-1062.
4. Sanh, N.V., Shum, K. P., Dhompong, S. and Wongwai, S. 1999. On Qausi-Principally Injective Modules, Algebra Colloquium 6, 3, 269-276.

[^0]: *Email: mf.alalwy@gmail.com

