Iraqi Journal of Science, 2018, Vol. 59, No.1C, pp: 581-584 DOI:10.24996/ijs.2018.59.1C.14

Hom(I, f) : Hom(Q,

ISSN: 0067-2904

Essential-small Projective Modules

Mehdi S. Abbas, Mohammad F. Manhal*

Department of Mathematics, College of science, Mustansiriyah University, Baghdad, Iraq

Abstract

In this paper, we introduce the concept of e-small Projective modules as a generlization of Projective modules.

Keywords: projective modules, e-small submodules, e-small projective modules.

مقاسات جوهرية صغيرة اسقاطية

مهدي صادق عباس ، محمد فرحان منهل* قسم الرياضيات، كلية العلوم، الجامعة المستنصرية، بغداد، العراق.

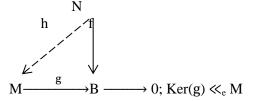
ا**لخلاصة** في هذا البحث قدمنا مفهوم مقاسات جو هرية صغيرة اسقاطية كتعميم لمفهوم مقاسات اسقاطية .

1. Introduction

A. K. Tiwary and K. N. Chaubey studied the concept of small projective modules as a proper generalization of projective modules [1]. In this paper, we introduce the concept of e-small Projective modules as a generlization of Projective modules. In this paper, all rings are associative and all modules are right and unitary. For definitions and notations in this paper we refer to [2] and [3]. **2. e-small Projective**

Definition 2.1

A module N is called e-small projective, if the following diagram is commutative:



Where g is an e-small epimorphism and f is a homomorphism. Clearly every projective modules is e-small projective.

Proposition 2.2 For a module Q, the following statements are equivalent:

- a. Q is e-small projective module;
- b. For each e-small epimorphism f: $N \longrightarrow K$, the functor $N) \longrightarrow Hom(Q, K)$ is an epimmorphism;

c. For any e-small epimorphism $g: B \longrightarrow A$, $g \circ Hom(Q, B) = Hom(Q, A)$;

Proof (a) \implies (b) . Let $f : N \longrightarrow K$ be an e-small epimorphism and

 $\psi \in \text{Hom}(Q, K)$. Since Q is e-small projective module there exists a homomorphism h: $Q \longrightarrow N$, such that $f \circ h = \psi$. Thus $\text{Hom}(I, f) \circ h = \psi$, where $h \in \text{Hom}(Q, N)$.therefore Hom(I, f) is an epimorphism.

^{*}Email: mf.alalwy@gmail.com

(b) \implies (c). Let g : B \longrightarrow A be an e-small epimorphism, by (b) \longrightarrow Hom(Q, A) is an epimorphism.

Hom(I, g) : Hom(Q, B)

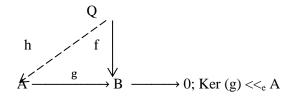
Now, to show that $g \circ Hom(Q, B) = Hom(Q, A)$.

Let $f \in Hom(Q, A)$ so there exists $f_1 \in Hom(Q, B)$ such that $Hom(I, g) \circ f_1 = f$.

i.e $g \circ f_1 = f$. Thus $f \in g \circ Hom(Q, B)$; so $Hom(Q, A) \leq g \circ Hom(Q, B)$.

It is clear that $g \circ Hom(Q, B) \leq Hom(Q, A)$.

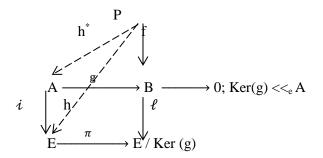
(c) \implies (a). Consider the following diagram:



Where A, B are any modules and f is any homomorphism since $g \circ Hom(Q, A) = Hom(Q, B)$ and f \in Hom(Q, B).So there exists h \in Hom(Q, A), such that $g \circ h = f$. Thus, Q is an e-small projective module.

Proposition 2.3 A module P is e-small projective if and only if for every homomorphism $f: P \longrightarrow$ B, and every e-small epimorphism $g: A \longrightarrow B$ from an injective module A, there exists a homomorphism h: $P \longrightarrow A$ such that $g \circ h = f.$ **Proof** \implies > Clear.

 \longleftrightarrow Let g be any e-small epimorphism from A onto B, where A, B are any modules, and f: P \longrightarrow B be any homomorphism. Consider the following diagram:



Where E is injective module, *i*: A \longrightarrow E is the inclusion homomorphism and π : E \longrightarrow E/Ker(g) is the nature epimorphism. E exists, since every module can be embedded in an injective module, [1]. Define $\ell: B \longrightarrow E/Ker(g)$ by $\ell(b) = a + Ker(g)$, for all $b \in B$, where g(a) = b.

Let $b, b \in B$, where g(a) = b and g(a) = b.

If $b = \hat{b}$ this implies $g(a) = g(\hat{a})$, which means that $a - \hat{a} \in \text{Ker}(g)$, so $a + \text{Ker}(g) = \hat{a} + \text{Ker}(g)$. So ℓ is well define. Clearly ℓ is a homomorphism.

