© Impact Journals

SPECTRAL PROPERTIES OF SELF-ADJOINT LINEAR OPERATORS GEZAHEGN ANBERBER TADESSE

Lecturer, Dilla University,South Region, Ethiopia

Abstract

The spectral theory mainly deals with a systemic study of inverse operators, their general properties and their relation to the original operators.

Operators on Hilbert space is a basis for a comprehensive study of the spectral theory. In particular, the hermitian or self-adjoint operators are very important in many applications. In this peper, we have generalized this idea by showing that the spectrum of a self-adjoint operator on a Hilbert space also consists entirely of real values.

KEYWORDS: Spectral Theory, Self Adjoint, Hilbert Space, Inverse Operator, Projection

1. INTRODUCTION

While solving the system of linear algebraic equations, differential equations or integral equations, we come across the problem related to inverse operation. Spectral theory is concerned with such inverse problem.

In chapter one we discuss the preliminary concepts which are frequently used in the project work. In chapter Two we discuss the spectral theory of bounded self-adjoint linear operator and in chapter Three we discuss Projection operators. The definition of projection is suitable for spectral family. Projections are always positive operators.

In Chapter Four we discuss spectral family. The spectral family of a bounded self-adjoint linear operator at points of the resolvent set, at eigen values and at the point of continuous spectrum.

The spectral projection are the given, as in the bounded case, by defining E_{λ} to be the orthogonal projection on the null space of $(T-\lambda I)^{+}$for all real λ. If the two sets are vector spaces, we can introduce the concept of a linear operator, if the sets are normed spaces, we can construct a theory of bounded linear operators on such spaces. Operators that map members of a specified space into the real or complex numbers are called functional. We shall also discuss the Hilbertadjoint operators as well as the self-adjoint, unitary and normal operators. Finally, we shall look at the spectral family of the Hermitian (self-adjoint) operators which is an important aspect of functional analysis.

2. PRELIMINARY CONCEPT

2.1 Basic Definition

Norm: Let X be a vector space over a field K. Then a mapping $\|\|:. X \rightarrow[0, \infty)$ is said to be a norm on X if for each $x, y \in X, \lambda \in K$

- $\|x\| \geq 0$ and $\|x\|=0$ if and only if $x=0$ (positive definiteness)
- $\|\lambda x\|=|\lambda|\|x\|$ (Homogeneity)
- $\quad\|x+y\| \leq\|x\|+\|y\|$ (triangle inequality) .

If norm is defined on a vector space X, then X is said to be a normed space.
Linear Functional: A linear functional on Hilbert space H is a linear map from H to \mathbb{C}. That is $\varphi: H \rightarrow \mathbb{C}$.
Bounded Linear Functional: A linear functional φ is bounded or Continuous, if there exists a constant k such that

$$
|\varphi(x)| \leq k\|x\|
$$

The norm of a bounded linear functional is

$$
\|\varphi\|=\sup _{\|x\|=1}|\varphi(x)|
$$

If $y \in H$, then $\varphi_{y}(x)=\langle y, x\rangle$ is a bounded linear functional on H, with $\left\|\varphi_{y}\right\|=\|y\|$

Continuous Operator

An operator T from a normed space V into another normed space W is continuous at a point $\quad x \in D(T)$ if for any $\varepsilon>0$ there is a $\delta>0$, such that $\|T x-T y\|<\varepsilon$ for all $y \in D(T)$ whenever $\|x-y\|<$ δ then T is continuous, if its continuous at all points of $D(T)$.

Let X be a vector space over K and let $\langle.,\rangle:. X \times X \rightarrow K$, where for all $x, y, z \in X$

- $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$ (linearity)
- $\langle\alpha x, y\rangle=\alpha\langle x, y\rangle$ (Homogeneity)
- $\langle x, y\rangle=\langle\overline{y, x}\rangle$ (conjugate symmetry)
- $\langle x, x\rangle \geq 0$ and $\langle x, x\rangle=0 \Leftrightarrow x=0$ (positive definiteness).

Then the pair $(X,\langle.,\rangle$.$) is said to be an inner product space. Hilbert space is a complete inner product space. If$ $T: X \rightarrow X$ is a linear operator on linear space X, then $\lambda \in K$ is called eigen value of T, if there exist an non- zero $\mathrm{x} \in X$ then
$T x=\lambda x$

Resolvent Set: Let H be a Hilbert space and let $T: D(T) \rightarrow H$ be a linear operator with domain $D(T) \subseteq H$. For any $\lambda \in \mathbb{C}$, we define the operator $T_{\lambda}=\lambda I-T$, then λ is said to be a regular value if R_{λ} is inverse operator. That is λ is regular if provided,

- $\quad R_{\lambda}$ exists
- $\quad R_{\lambda}$ is a bounded linear operator;
- $\quad R_{\lambda}$ is defined on a dense subspace of H

The resolvent set of T is the set of all regular values of T
$\boldsymbol{\rho}(\boldsymbol{T})=\{\lambda \in \mathbb{C}: \lambda$ is a regular value of $T\}$
Spectrum. The set $\sigma(T)=\mathbb{C}-\boldsymbol{\rho}(\boldsymbol{T})$
The spectrum of an operator T is usually divided into three disjoint unions.

- Point spectrum $\sigma_{p}(T)$.
- Continuous spectrum $\sigma_{c}(T)$.
- Residual spectrum $\sigma_{r}(T)$.

Where
$\sigma_{p}(T)=\{\lambda \in \sigma(T): \operatorname{ker}(\lambda I-T) \neq\{0\}\}$
$\sigma_{c}(T)=\left\{\lambda \in \sigma(T):(\lambda I-T)^{-1}\right.$ is densely defined but not bounded $\}$
$\sigma_{r}(T)=\{\lambda \in \sigma(T): R(\lambda I-T)$ is not dense in $H\}$
Elements of $\sigma_{p}(T)$ are called eigenvalues.

Orthogonality

Two vectors x and y in inner product space are said to be orthogonal if $\langle x, y\rangle=0$.

Orthonormality

The set containing those vectors x, y such that $\langle x, y\rangle=0$ and $\|x\|=1$ is said to be orthonormal set.

Orthogonal Complement

For non-empty subset S of Hilbert space we define the orthogonal complement to S, denoted by S^{\perp}. $S^{\perp}=\{y \in H:\langle x, y\rangle=0$ for all $x \in S\}$

Convergence of Sequence of Operator

Let X and Y be normed space. A Sequence $\left(T_{n}\right)$ of operators $T_{n} \in B(X, Y)$ is said to be:

- Uniformly Operator Convergent: If $\left(T_{n}\right)$ converges in the norm of $B(X, Y)$ to $T \in B(X, Y)$
i.e $\left\|T_{n}-T\right\| \rightarrow \mathbf{0}$
- Strongly Operator Convergent: If $\left(T_{n} x\right)$ converges strongly in Y for every $x \in X$
$\left\|T_{n} x-T x\right\| \rightarrow \mathbf{0}$
Unitary Operator: A bounded linear operator $T: H \rightarrow H$ on Hilbert space H is said to be unitary if T is bijective and
$T^{*}=T^{-1}$
Normal Operator: A bounded linear operator $T: H \rightarrow H$ on a Hilbert space is said to be normal if $T T^{*}=T^{*} T$

2.2. BASIC THEOREMS

Theorem (Cauchy-Schwarz Inequality):- If X is inner product space then

$$
|\langle x, y\rangle| \leq\langle x, x\rangle^{\frac{1}{2}}\langle y \cdot y\rangle^{\frac{1}{2}}
$$

This equality holds if and only if x and y are linearly depedent.
Proof. Continuity of Inner Product-If in an inner product $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. Then $\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle$
Reiszre-Presentation Theorem: Let φ be a continuous linear functional on a Hilbert space H. Then there is a unique $z \in H$ such that $\varphi(x)=\langle x, z\rangle$ for all $x \in H$

Bounded Inverse Theorem-Let $T: V \rightarrow W$ be a bounded, linear and bijective operator from Banach space V into Banach space W then the inverse operator $T^{-1}: W \rightarrow V$ is also bounded.

Principle of Uniform Boundness: Let $\left(T_{n}\right)$ be sequence of bounded, linear operator $T_{n}: X \rightarrow Y$ from a Banach space \boldsymbol{X} into a normed space \boldsymbol{Y} such that is bounded for every $x \in X$, say
$\left\|T_{n} x\right\| \leq C_{N} n=1,2$
Where C_{N} is real number, then the sequence of the norms $\left\|T_{n}\right\|$ is bounded, that is there is C a such that $\left\|T_{n}\right\| \leq C$
Weierstress Approximation Theorem (Polynomial) - The set of all polynomials W with real coefficient is dense in real space $C[a, b]$. Hence for every $x \in C[a, b]$ and given $\varepsilon>0$ there exist a polynomial P such that $\mid x(t)-$ $P(t) \mid<\varepsilon$ for all $t \in C[a, b]$

Proof in [1], [2] and [3]

3. SPECTRAL THEORY OF BOUNDED SELF-ADJOINT LINEAR OPERATORS

3.1. Spectral Properties of Bounded Self- Adjoint Linear Operators

3.1.1. Definition

Let H_{1} and H_{2} be complex Hilbert spaces and $\mathrm{T}: H_{1} \rightarrow H_{2}$ bounded linear operator. Then the Hilbert-adjoint operator $T^{*}: H_{2} \rightarrow H_{1}$ defined to be the operator satisfying.

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle \text { for all } x, y \in H
$$

3.1.1. Theorem

If $\left(H_{1}=H_{2}=H\right)$, then T^{*} exists as bounded linear operator of norm
$\left\|T^{*}\right\|=\|T\|$ and is unique.
Proof. Let H be complex Hilbert spaces and T^{*} be operator we need to show:

- $\quad T^{*}$ bounded.
- $\quad T^{*}$ linear operator
- $\quad T^{*}$ is unique.

Take $y \in H$ and $T \in B(H)$. We define a bounded linear functional X^{\prime} on H by $x^{\prime}(x)=\langle T x, y\rangle \forall x, y \in H \Rightarrow \mathrm{X}^{\prime}$
bounded since $\left|x^{\prime}(x)\right|=|\langle T x, y\rangle| \leq\|T x\|\|y\|$.
By Riesz-representation theorem there is unique $z \in H$ such that $x^{\prime}(x)=\langle x, z\rangle$ for all $x \in H$.here weobserve that y and z must have a certain relation so we can define an operator $T^{*} y=z$ satisfying $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all $x \in H$.

Now let's see \boldsymbol{T}^{*} Linear. Let $y_{1}, y_{2} \in H$ and $\alpha, \beta \in C$, so $\forall x \in H$

$$
\begin{aligned}
& \left\langle x, T^{*}\left(\alpha y_{1}+\beta y_{2}\right)\right\rangle=\left\langle T x, \alpha y_{1}+\beta y_{2}\right\rangle=\left\langle T x, \alpha y_{1}\right\rangle+\left\langle T x, \beta y_{2}\right\rangle \\
& =\bar{\alpha}\left\langle T x, y_{1}\right\rangle+\bar{\beta}\left\langle T x, y_{2}\right\rangle=\left\langle x, \alpha T^{*} y_{1}\right\rangle+\left\langle x, \beta T^{*} y_{2}\right\rangle=\left\langle x, \alpha T^{*} y_{1}+\beta T^{*} y_{2}\right\rangle \\
& \Rightarrow T^{*}\left(\alpha y_{1}+\beta y_{2}\right)=\alpha T^{*} y_{1}+\beta T^{*} y_{2} .
\end{aligned}
$$

$\therefore T^{*}$ Linear operator.

We want show that the uniqueness of $\left\|\boldsymbol{T}^{*}\right\|=\|\boldsymbol{T}\|$. Let $y \in H$
$\left\|T^{*} y\right\|^{2}=\left\langle T^{*} y, T^{*} y\right\rangle=\left\langle y, T T^{*} y\right\rangle \leq\|y\|\left\|T T^{*} y\right\| \leq\|y\|\|T\|\left\|T^{*} y\right\|$
$\Rightarrow\left\|T^{*} y\right\| \leq\|y\|\|T\|$, This shows that T^{*} is bounded
$\Rightarrow\left\|T^{*}\right\| \leq\|T\|$
Similarly, let $x \in H$

$$
\begin{equation*}
\|T x\|^{2}=\langle T x, T x\rangle=\left\langle x, T^{*} T x\right\rangle \leq\|x\|\left\|T^{*} T x\right\| \leq\|x\|\left\|T^{*}\right\|\|T x\| \Rightarrow\|T x\| \leq\|x\|\left\|T^{*}\right\| \tag{2}
\end{equation*}
$$

$\Rightarrow\|T\| \leq\left\|T^{*}\right\|$
Combining(1) and (2) we get
$\left\|T^{*}\right\|=\|T\|$.

3.1.2. Definition

A bounded linear operator $T: H \rightarrow H$ on acomplex Hilbert space H is said to be self-adjoint or hermitian, if $T=T^{*}$. Equivalently, a bounded linear operator T is said to be self-adjoint, if $\langle T x, y\rangle=\langle x, T y\rangle \forall x, y \in H$.

3.1.2. Theorem

Let $\mathrm{T}: H \rightarrow H$ be a bounded linear operator on a Hilbert space H . Then

- If T is self-adjoint, then $\langle T x, x\rangle$ is real for all $x \in H$
- If H is complex and $\langle T x, x\rangle$ is real for all $x \in H$, then the operator T is self-adjoint

Proof. 1. If T is self-adjoint, then for all x
$\overline{\langle T x, x\rangle}=\langle x, T x\rangle$
By definition $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ and since T is self-adjoint, we have:
$\langle T x, x\rangle=\langle x, T x\rangle$
Combining equation (1) and (2) gives

$$
\overline{\langle T x, x\rangle}=\langle T x, x\rangle
$$

Hence $\langle T x, x\rangle$ is equal to its complex conjugate which implies that it is real. If $\langle T x, x\rangle$ is real for all $x \in H$, then: $\langle T x, x\rangle=\overline{\langle T x, x\rangle}=\overline{\left\langle x, T^{*} x\right\rangle}=\left\langle T^{*} x, x\right\rangle$. Hence $0=\langle T x, x\rangle-\left\langle T^{*} x, x\right\rangle=\left\langle\left(T-T^{*}\right) x, x\right\rangle$. Thus, $T-T^{*}=0$. Therefore $T=T^{*}$

Remark 1: If T Self-adjoint or unitary, then T is normal; in general the converse is not true.
Example 1: If $I: H \rightarrow H$ is identity operator, then $T=2 i I$ is normal, since $T^{*}=-2 i I$, so that $T T^{*}=T^{*} T=4 I$ but $T \neq T^{*}$ and $T^{*} \neq T^{-1}=\frac{-1}{2}$ iI

3.1.3. Theorem

Let $T: H \rightarrow H$ be a bounded self-adjoint linear operator on complex Hilbert space H. Then:

- All the eigenvalue of T are real.
- Eigenvectors corresponding to distinct eigenvalue of T are mutually orthogonal.

Proof. a): Let λ be any eigenvalue of T and x a corresponding eigenvectors. Then $x \neq 0$ \& $T x=\lambda x \Rightarrow \lambda\langle x, x\rangle=$ $\langle\lambda x, x\rangle=\langle T x, x\rangle=\left\langle x, T^{*} x\right\rangle=\langle x, T x\rangle=\langle x, \lambda x\rangle=\bar{\lambda}\langle x, x\rangle$, using the self-adjointness of T .
$\Rightarrow \lambda\langle x, x\rangle-\bar{\lambda}\langle x, x\rangle=0$
$\Rightarrow(\lambda-\bar{\lambda})\langle x, x\rangle=0$. Here $\langle x, x\rangle=\|x\|^{2} \neq 0$
$\therefore \lambda=\bar{\lambda}$

- Let $\lambda \& \mu$ be eigenvalues of T and let x and y be corresponding eigenvectors. Then $T x=\lambda x$ and $T y=\mu y$ since

T is self-adjiont and μ real.
$\lambda\langle x, y\rangle=\langle\lambda x, y\rangle=\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle=\langle x, T y\rangle=\langle x, \mu y\rangle=\mu\langle x, y\rangle$
$\Rightarrow \lambda\langle x, y\rangle-\mu\langle x, y\rangle=0$
$\Rightarrow(\lambda-\mu)\langle x, y\rangle=0, \lambda \neq \mu$
$\therefore\langle x, y\rangle=0$ i.e $x \perp y$
Example 4: $T=\left(\begin{array}{cc}2 & 1-i \\ 1+i & 1\end{array}\right)$
Spectrum of $(\lambda)=\{0,3\}$ distinct real numbers with eigenvectors.
$x_{1}=\left[\begin{array}{c}-1+i \\ 2\end{array}\right]$ and $x_{2}=\left[\begin{array}{c}1-i \\ 1\end{array}\right]$ respectively
Finally $\left\langle x_{1}, x_{2}\right\rangle=x_{1}{ }^{T} \overline{x_{2}}=[-1+i 2]\left[\begin{array}{c}1+i \\ 1\end{array}\right]=0$. So the eigenvectors are orthogonal.