By hypothesis, there exists a homomorphism h: P \longrightarrow E, such that $\pi \circ h = \ell \circ f$.

We claim that $h(P) \le A$. To see this, let $w \in h(P)$,

So there exists $m \in P$, with w=h(m). Now, $\pi \circ h(m) = \ell \circ f(m)$, where f(m) = g(a). This implies that h(m) $-a \in \text{Ker}(g)$ and hence $h(m) \in A$.

Let $h^* : P \longrightarrow A$ defined by $h^*(x) = h(x)$, for all $x \in P$.

Now, $\ell \circ f = \pi \circ h = \pi \circ i \circ h^* = \ell \circ g \circ h^*$.

T. P. that ℓ is monomorphism. Let $\ell(b) = \ell(\hat{b})$, where $b, \hat{b} \in B$

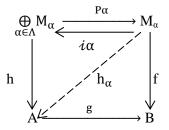
So $a + \text{Ker}(g) = \dot{a} + \text{Ker}(g)$ where g(a) = b and $g(\dot{a}) = \dot{b}$. Thus $a - \dot{a} \in \text{Ker}(g)$ this implies that g(a) = b $g(\dot{a})$ and so $b = \dot{b}$, thus ℓ is monomorphism.

Hence P is an e-small projective module.

3 Some properties of e-small projective Modules

Proposition 3.1 $\bigoplus_{\alpha \in \Lambda} M_{\alpha}$ is an e-small projective module if and only if M_{α} is an e-small projective module for each $\alpha \in \Lambda$.

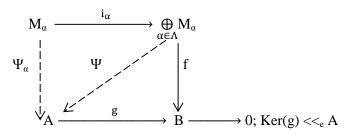
Proof \Rightarrow Suppose that $\bigoplus_{\alpha \in \Lambda} M_{\alpha}$ is an e-small projective and let $\alpha \in \Lambda$, consider the following diagram:



Where $g : A \longrightarrow B$ is an e-small epimorphism, f: $M_{\alpha} \longrightarrow B$ is a homomorphism, $p_{\alpha}: \bigoplus_{\alpha \in \Lambda} M_{\alpha} \longrightarrow M_{\alpha}$ is the projection homomorphism and $i_{\alpha} : M_{\alpha} \longrightarrow \bigoplus_{\alpha \in \Lambda} M_{\alpha}$ is the injective homomorphism. Since $\bigoplus_{\alpha \in \Lambda} M_{\alpha}$ is an e-small projective module, there exists a homomorphism $h: \bigoplus_{\alpha \in \Lambda} M_{\alpha} \longrightarrow A$, such that $g \circ h = f \circ p_{\alpha}$. Define $h_{\alpha} : M\alpha \longrightarrow A$ by $h_{\alpha} = h \circ i_{\alpha}$. Now, $g \circ h_{\alpha} = g \circ h \circ i_{\alpha} = f \circ p_{\alpha} \circ i_{\alpha} = f \circ I = f$.

Hence M_{α} is an e-small projective module.

 \Leftarrow suppose that M α is an e-small projective module, for each $\alpha \in \Lambda$, and consider the following diagram:

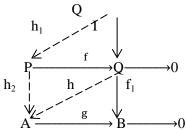


Where g:A \longrightarrow B is an e-small epimorphism, $f: \bigoplus_{\alpha \in \Lambda} M_{\alpha} \longrightarrow B$ is a homomorphism and i_{α} : $M_{\alpha} \longrightarrow \bigoplus_{\alpha \in \Lambda} M_{\alpha}$ is the injective homomorphism since M_{α} is an e-small projective module for all $\alpha \in \Lambda$, there exists a homomorphism $\Psi \alpha : M\alpha \longrightarrow A$ for all $\alpha \in \Lambda$ such that $g \circ \Psi_{\alpha} = f \circ i_{\alpha}$, for all $\alpha \in \Lambda$. Define $\Psi: \bigoplus M\alpha \longrightarrow A$ by $\Psi(\alpha) = \sum_{\alpha \in \Lambda} \Psi_{\alpha} \circ p_{\alpha}(a_{\alpha})$ for each $\alpha \in \bigoplus M_{\alpha}$,

 $a \in \Lambda.$ Define $\Psi : \bigoplus_{\alpha \in \Lambda} M\alpha \longrightarrow A$ by $\Psi(a) = \sum_{\alpha \in \Lambda} \Psi_{\alpha} \circ p_{\alpha}(a_{\alpha})$ for each $a \in \bigoplus_{\alpha \in \Lambda} M_{\alpha}$, $g \circ \Psi(a) = g(\Psi(a)) = g(\sum_{\alpha \in \Lambda} \Psi_{\alpha} \circ p_{\alpha}(a_{\alpha})) = \sum_{\alpha \in \Lambda} g \circ \Psi_{\alpha} \circ p_{\alpha}(a_{\alpha})$ $= \sum_{\alpha \in \Lambda} f \circ i_{\alpha} \circ p_{\alpha}(a_{\alpha}) = f(\sum_{\alpha \in \Lambda} i_{\alpha} \circ p_{\alpha}(a_{\alpha})) = f(I(a)) = f(a)$ for each $a \in \bigoplus_{\alpha \in \Lambda} M\alpha$ Hence $\bigoplus M$ is an a small projective module

Hence $\bigoplus_{\alpha \in \Lambda} M_{\alpha}$ is an e-small projective module.