3.1.4. Theorem

Let $T: H \rightarrow H$ be a bounded self -adjoint linear operator on a complex Hilbert space H. Then a number λ belongs to the resolvent set $\rho(T)$ of T if and only if there exists a $c>0$ such that for ever $x \in H$

$$
\left\|T_{\lambda} x\right\| \geq c\|x\| T_{\lambda}=T-\lambda I
$$

Proof: \Rightarrow) Suppose that $\lambda \epsilon \rho(T), R_{\lambda}=T_{\lambda}^{-1}: H \rightarrow H$ exists and is bounded set $\left\|R_{\lambda}\right\|=k$ where $k>0$, since $R_{\lambda} \neq 0$ now $\mathrm{I}=R_{\lambda} T_{\lambda}$, so that for every $x \in H$

$$
\begin{aligned}
& \Rightarrow T_{\lambda} x=y, \Rightarrow x=T_{\lambda}^{-1} y, \text { since } R_{\lambda}=T_{\lambda}^{-1} \\
& \Rightarrow x=R_{\lambda} T_{\lambda} x \\
& \Rightarrow\|x\|=\left\|R_{\lambda} T_{\lambda} x\right\| \leq\left\|R_{\lambda}\right\|\left\|T_{\lambda} x\right\|=k\left\|T_{\lambda} x\right\| \\
& \Rightarrow\|x\| \leq k\left\|T_{\lambda} x\right\| \\
& \Rightarrow\left\|T_{\lambda} x\right\| \geq \frac{1}{k}\|x\|, \text { where } c=\frac{1}{k} \\
& \therefore\left\|T_{\lambda} x\right\| \geq c\|x\|
\end{aligned}
$$

3.1.5. Theorem

The spectrum $\sigma(T)$ of a bounded self-adjoint linear operator T : $H \rightarrow H$ on a complex Hilbert space H is real.
Proof: By theorem 2.1.5 we show that a $\lambda=\alpha+i \beta$ (α, β real) with $\beta \neq 0$ which belongs to $\rho(T)$ so that $\sigma(T) \subset \mathbb{R}$.
$\left\langle T_{\lambda} x, x\right\rangle=\langle T x, x\rangle-\lambda\langle x, x\rangle$ for all $x \in H$
Since $\langle T x, x\rangle$ and $\langle x, x\rangle$ are real
$\overline{\left\langle T_{\lambda} x, x\right\rangle}=\langle T x, x\rangle-\bar{\lambda}\langle x, x\rangle$, here $\bar{\lambda}=\alpha-i \beta$
Subtract equation (2) from (1)
$\overline{\left\langle T_{\lambda} x, x\right\rangle}-\left\langle T_{\lambda} x, x\right\rangle=(\lambda-\bar{\lambda})\langle x, x\rangle=2 i \beta\|x\|^{2}$
So that
$-2 i \operatorname{Im}\left\langle T_{\lambda} x, x\right\rangle=2 i \beta\|x\|^{2}$
$-\operatorname{Im}\left\langle T_{\lambda} x, x\right\rangle=\beta\|x\|^{2}$
$|\beta|\|x\|^{2}=\left|\operatorname{Im}\left\langle T_{\lambda} x, x\right\rangle\right| \leq\left\|T_{\lambda} x\right\|\|x\|$
$|\beta|\|x\| \leq\left\|T_{\lambda} x\right\|$, for $\|x\| \neq 0$.
If $\beta \neq 0$, then $\lambda \in \rho(T)$. Hence for $\lambda \in \sigma(T)$ we must have $\beta=0$. i.e λ is real

3.2 Further Spectral Properties of Bounded Self-Adjoint Linear Operators

3.2.1 Theorem

The spectrum $\sigma(T)$ of a bounded self-adjoint linear operator $T: H \rightarrow H$ on a complex Hilbert space H lies in the closed interval $[\mathrm{m}, \mathrm{M}]$ on the real axis, where

$$
m=\inf _{\|x\|=1}\langle T x, x\rangle M=\sup _{\|x\|=1}\langle T x, x\rangle
$$

Proof: $\sigma(T)$ lies on the real axis. We show that any real $\lambda=M+c$ with $c>0$ belongs to the resolvent set $\rho(T)$. For every $x \neq 0$ and $v=\|x\|^{-1} x$ we have $x=\|x\| v$ and
$\langle T x, x\rangle=\|x\|^{2}\langle T v, v\rangle \leq\|x\|^{2} \sup _{\|\widetilde{v}\|=1}\langle T \widetilde{v}, \tilde{v}\rangle=\langle x, x\rangle M$
Hence $-\langle T x, x\rangle \geq-\langle x, x\rangle M$ and by Cauchy-Schwartz inequality we obtain
$\left\|T_{\lambda} x\right\|\|x\| \geq-\left\langle T_{\lambda} x, x\right\rangle=-\langle T x, x\rangle+\lambda\langle x, x\rangle=-\langle x, x\rangle M+\lambda\langle x, x\rangle$
$\geq(-M+\lambda)\langle x, x\rangle=C\|x\|^{2}$
$\Rightarrow\left\|T_{\lambda} x\right\|\|x\| \geq C\|x\|^{2},\|x\| \neq 0$
$\left\|T_{\lambda} x\right\| \geq C\|x\|$
$\therefore \lambda \in \rho(T)$

3.2.2 Theorem

For any bounded self-adjoint linear operator T on a complex Hilbert space H we have:
$\|T\|=\max (|m|,|M|)=\sup _{\|x\|=1}|\langle T x, x\rangle|$
Proof. By the Cauchy-Schwarz inequality
$\sup _{\|x\|=1}|\langle T x, x\rangle| \leq \sup _{\|x\|=1}\|T x\|\|x\|=\|T\|$, where $K=\sup _{\|x\|=1}|\langle T x, x\rangle|$. Hence, $K \leq\|T\|$
We want show $\|T\| \leq K$. If $T z=0$, then $0 \leq K\|z\|^{2} \Rightarrow\|T z\| \leq K \forall z \in H,\|z\|=1$. Otherwise $T z \neq 0$ for any z of norm 1. $v=\|T z\|^{\frac{1}{2}} z$ and $w=\|T z\|^{-\frac{1}{2}} T z$. Now set $y_{1}=\mathrm{v}+\mathrm{w}$ and $y_{2}=v-w$. T is self-adjoint
$\left\langle T y_{1}, y_{1}\right\rangle-\left\langle T y_{2}, y_{2}\right\rangle=2(\langle T v, w\rangle+\langle T w, v\rangle)$
$=2\left(\langle T z, T z\rangle+\left\langle T^{2} z, z\right\rangle\right)$
$=2(\langle T z, T z\rangle+\langle T z, T z\rangle)$
$=2(2\langle T z, T z\rangle)=4\langle T z, T z\rangle=4\|T z\|^{2}$
Now for every $y \neq 0$ and $x=\|y\|^{-1} y$ we have $y=\|y\| x$ and
$|\langle T y, y\rangle|=\|y\|^{2}|\langle T x, x\rangle| \leq\|y\|^{2} \sup _{\|\tilde{x}\|=1}|\langle T \tilde{x}, \tilde{x}\rangle|=K\|y\|^{2}$, so that by the triangle inequality.
$\left|\left\langle T y_{1}, y_{1}\right\rangle-\left\langle T y_{2}, y_{2}\right\rangle\right| \leq\left|\left\langle T y_{1}, y_{1}\right\rangle\right|+\left|\left\langle T y_{2}, y_{2}\right\rangle\right|$
$\leq K\left(\left\|y_{1}\right\|^{2}+\left\|y_{2}\right\|^{2}\right) \leq 2 K\left(\|v\|^{2}+\|w\|^{2}\right)=4 K\|T z\|$
Combining (1) and (2) we get

```
\(4\|T z\|^{2} \leq 4 K\|T z\|,\|T z\| \neq 0\)
\(\|T z\| \leq K\) by taking supremum over all \(z\) of norm \(1 .\|T\| \leq K\) and \(K \leq\|T\|\)
\(\|T\|=K=\max (|m|,|M|)=\sup _{\|x\|=1}|\langle T x, x\rangle|\)
```


3.2.3 Theorem.

The residual spectrum $\sigma_{r}(T)$ of a bounded self-adjoint linear operator $T: H \rightarrow H$ on a complex Hilbert space H is empty

Proof. Suppose not $\sigma_{r}(T) \neq \emptyset$. Let $\lambda \in \sigma_{r}(T)$. By definition of $\sigma_{r}(T)$, the inverse of T_{λ} exists but its domain $\mathfrak{D}\left(T_{\lambda}^{-1}\right)$ is not dense in H. Hence, by the projection theorem there is a $y \neq 0 \epsilon H$ which is orthogonal to $\mathfrak{D}\left(T_{\lambda}^{-1}\right)$, but $\mathfrak{D}\left(T_{\lambda}^{-1}\right)$ is a range of T_{λ}, hence, $\left\langle T_{\lambda} x, y\right\rangle=0, \forall x \in H$. since λ is real and T self-adjoint, we obtain $\left\langle x, T_{\lambda} y\right\rangle=0 \forall x$. Taking $x=T_{\lambda} y$ we get $\left\|T_{\lambda} y\right\|^{2}=0$, so that $T_{\lambda} y=T y-\lambda y=0$, since $y \neq 0$. This shows that λ is an eigenvalue of T, but contradicts $\lambda \in \sigma_{r}(T)$. Therefore $(T)=\varnothing$

3.3 Positive Operators

In this section we can see the definition of partial order is a binary relation " \leq " over a set P which is reflexive, antisymmetric, and transitive i.e $\forall a, b, c \in P$. We have that:

- $\quad a \leq a$ (Reflexive)
- if $a \leq b$ and $b \leq a$ then $a=b$ (Antisymmetrive)
- if $a \leq b$ and $b \leq c$ then $a \leq c$ (Transitive)

3.3.1. Definition.

Abounded linear operator $T: H \rightarrow H$ is called a positive operator if and only if T self-adjoint and $\langle T x, x\rangle \geqq$ 0 for all $x \in H$. A bounded linear operator $T: H \rightarrow H$ is said to be positive, written
$T \geqq 0$ if and only if $\langle T x, x\rangle \geqq 0$ for all $x \in H$
Remark 2: The sum of positive operators is positive. Every positive operator on a complex Hilbert space is selfadjoint.

The following theorem is like the familiar statement about real numbers which says that when you multiply two non-negative real numbers the result is a non-negative real numbers.

3.3.1 Theorem

Let S and T be a positive and self-adjoint such that $S T=T S$. Then their product $S T$ is also self-adjoint and positive.

Proof. Since $(S T)^{*}=T^{*} S^{*}=T S$ we see that $S T$ is self-adjoint if and only if $S T=T S$. We show that $S T$ is positive. This is true for $n=0$. Assume it is true for any n. We consider

$$
S_{1}=\frac{1}{\|S\|} S, S_{n+1}=S_{n}-S_{n}^{2}(n=1,2,3 \ldots \ldots)\left(^{*}\right)
$$

and prove by induction such that $0 \leqq S_{n} \leqq \quad I^{(* *)}$

- For $n=1$ the inequality $(* *)$ holds. Indeed, the assumption $0 \leqq S$ implies $S_{1} \leqq I$ is obtained by application of the Schwarz inequality $\|S x\| \leqq\|s\|\|x\|$
$\left\langle S_{1} x, x\right\rangle=\frac{1}{\|S\|}\langle S x, x\rangle \leqq \frac{1}{\|S\|}\|s x\|\|x\| \leqq\|x\|^{2}=\langle I x, x\rangle$
$\Rightarrow S_{1} \leqq I$.
Suppose ($* *$) holds for any $=k$ that is $0 \leqq S_{k} \leqq I$.Thus, $0 \leqq I-S_{k} \leqq I$.
Since S_{k} is self-adjoint, for every $x \in H \& y=S_{k} x$, we obtain
$\left\langle S_{k}{ }^{2}\left(I-S_{k}\right) x, x\right\rangle=\left\langle\left(I-S_{k}\right) S_{k} x, S_{k} x\right\rangle=\left\langle\left(I-S_{k}\right) y, y\right\rangle \geqq 0$.
By definition this proves $S_{k}{ }^{2}\left(I-S_{k}\right) \geqq 0$. Similarly, $S_{k}\left(I-S_{k}\right)^{2} \geqq 0$.
Since S_{k} is self-adjiont. It is clear that from remark (2) sum of positive operator is positive.
$0 \leqq S_{k}{ }^{2}\left(I-S_{k}\right)+S_{k}\left(I-S_{k}\right)^{2}=S_{k}-S_{k}{ }^{2}=S_{k+1}$.
Hence $0 \leqq S_{k+1}$ and $S_{k+1} \leqq I$ follows from $S_{k}{ }^{2} \geqq 0$ and $I-S_{k} \geqq 0$
- We now show that $\langle S T x, x\rangle \geqq 0$ for all $x \in H$. Form (**) we obtain successively
$S_{1}=S_{1}{ }^{2}+S_{2}, S_{2}=S_{2}{ }^{2}+S_{3}, S_{3}=S_{3}{ }^{2}+S_{4}, S_{4}=S_{1}{ }^{2}+S_{2}{ }^{2}+S_{3}{ }^{2}+S_{4}, \cdots$,
$S_{n}=S_{1}{ }^{2}+{S_{2}}^{2}+{S_{3}}^{2}+{S_{4}}^{2}+\cdots+S_{n}{ }^{2}+S_{n+1}$
Since $S_{n+1} \geqq 0$ this implies
$S_{1}{ }^{2}+S_{2}{ }^{2}+S_{3}{ }^{2}+S_{4}{ }^{2}+\cdots+S_{n}{ }^{2}=S_{1}-S_{n+1} \leqq S_{1}$
By the definition of \leqq and self-adjiontness of $S_{j}{ }^{\prime} s$
$\sum_{j=1}^{n}\left\|S_{j} x\right\|^{2}=\sum_{j=1}^{n}\left\langle S_{j} x, S_{j} x\right\rangle=\sum_{j=1}^{n}\left\langle S_{j}^{2} x, x\right\rangle \leqq\left\langle S_{1} x, x\right\rangle$
Since n is arbitrary, the infinite series $\left\|S_{1} x\right\|^{2}+\left\|S_{2} x\right\|^{2}+\cdots$
$\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left\|S_{j} x\right\|^{2}=\left\|S_{1} x\right\|^{2}$. Hence $\lim _{n \rightarrow \infty} S_{n} x=S x .\left(\sum_{j=1}^{n} S_{j}^{2}\right) x=\left(S_{1}-S_{n+1}\right) x \rightarrow S_{1} x$
$\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{n} S_{j}^{2}\right) x=\lim _{n \rightarrow \infty}\left(S_{1}-S_{n+1}\right) x \rightarrow S_{1} x$.
All the $S_{j}{ }^{\prime} s$ commute with T since they are sums and product of $S_{1}=\|S\|^{-1} S, S$ and T commute. Using $S=$ $\|S\| S_{1},\left(\sum_{j=1}^{n} S_{j}^{2}\right) x=\left(S_{1}-S_{n+1}\right) x \rightarrow S_{1} x, T \geqq O$ and the continutity of inner product, we thus obtain for every $x \in$ H and $y_{j}=S_{j} x\langle S T x, x\rangle=\|S\|\left\langle T S_{1} x, x\right\rangle=\|S\| \lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left\langle T S_{j}^{2} x, x\right\rangle=\|S\| \lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left\langle T y_{j}, y_{j}\right\rangle \geqq 0$
$\therefore\langle S T x, x\rangle \geqq 0$, then $S T$ are positive.

3.3.2. Definition

A monotone sequence $\left(T_{n}\right)$ of self-adjoint linear operators T_{n} on Hilbert space H is a sequence $\left(T_{n}\right)$ which is either
monotone increasing, that is,
$T_{1} \leqq T_{2} \leqq T_{3} \leqq \cdots$
Or monotone decreasing, that is,
$T_{1} \geqq T_{2} \geqq T_{3} \geqq \cdots$
The following theorem is a generalization of the familiar fact that if you have an increasing sequence of real numbers which is bounded above, then the sequence converges

3.3.2. Theorem

$\operatorname{Let}\left(T_{n}\right)$ be a sequence of bounded self-adjoint linear operators on a complex Hilbert space H such that
$T_{1} \leqq T_{2} \leqq T_{3} \leqq \cdots T_{n} \leqq \cdots \leqq K(*)$.
Where K is bounded self-adjointlinear operator on H. Suppose that any T_{j} commutes with K and with every T_{m}. Then (T_{n}) is strongly operator convergent $\left(T_{n} x \rightarrow T x\right.$ for all $\left.x \in H\right)$ and limit operator T is linear, bounded and selfadjoint and satisfies $T \leqq K$.

Proof. We consider $S_{n}=K-T_{n}$. The sequence $\left(\left\langle S_{n}{ }^{2} x, x\right\rangle\right)$ converges $\forall x \in H ; T_{n} x \rightarrow T x$, where T is linear, selfadjoint and bounded by uniform boundnees theorem $\left\langle S_{n}{ }^{2} x, x\right\rangle=\left\langle S_{n} x, S_{n} x\right\rangle=\left\langle x, S_{n}{ }^{2} x\right\rangle$. Therefore, S_{n} is self-adjoint? $S_{m}{ }^{2}-S_{n} S_{m}=\left(S_{m}-S_{n}\right) S_{m}=\left(T_{n}-T_{m}\right)\left(k-T_{m}\right)$. Let $m<n$. Then $T_{n}-T_{m}$ and $K-T_{m}$ are positive by (*), since these operators commute, their product is positive. Hence on the left $S_{m}{ }^{2}-S_{n} S_{m} \geqq 0$, that is $S_{m}{ }^{2} \geqq S_{n} S_{m}$ for $m<n$.

Similarly $S_{n} S_{m}-S_{n}{ }^{2}=S_{n}\left(S_{m}-S_{n}\right)=\left(k-T_{n}\right)\left(T_{n}-T_{m}\right) \geqq 0$. So that $S_{n} S_{m} \geqq S_{n}{ }^{2}$, together $S_{m}{ }^{2} \geqq S_{n} S_{m} \geqq$ $S_{n}{ }^{2}, m<n$. By definition, using the self-adjointness of S_{n}

$$
\left\langle S_{m}{ }^{2} x, x\right\rangle \geqq\left\langle S_{n} S_{m} x, x\right\rangle \geqq\left\langle S_{n}{ }^{2} x, x\right\rangle=\left\langle S_{n} x, S_{n} x\right\rangle=\left\|S_{n} x\right\|^{2} \geqq 0 .(* *)
$$

This show that $\left(\left\langle S_{n}{ }^{2} x, x\right\rangle\right)$ with fixed x is a monotone decreasing sequence of non-negative numbers. Hence, $\left(\left\langle S_{n}{ }^{2} x, x\right\rangle\right)$ converges $\forall x \in H$.