Proposition 3.2 An e-small projective module which has a projective cover is projective. **Proof** Let Q be an e-small projective module. Let (P, f) be a protective cover for Q. consider the following diagram



Where g: A \longrightarrow B is an epimorphism, $f_1: Q \longrightarrow$ B is a homomorphism and I: Q \longrightarrow Q is the identity. Since Q is an e-small projective module, there exists a homomorphism $h_1: Q \longrightarrow$ P such that $f \circ h_1 = I$. But P is a projective module so, there exists a homomorphism $h_2: P \longrightarrow A$, such that $g \circ h_2 = f_1 \circ f$. Definition h: Q \longrightarrow A by $h=h_2 \circ h_1$. Now, $g \circ h=g \circ h_2 \circ h_1 = f_1 \circ f \circ h_1 = f_1 \circ I = f_1$. Thus, Q is a projective module.

Recall that A submodule L of P is called P-cyclic submodule if it is the image of an element of End(P) [4]. A module L is called N-principally injective if for any endomorphism Ψ of N, and every homomorphism from $\Psi(N)$ into L, can be extended to a homomorphism from N to L[4]. **Definition 3.3**

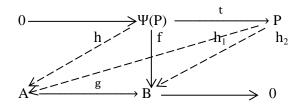
A module P is called e-small factor of a module L, if there exists an e-small epimorphism from L to P.

Proposition 3.4 Let P be an e-small projective module. The following are equivalent:

1- Every P-cyclic submodule of P is an e-small projective;

2- Every e-small factor module of an P-principally injective module is
3- Every e-small factor module of an injective module is P-principally injective;

Proof $1 \rightarrow 2$ Let g: A \longrightarrow B be an e-small epimorphism, where A is P- principally injective module. Consider the following diagram:



Where f: $\Psi(P) \longrightarrow B$ is a homomorphism, $\Psi \in End(P)$ and t: $\Psi(P) \longrightarrow P$ is inclusion homomorphism. By(1), $\Psi(P)$ is an e-small projective module so, there exists a homomorphism h: $\Psi(P) \longrightarrow A$ such that $g \circ h = f$. Now, since A is P-principally injective, there exists a homomorphism h_1: $P \longrightarrow A$ such that $g \circ h = f$. Now, since A is P-principally injective, there exists a homomorphism h_1: $P \longrightarrow A$ such that $h_1 \circ t = h$. Define $h_2: P \longrightarrow B$ by $h_2 = g \circ h_1$. Now, $h_2 \circ t = g \circ h_1 \circ t = g \circ h = f$. $2 \longrightarrow 3$) Clear.

 $3 \rightarrow 1$ By propositions (2.3).

Proposition 3.5 Let Q be a module and C is adirect summand of Q, such that $A \cap C \ll A$, where $A \leq Q$, if A+C is an e-small projective module, then $A \cap C = (0)$.

Proof Consider the following natural epimorphism: $\pi_1 : A \longrightarrow A/A \cap C$; $\pi_2 : A+C \longrightarrow A+C/C$ C by second isomorphism theorem $A/A \cap C \simeq A+C/C$. Since C is a direct summand of Q so, $Q=C \oplus K_1$, Where $K_1 \le Q$, by modular law $Q \cap (C+A)=(C \oplus K_1) \cap (A+C)$ So, $A+C=C \oplus (K_1 \cap (A+C))$, so C is a direct summand of A+C. By (3.1) ($K_1 \cap (A+C)$) is an e-small projective module and hence A+C/C is an e-small projective module and so is $A/A \cap C$.

Thus $\pi_1: A \longrightarrow A/A \cap C$ splits, so $A = Ker(\pi_1) \oplus L$, where $L \le A$, but $A \cap C \ll A$, therefore $A \cap C = (0)$.

The converse of (3.5) is no true in general as the following example.

Example 3.6 In Z_2 as Z-module, clearly $\{\overline{0}\}$ is a direct summand of Z_2 and $\{\overline{0}\} \cap Z_2 = (0) \ll Z_2$, but Z_2 is not e-small projective as Z-module.

References

- 1. Tiwary, A.K. and Chaubey, K.N. 1985. Small Projective Module. Indian J. Pure Appl. Math, 16(2), 133-138.
- 2. Wisbauer, R. 1991. Foundations of Modules and Rings theory, Gordon and Breach Science Publishers, Reading.
- **3.** Zhou, D.X. and Zhang, X.R. **2011.** Small-Essential Submodules and Morita Duality, Southeast Asian Bulletin of Mathematics 53: 1051-1062.
- 4. Sanh, N.V., Shum, K. P., Dhompong, S. and Wongwai, S. 1999. On Qausi-Principally Injective Modules, Algebra Colloquium 6, 3, 269-276.