We show that $T_{n} x \rightarrow T x$ is converges. By assumption, every T_{n} commute withevery T_{m} and with K . Hence the $S_{j}^{\prime} s$ all commute. These operators are self-adjoint, since $-2\left\langle S_{n} S_{m} x, x\right\rangle \leqq-2\left\langle S_{n}{ }^{2} x, x\right\rangle$ by $(* *)$ where $m<n$

$$
\begin{aligned}
& \left\|S_{m} x-S_{n} x\right\|^{2}=\left\langle\left(S_{m}-S_{n}\right) x,\left(S_{m}-S_{n}\right) x\right\rangle \\
& =\left\langle\left(S_{m}-S_{n}\right)^{2} x, x\right\rangle \\
& =\left\langle S_{m}{ }^{2} x, x\right\rangle-2\left\langle S_{n} S_{m} x, x\right\rangle+\left\langle S_{n}{ }^{2} x, x\right\rangle \\
& \leqq\left\langle S_{m}{ }^{2} x, x\right\rangle-\left\langle S_{n}{ }^{2} x, x\right\rangle .
\end{aligned}
$$

Since $\left(S_{n} x\right)$ is Cauchy sequence in H is completes. We show that T is self-adjoint because T_{n} is self-adjoint and the inner product is continuous.

$$
\langle T x, x\rangle=\lim _{n \rightarrow \infty}\left\langle T_{n} x, x\right\rangle=\lim _{n \rightarrow \infty}\left\langle x, T_{n} x\right\rangle=\langle x, T x\rangle .
$$

We show that T is bounded. Now we must show that T is bounded and $\left(T_{n} x\right)$ converges to it $\sup _{n}\left\|T_{n} x\right\|$ must be finite for every x, there is M such that $M>0$.

```
\(\Rightarrow\left\|T_{n}\right\| \leq M, \forall n\)
\(\Rightarrow\left\|T_{n} x\right\| \leq M\|x\|\)
\(\Rightarrow \lim _{n \rightarrow \infty}\left\|T_{n} x\right\| \leq M\|x\|\) this implies \(\|T x\| \leq M\|x\|\).
```

Hence T is bounded, by uniform boundness theorem. Finally $\langle T x, x\rangle=\lim _{n \rightarrow \infty}\left\langle T_{n} x, x\right\rangle \leqq\langle K x, x\rangle$. Therefore $T \leqq K$

3.4. Square Roots of Positive Operators

3.4.1. Definition

Let $T: H \rightarrow H$ be positive bounded self-adjoint linear operator on complex Hilbert space H. Then a bounded selfadjoint operator A is called a square root of T if, $A^{2}=T$. In addition, $A \geqq 0$, then A is called a positive square root of T and is denoted by $A=T^{\frac{1}{2}}$ exists and unique.

3.4.1. Theorem

Every positive bounded self-adjoint linear operator $T: H \rightarrow H$ on a complex Hilbert space H has a positive square root A , which is unique. This operator A commutes with every bounded linear operator on H which commutes with T.

Proof. a) We show that if the theorem holds under the additional assumption $T \leqq I$ it also holds without that assumption. If $T=0$, we can take $A=T^{\frac{1}{2}}=0$. Let $T \neq 0$ by Cauchy-Schwarz inequality.

$$
\langle T x, x\rangle \leqq\|T x\|\|x\| \leqq\|T\|\|x\|^{2}=\langle I x, x\rangle
$$

$\left\langle\frac{T}{\|T\|} x, x\right\rangle=\langle I x, x\rangle$, since $\|T\| \neq 0$ set $Q=\left(\frac{1}{\|T\|}\right)$, We obtain
$\langle Q x, x\rangle \leqq\|x\|^{2}=\langle I x, x\rangle$ that is $Q \leqq I$.
Assuming that Q has a unique positive square root. $B=Q^{\frac{1}{2}}$ we have $B^{2}=Q$ and $T=\|T\| Q \Rightarrow T^{\frac{1}{2}}=\|T\|^{\frac{1}{2}} Q^{\frac{1}{2}}=$ $T^{\frac{1}{2}} B=\|T\| B^{2}=\|T\| Q=T$. Hence if we prove the theorem under the additional assumption $T \leqq I$.

- We obtain the existence of the operator $A=T^{\frac{1}{2}}$ from $A_{n} x \rightarrow A x$ where $A_{0}=0$ \&

$$
A_{n+1}=A_{n}+\frac{1}{2}\left(T-A_{n}^{2}\right) n=0,1,2, \ldots(i)
$$

We consider (i), since $A_{0}=0$, we have $A_{1}=\frac{1}{2} T, A_{2}=T-\frac{1}{8} T^{2} \ldots$,

$$
A_{n+1}=A_{n}+\frac{1}{2}\left(T-A_{n}^{2}\right) n=0,1,2, \ldots
$$

Each A_{n} is polynomial in T, and they also commutes with T. We now prove

$$
\begin{equation*}
A_{n} \leqq I n=0,1,2, \ldots \tag{ii}
\end{equation*}
$$

$$
\begin{align*}
& A_{n} \leqq A_{n+1} n=0,1,2, \ldots \tag{iii}\\
& A_{n} x \rightarrow A x, A=T^{\frac{1}{2}} \tag{iv}\\
& S T=T S, \Rightarrow A S=S A \tag{v}
\end{align*}
$$

Where S is a bounded linear operator on H.
Proof $(\boldsymbol{i i})$. This is true for $n=0$. Assume true for n. Since $I-A_{n-1}$ is self-adjoint
$\left(I-A_{n-1}\right)^{2} \geqq 0$. Also $T \leqq I$. This implies $I-T \geqq 0$. From this (i)and we obtain(ii).
$0 \leqq \frac{1}{2}\left(I-A_{n-1}\right)^{2}+\frac{1}{2}(I-T)=I-A_{n-1}-\frac{1}{2}\left(T-A_{n-1}{ }^{2}\right)=I-A_{n}$.
$\Rightarrow 0 \leqq I-A_{n}$.
Proof (iii). We use induction (i) gives $0=A_{0} \leqq A_{1}=\frac{1}{2} T$
We show that $A_{n-1} \leqq A_{n}$ for fixed n implies $A_{n} \leqq A_{n+1}$ from (i) we have;

$$
\begin{aligned}
& A_{n+1}-A_{n}=A_{n}+\frac{1}{2}\left(T-A_{n}^{2}\right)-A_{n-1}-\frac{1}{2}\left(T-A_{n-1}{ }^{2}\right) \\
& =A_{n}-\frac{1}{2} A_{n}{ }^{2}-A_{n-1}+\frac{1}{2} A_{n-1}{ }^{2} \\
& =A_{n}-A_{n-1}-\frac{1}{2} A_{n}{ }^{2}+\frac{1}{2} A_{n-1}{ }^{2} \\
& \geqq\left(A_{n}-A_{n-1}\right)\left[\left[-\frac{1}{2}\left(A_{n}+A_{n-1}\right)\right]\right. \\
& \left.=\left(A_{n}-A_{n-1}\right) I-\frac{1}{2}(2 I)\right]=0 .
\end{aligned}
$$

Hence $A_{n}-A_{n-1} \geqq 0$ and $\left(I-\frac{1}{2}\left(A_{n}+A_{n-1}\right) \geqq 0\right.$.
Therefore $A_{n} \leqq A_{n+1} n=0,1,2, \ldots$
Proof (iv). $\left(A_{n}\right)$ Monotone increasing by (iii) and $A_{n} \leqq I$ by(ii). Hence (by the theorem monotone sequence) implies the existence of a bounded self-adjoint linear operator A. Such that $A_{n} x \rightarrow A x$ for all $x \in H$, since $\left(A_{n} x\right)$ converges (i) gives

$$
\begin{aligned}
& A_{n+1} x-A_{n} x=\frac{1}{2}\left(T x-A_{n}{ }^{2} x\right) \rightarrow 0 \text { as } n \rightarrow \infty \\
& T x-A^{2} x=0 \forall x . \\
& T x=A^{2} x, x \neq 0 . \text { Hence } T=A^{2} . \text { Also } A \geqq 0 . \text { Because } 0=A_{0} \leqq A_{n} \text { by (iii) } \\
& \Rightarrow \lim _{n \rightarrow \infty}\left\langle A_{n} x, x\right\rangle=\lim _{n \rightarrow \infty}\left\langle x, A_{n} x\right\rangle=\langle x, A x\rangle=\langle A x, x\rangle \geqq 0, \text { by continuity of inner product }
\end{aligned}
$$

$\operatorname{Proof}(\boldsymbol{v})$. Let $S \in L(H, H)$ be any linear operator that commute with $A . S A_{n}=A_{n} S, \forall n$
Since $A_{n} \rightarrow A, A_{n} S x \rightarrow A S x$. Using continuity of inner product of S,
$\lim _{n \rightarrow \infty} S A_{n} x=S \lim _{n \rightarrow \infty} A_{n} x=S A x=\lim _{n \rightarrow \infty} A_{n} S x=A S x$. Hence $S T=T S \Rightarrow A S=S A$

- Uniqueness: Let both A and B be positive square root of T. Then $A^{2}=B^{2}=T$. Also $B T=B^{2} B=B B^{2}=T B$. So that $A B=B A$ by (v). Let $x \in H$ be arbitrary and $y=(A-B) x$. Then $\langle A y, y\rangle \geqq 0 \&\langle B y, y\rangle \geqq 0$, because $A \geqq$ $0 \& B \geqq 0$. Using $A B=B A \& A^{2}=B^{2}$ we obtain $\langle A y, y\rangle+\langle B y, y\rangle=\langle(A+B) y, y\rangle=\left\langle\left(A^{2}-B^{2}\right) x, y\right\rangle=0$.

Hence $\langle A y, y\rangle=\langle B y, y\rangle=0$, since $A \geqq 0$ and A is self-adjoint. It has itself a positive square root C, that is $C^{2}=A$ and C is self-adjoint. We obtain: $0=\langle A y, y\rangle=\left\langle C^{2} y, y\right\rangle=\langle C y, C y\rangle=\|C y\|^{2}$ and $C y=0$, also $A y=C^{2} y=$ $C(C y)=0$.

Similarly, $B \geqq 0$ and B is self-adjoint, it has itself a positive square root D. That is $D^{2}=B$ and D is selfadjiont. $0=\langle B y, y\rangle=\left\langle D^{2} y, y\right\rangle=\langle D y, D y\rangle=\|D y\|^{2} \& D y=0$, also $B y=D^{2} y=D(D y)=0$. Hence $B y=0$, since $B \geqq$ 0 . Hence $(A-B) y=0$, using $y=(A-B) x, \forall x \in H . \quad\|A x-B x\|^{2}=\left\langle(A-B)^{2} x, x\right\rangle=\langle(A-B) y, x\rangle=0$. Hence $A=B$. Then A is unique.

Example 5

Let $T: L^{2}(0,1) \rightarrow L^{2}(0,1)$ be a linear operator defined by
$T f(x)=x f(x)$ for all $f \in L^{2}(0,1)$, for all $x \in(0,1)$

- Show that T is a positive operator.
- Find the lower and upper bounds of T.
- Find norm of T.

Solution. (a) For all $f \in L^{2}(0,1)$ we have that. T is self-adjoint
$\langle T f, g\rangle=\int_{0}^{1} x f(x \overline{g(x)}) d x=\int_{0}^{1} f(x) \overline{x g(x)} d x=\langle f, T g\rangle \forall f, g \in L^{2}(0,1)$
$\langle T f, f\rangle=\int_{0}^{1} x f(\overline{x f(x)})=\int_{0}^{1} x|f(x)|^{2} d x \geqq 0$.
Therefore T is positive operator.

- First we Notice that
$M=\sup _{\|f\|=1}\langle T f, f\rangle=\sup _{\|f\|=1} \int_{0}^{1} x|f(x)|^{2} d x \leqq \sup _{\|f\|=1} \int_{0}^{1}|f(x)|^{2} d x=1$
We prove that $M=1$, consider
$f_{\varepsilon}(x)=\left\{\begin{array}{c}0, \text { if } x \in[0,1-\varepsilon) \\ \varepsilon^{\frac{-1}{2}}, \text { if } x \in[1-\varepsilon, 1]\end{array}\right.$.
$\Rightarrow\|f\|^{2}=\int_{1-\varepsilon}^{1} \varepsilon^{-1} d x=1 \&$
$M=\left\langle T f_{\varepsilon}, f_{\varepsilon}\right\rangle=\int_{0}^{1} x\left|f_{\varepsilon} x\right|^{2} d x=\int_{1-\varepsilon}^{1} \frac{x}{\varepsilon} d x=\left.\frac{x^{2}}{2 \varepsilon}\right|_{1-\varepsilon} ^{1}=\frac{1-(1-\varepsilon)^{2}}{2 \varepsilon}=1$
$M=1$.
We proceed similarly in order to prove that $m=\inf f_{\|f\|=1}\langle T f, f\rangle=0$ using the function
$g_{\varepsilon}(x)=\left\{\begin{array}{r}\varepsilon^{\frac{-1}{2}}, \text { if } x \in[0, \varepsilon] \\ 0, \text { if } x \in[\varepsilon, 1]\end{array}\right.$
Hence, $m=0$
(c) $\|T\|=\max (|m|,|M|)=\sup _{\|f\|=1}|\langle T f, f\rangle|=1$

4. PROJECTIONS

4.1.1 Definition

Let H be a Hilbert space over Complex number. A bounded linear operator P on is H called:

- a projection, if $P^{2}=\mathrm{P}$
- An orthogonal projection, if $P^{2}=\mathrm{P}$ and $\mathrm{P}^{*}=\mathrm{P}$.

Note

The range Ran $(P)=P(H)$ of a projection on a Hilbert space H always is a closed linear subspace of H on which P acts like the identity. If in addition P is orthogonal, then P acts like zero operator on $(R(P))^{\perp}$.

If $x=y+z$ with $y \in R(P)$ and $z \in(R(P))^{\perp}=\mathcal{N}(P)$ is the decomposition guaranteed by the projection theorem, then $P x=y$. Thus the projection theorem sets up a one -to -one correspondence between orthogonal projection and closed linear subspaces.

$$
x=y+z=P x+(I-P) x
$$

This show that the projection of H onto Y^{\perp} is $I-P$

4.1.1. Theorem

A bounded linear operator $P: H \rightarrow H$ on a Hilbert space H is a projection if and only if P is self-adjoint and idempotent.

Proof. (\Rightarrow) Suppose that P is a projection on H and denote $P(H)$ by Y. Then $P^{2}=P$ because for every $x \in$ H and $P x=y \in Y$ we have; $P^{2} x=P y=y$, hence $P^{2} x=P x \Rightarrow P^{2}=P$ is idempotent. Now consider any two vectors $x_{1}, x_{2} \in H$, from decomposition we can write $x_{1}=y_{1}+z_{1}$ and $x_{2}=y_{2}+z_{2}$, where $y_{1}, y_{2} \in Y=R(P)$ and $z_{1}, z_{2} \in Y^{\perp}=$ $N(P)$. Then, $\left\langle y_{1}, z_{2}\right\rangle=\left\langle y_{2}, z_{1}\right\rangle=0$, because $Y \perp Y^{\perp}$. We show that P is self-adjoint; $\left\langle P x_{1}, x_{2}\right\rangle=\left\langle y_{1}, y_{2}+z_{2}\right\rangle=$ $\left\langle y_{1}, y_{2}\right\rangle=\left\langle y_{1}+z_{1}, y_{2}\right\rangle=\left\langle x_{1}, P x_{2}\right\rangle$. Hence, P is self-adjoint.
(\Leftarrow) Suppose that P is self-adjoint and idempotent, denoted $P(H)$ by Y. Then for every $x \in H$
$x=P x+(I-P) x$
Orthogonality; $Y=P(H) \perp(I-P)(H)$, follows from:
$\langle P x,(I-P) v\rangle=\langle x, P(I-P) v\rangle=\left\langle x, P v-P^{2} v\right\rangle=\langle x, 0\rangle=0$.
Let, $Q=(I-P), y \subset \operatorname{ker} Q$ can see from $Q P x=P x-P^{2} x=Q P x=0$. Next, $y \supset \operatorname{ker} Q, Q x=x-P x \Rightarrow$ $Q x=x$. Hence $Y=\{0\}$, since $\{0\}$ is closed, so inverse image $\{x: Q P x=0\}=\operatorname{ker} Q$. Hence Y is closed subspace of H.

Therefore, Y is projection on H.

4.1.2. Theorem

For any projection Y on a Hilbert space H.

- $\langle P x, x\rangle=\|P x\|^{2}$
- $0 \leq P \leq I$
- $\|P\| \leqq 1 ;\|P\|=1$ if $P(H) \neq\{0\}$

Proof.

- $\langle P x, x\rangle=\left\langle P^{2} x, x\right\rangle=\langle P x, P x\rangle=\|P x\|^{2}$
- $0 \leq\|P x\|^{2}=\langle P x, P x\rangle=\langle P x, x\rangle \leq\|x\|^{2}=\langle x, x\rangle=I \Rightarrow 0 \leq P \leq I$
- By using Schwarz inequality;
$\langle P x, x\rangle \leqq\|x\|^{2}$
$\|P x\|^{2} \leqq\|x\|^{2}$, since $\|x\| \neq 0$
$\|P\| \leqq 1, \forall x \in H$
$\|P x\|=\|P(P x)\| \leqq\|P\|\|P x\|$
$\|P x\| \leqq\|P\|\|P x\|$, since $\|P\| \neq 0$
$1 \leqq\|P\| \ldots$
By combining (1) and (2) we get ; $\|P\|=1$

4.1.3. Theorem

Products projections on Hilbert space H are satisfying the following two conditions:

- $\quad P=P_{1} P_{2}$ is projection on H if and only if the projections P_{1} and P_{2} commute. Then P projects H onto $Y=$ $Y_{1} \cap Y_{2}$ where $Y_{j}=P_{j}(H)$.
- Two closed subspaces Y and V of H are orthogonal if and only if the corresponding projections satisfy $P_{Y} P_{V}=0$.

Proof. $\mathrm{I}(\Leftarrow)$. Suppose that P_{1} and P_{2} commute, then show that P is self-adjiont and idempotent $P^{*}=\left(P_{1} P_{2}\right)^{*}=$ $P_{2}{ }^{*} P_{1}^{*}=P_{2} P_{1}=P_{1} P_{2}=P$. Hence $P^{*}=P$, then P is self-adjoint. $P^{2}=\left(P_{1} P_{2}\right)^{2}=\left(P_{1} P_{2}\right)\left(P_{1} P_{2}\right)=P_{1}{ }^{2} P_{2}{ }^{2}=P_{1} P_{2}=$ $P_{2} P_{1}=P$. Then P is idempotent. Hence P is projection. Then $P x=P_{1}\left(P_{2} x\right)=P_{2}\left(P_{1} x\right)=x, \forall x \in H$. Since P_{1} projects H onto Y_{1}, we must have :
$P x=x=P_{1}\left(P_{2} x\right) \in Y_{1}$
$P x=x=P_{2}\left(P_{1} x\right) \in Y_{2}$
Px $\in Y_{1} \cap Y_{2}$ since $x \in H$ was arbitrary. This show P projects H into $Y=Y_{1} \cap Y_{2}$. Actually P projects H
onto Y. Indeed, if $y \in Y$, then $y \in Y_{1}$ and $y \in Y_{2} . P y=P_{1} P_{2} y=P_{1} y=y$. Then $y \in Y_{1} \cap Y_{2}, y \in Y$ Hence $Y=Y_{1} \cap Y_{2}$.
(\Rightarrow). Suppose $P=P_{1} P_{2}$ is projection defined on H. It must be self-adjoint $\left\langle P y_{1}, y_{2}\right\rangle=\left\langle P_{1} P_{2} y_{1}, y_{2}\right\rangle=$ $\left\langle P_{2} y_{1}, P_{2} y_{1}\right\rangle=\left\langle y_{1}, P_{2} P_{1} y_{2}\right\rangle=\left\langle y_{1}, P y_{2}\right\rangle$. Then $P_{1} P_{2}=P_{2} P_{1}$.

II (\Rightarrow). If $Y \perp V$, then $Y \cap V=\{0\}$ and $P_{Y} P_{V} x=\{0\}$ for all $x \in H$ by part (a), so that $P_{Y} P_{V}=0$.
(\Leftarrow). If $P_{Y} P_{V}=0$, then for every $y \in Y$ and $v \in V$. We obtain $\langle y, v\rangle=\left\langle P_{Y} y, P_{V} v\right\rangle=\left\langle y, P_{Y} P_{V} v\right\rangle=\langle y, 0\rangle=0$.

Hence $Y \perp V$.

3.1.5 Theorem

Let P_{1} and P_{2} be projections on Hilbert space H. Then:

- The sum $P=P_{1}+P_{2}$ is a projection on H if and only if $Y_{1}=P_{1}(H)$ and $Y_{2}=P_{2}(H)$ are orthogonal.
- If $P=P_{1}+P_{2}$ is a projection, P projects H onto $Y=Y_{1} \oplus Y_{2}$.

Proof. $\mathrm{I}(\Rightarrow)$. Suppose that $P=P_{1}+P_{2}$ is a projection.
Let $x \in Y_{1} \Rightarrow\|x\|^{2} \geq\left\|\left(P_{1}+P_{2}\right) x\right\|^{2}=\left\langle\left(P_{1}+P_{2}\right) x,\left(P_{1}+P_{2}\right) x\right\rangle$
$=\left\langle\left(P_{1}+P_{2}\right)^{2} x, x\right\rangle=\left\langle\left(P_{1}+P_{2}\right) x, x\right\rangle$
$=\left\langle P_{1} x, x\right\rangle+\left\langle P_{2} x, x\right\rangle$
$=\|x\|^{2}+\left\langle P_{2}{ }^{2} x, x\right\rangle$
$=\|x\|^{2}+\left\|P_{2} x\right\|^{2} \Rightarrow\left\|P_{2} x\right\|=0$.
For any $y \in Y_{2}$ and $\in Y_{1}\langle x, y\rangle=\left\langle x, P_{2} y\right\rangle=\left\langle P_{2} x, y\right\rangle=\langle 0, y\rangle=0 \Rightarrow\langle x, y\rangle=$,0 . Therefore $Y_{1} \perp Y_{2}$.
(\Leftarrow) If $Y_{1} \perp Y_{2}$, then $P_{2} P_{1}=P_{1} P_{2}=0$ which implies $P^{2}=P$. Since P_{2} and P_{1} are self-adjoint, so is $P_{1}+P_{2}$. Hence P is projection.
II. We determine the closed subspace $Y \subset H$ onto which P projects. Since $P_{1}+P_{2}, \forall x \in H . y=P x=P_{1} x+$ $P_{2} x$. Here $P_{1} x \in Y_{1}$ and $P_{2} x \in Y_{2}$ hence, $y \in Y_{1} \oplus Y_{2}$.

So that;
$Y \subset Y_{1} \oplus Y_{2}$.
We show that $Y \supset Y_{1} \oplus Y_{2}$. Let $v \in Y_{1} \oplus Y_{2}$ be arbitrary, then $v=y_{1}+y_{2}$, here $y_{1} \in Y_{1}$ and $y_{2} \in Y_{2}$ applying in P.Using $Y_{1} \perp Y_{2}$, thus we obtain: $p v=p_{1}\left(y_{1}+y_{2}\right)+p_{2}\left(y_{1}+y_{2}\right)=p_{1} y_{1}$. Hence,

$$
\begin{equation*}
v \in Y \text { and } Y \supset Y_{1} \oplus Y_{2} \tag{2}
\end{equation*}
$$

Combining (1) and (2) we have;
$Y=Y_{1} \oplus Y_{2}$

4.2 Further Properties of Projections

4.2.1 Theorem

Let P_{1} and P_{2} be projections defined on a Hilbert Space H. Denote by $Y_{1}=P_{1}(H)$ and $Y_{2}=P_{2}(H)$ the subspace onto which H is projected by P_{1} and P_{2}, and let $\mathcal{N}\left(P_{1}\right)$ and $\mathcal{N}\left(P_{2}\right)$ be the Null space of these projection. Then the following conditions are equivalent.

- $P_{2} P_{1}=P_{1} P_{2}=P_{1}$
- $\quad Y_{1} \subset Y_{2}=P_{1}(H) \subset P_{2}(H)$
- $\mathcal{N}\left(P_{1}\right) \supset \mathcal{N}\left(P_{2}\right)$
- $\left\|P_{1} x\right\| \leqq\left\|P_{2} x\right\|$
- $\quad P_{1} \leqq P_{2}$

Proof. (ii $\Rightarrow \mathrm{i}$). Suppose $Y_{1} \subset Y_{2}=P_{1}(H) \subset P_{2}(H)$. We want show that $P_{2} P_{1}=P_{1} P_{2}=P_{1}$. For every $x \in H$, we have $P_{1} x \in Y_{1}$. Hence, $P_{1} x \in Y_{2}$ by (ii.) $P_{2}\left(P_{1} x\right)=P_{1} x \Rightarrow P_{2} P_{1}=P_{1} \Rightarrow\left(P_{2} P_{1}\right)^{*}=P_{1}{ }^{*} P_{2}{ }^{*}=P_{1} P_{2}=P_{2} P_{1}=P_{1}$. Since, P_{1} is self-adjoint. Therefore, $P_{1}=P_{1} P_{2}=P_{1}$.

$$
\begin{aligned}
& \text { (i } \Rightarrow \text { iv). Suppose } P_{2} P_{1}=P_{1} P_{2}=P_{1} \text {. We want show that }\left\|P_{1} x\right\| \leqq\left\|P_{2} x\right\| \text { for all } x \in H \\
& \Rightarrow\left\langle P_{1} x, x\right\rangle \leq\|x\|^{2} \text {, since } P_{1} x=x \\
& \Rightarrow\left\|P_{1} x\right\|^{2} \leq\|x\|^{2} \text {, for all } x \in H \\
& \Rightarrow\left\|P_{1}\right\|^{2}\|x\|^{2} \leq\|x\|^{2},\|x\| \neq 0 \text {. We have }\left\|P_{1}\right\| \leq 1 \text { by (1) }\langle P x, x\rangle=\|P x\|^{2} \\
& \Rightarrow\left\|P_{1} x\right\|=\left\|P_{1} P_{2} x\right\| \leqq\left\|P_{1}\right\|\left\|P_{2} x\right\| \leqq\left\|P_{2} x\right\| .
\end{aligned}
$$

Therefore, $\left\|P_{1} x\right\| \leqq\left\|P_{2} x\right\|$
(iv \Rightarrow v). Suppose $\left\|P_{1} x\right\| \leqq\left\|P_{2} x\right\|$. We want show that $P_{1} \leqq P_{2}$. From $\langle P x, x\rangle=\|P x\|^{2}$ and (iv.) in present theorem we have for all $x \in H .\left\langle P_{1} x, x\right\rangle=\left\|P_{1} x\right\|^{2} \leqq\left\|P_{2} x\right\|^{2}=\left\langle P_{2} x, x\right\rangle$

Therefore, $P_{1} \leqq P_{2}$ by definition of positive operators.
(v. \Rightarrow iii.) Suppose $P_{1} \leqq P_{2}$. We want show that $\mathcal{N}\left(P_{1}\right) \supset \mathcal{N}\left(P_{2}\right)$. Let $x \in \mathcal{N}\left(P_{2}\right) \Rightarrow P_{2} x=0$ by (iii.) sect. 2 and (v.) in the present theorem, $\left\|P_{1} x\right\|^{2}=\left\langle P_{1} x, x\right\rangle \leq\left\langle P_{2} x, x\right\rangle=\langle 0, x\rangle=0$. Hence, $P_{1} x=0, x \in \mathcal{N}\left(P_{1}\right)$. Therefore, $\mathcal{N}\left(P_{1}\right)$ $\supset \mathcal{N}\left(P_{2}\right)$.

4.2.2. Theorem

Let $P_{1} \& P_{2}$ be Projections on a Hilbert space H. Then

- The difference $P=P_{2}-P_{1}$ is a projection if and only if $Y_{1} \subset Y_{2}$ where $Y_{j}=P_{j}(H)$.
- If $P=P_{2}-P_{1}$ is a projection, P projects H onto Y, where Y is the orthogonal complement of Y_{1} in Y_{2}.

Proof. (\Rightarrow) Suppose that $P=P_{2}-P_{1}$ is a projection. We want to show that $Y_{1} \subset Y_{2}$. If $P=P_{2}-P_{1}$ is a projection. $P=P^{2} \Rightarrow P_{2}-P_{1}=\left(P_{2}-P_{1}\right)^{2}=P_{2}{ }^{2}-P_{2} P_{1}-P_{1} P_{2}+P_{1}{ }^{2}$.

$$
P_{2}+P_{2} P_{1}=2 P_{1}, *
$$

by theorem (2.2) (i.). Multiply both sides by P_{2} we have:
$P_{2} P_{1} P_{2}+P_{2} P_{1}=2 P_{2} P_{1}$
$P_{1} P_{2}+P_{2} P_{1} P_{2}=2 P_{1} P_{2}$
Hence $P_{2} P_{1} P_{2}=P_{2} P_{1}, P_{2} P_{1} P_{2}=P_{1} P_{2}$ and by $(*)$
$P_{1}=P_{1} P_{2}=P_{1}^{* *}$
Therefore, $Y_{1} \subseteq Y_{2}$.
(\Leftarrow) Suppose $Y_{1} \subset Y_{2}$, where $Y_{j}=P_{j}(H) \Rightarrow P^{2}=\left(P_{2}-P_{1}\right)^{2}=P_{2}{ }^{2}-P_{2} P_{1}-P_{1} P_{2}+P_{1}{ }^{2}=P_{2}-P_{1}$. Therefore, P is idempotent. $\Rightarrow P^{*}=\left(P_{2}-P_{1}\right)^{*}=P_{2}{ }^{*}-P_{1}{ }^{*}=P_{2}-P_{1}$. Therefore P is self-adjoint.
$\therefore P$ is projection.
(b) $Y=P(H)$ consists of all vectors of the form
(8) $Y=P x=P_{2} x-P_{1} x$ for all $x \in H$

Since $P_{2} P_{1}=P_{1} P_{2}=P_{1}$ implies $Y_{1} \subset Y_{2}$
$P_{2} y=P_{2}{ }^{2} x-P_{2} P_{1} x=P_{2} x-P_{1} x=y$
This show that $\mathrm{y} \in Y_{2}$, also from (8) and (1)
$P_{1} y=P_{1} P_{2} x-P_{1}^{2} x=P_{1} x-P_{1} x=0$
$\Rightarrow P_{1} y=0$
$y \in \mathcal{N}\left(P_{1}\right)=Y_{1}^{\perp}$
Together $y \in V$ where $V=Y_{2} \cap Y_{1}^{\perp}$, since the projection of H onto Y_{1}^{\perp} is $I-P_{1}$, every $v \in V$
is the form
(9) $v=\left(I-P_{1}\right)+y_{2},\left(y_{2} \in Y_{2}\right)$

Using again, $P_{2} P_{1}=P_{1}$, we obtain from (9), since $P_{2} y_{2}=y_{2}$
$P v=\left(P_{2}-P_{1}\right)\left(I-P_{1}\right) y_{2}$
$=\left(P_{2}-P_{2} P_{1}-P_{1}+P_{1}^{2}\right) y_{2}$
$=\left(P_{2}-P_{2} P_{1}-P_{1}+P_{1}\right) y_{2}=\left(P_{2}-P_{1}\right) y_{2}$
$=P_{2} y_{2}-P_{1} y_{2}=y_{2}-P_{1} y_{2}=v$
$\therefore P v=v$ so that $v \in Y$, since $v \in V$ was arbitrary
$\therefore Y \supseteq V$
$\therefore Y=P(H)=V=Y_{2} \cap Y_{1}^{\perp}$

4.2.3. Theorem

Let P_{n} is a monotone increasing sequence of projection P_{n} defined on a Hilbert Space H. Then

- $\quad\left(P_{n}\right)$ is strongly operator convergent, say $P_{n} x \rightarrow P x$ for every $x \in H$, and the limit operator P is a projection defined on H.
- $\quad P$ projects H onto
- $\quad P(H)=\overline{\bigcup_{n=1}^{\infty} P_{n}(H)}$
- $\quad P$ has the null space
$\mathcal{N}(P)=\cap_{n=1}^{\infty} \mathcal{N}\left(P_{n}\right)$
Proof a) Let $m<n$, by assumption, $P_{m} \leqq P_{n}$, so that we have $P_{m}(H) \subset P_{n}(H)$ and $P_{n}-P_{m}$ is projection. Hence for every fixed $x \in H$, we obtain by 2.1.2
$\left\|P_{n} x-P_{m} x\right\|^{2}=\left\|\left(P_{n}-P_{m}\right) x\right\|^{2}=\left\langle\left(P_{n}-P_{m}\right) x, x\right\rangle=\left\|P_{n} x\right\|^{2}-\left\|P_{m} x\right\|^{2}$.
Now $\left\|P_{n}\right\| \leq 1$ by 3.1 .2 , so that $\left\|P_{n} x\right\| \leq\|x\|$ for all n. Hence, $\left(\left\|P_{n} x\right\|\right)$ is bounded a sequence of numbers. $\left(\left\|P_{n} x\right\|\right)$ is also monotone by 3.2.1. Since $\left(P_{n}\right)$ is monotone. Hence $\lim _{n \rightarrow \infty} P_{n} x \rightarrow P x$ is converges. Since $\left(P_{n} x\right)$ is Cauchy.
$\left\|P_{n} x-P_{m} x\right\|=\left\|\left(P_{n}-P_{m}\right) x\right\| \leq\left\|P_{n}-P_{m}\right\|\|x\|$
$\Rightarrow \lim _{n \rightarrow \infty} P_{n} x=P x$, since H is complete.
The linearity of P.

$$
\begin{aligned}
& P(\alpha x+\beta y)=\lim _{n \rightarrow \infty} P_{n}(\alpha x+\beta y) \\
& =\lim _{n \rightarrow \infty}\left(P_{n} \alpha x+P_{n} \beta y\right) \\
& =\alpha \lim _{n \rightarrow \infty} P_{n} x+\beta \lim _{n \rightarrow \infty} P_{n} y \\
& =\alpha P x+\beta P y \\
& \Rightarrow\left\|P_{n} x\right\| \leq\left\|P_{n}\right\|\|x\| \Rightarrow\left\|P_{n} x\right\| \leq\left\|P_{n}\right\|\|x\| \\
& \Rightarrow\left\|P_{n} x\right\| \leq\|x\| \\
& \Rightarrow\left\|p_{n}\right\| \leq\|x\| . \text { Therefor } P_{n} \text { is bounded, }
\end{aligned}
$$

$\left\langle P_{n} x, x\right\rangle=\left\langle x, P_{n}^{*} x\right\rangle=\left\langle x, P_{n} x\right\rangle \quad$, therefore $\quad P_{n}$ is self-ad joint, and $\left\langle P_{n}^{2} x, x\right\rangle=\left\langle P_{n} x, P_{n} x\right\rangle=\left\langle x, P_{n} x\right\rangle=\left\langle P_{n} x, x\right\rangle$, hence P_{n} is projection.
b). We determine $P(H)$. Let $m<n$. Then $P_{m} \leqq P_{n}$, that is $P_{n}-P_{m} \geqq 0$ and $\left\langle\left(P_{n}-P_{m}\right) x, x\right\rangle \geqq 0$. The continuity of inner product

$$
\lim _{n \rightarrow \infty}\left\langle\left(P_{n}-P_{m}\right) x, x\right\rangle=\lim _{n \rightarrow \infty}\left\langle x,\left(P_{n}-P_{m}\right) x\right\rangle
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left\langle x,\left(P-P_{m}\right) x\right\rangle \\
& \therefore\left\langle\left(P-P_{m}\right) x, x\right\rangle \geqq 0 .
\end{aligned}
$$

That is $P_{m} \leqq P$ and 3.2.1 yields $P_{m}(H) \subset P(H)$ for every m. Hence $\cup P_{m}(H) \subset P(H)$. Furthermore, for every m and for every $x \in H$, we have, $P_{m} x \in P_{m}(H) \subset \cup P_{m}(H)$. Since $P_{m} x \rightarrow P x, P x \in \overline{\cup P_{m}(H)}$. Hence $P(H) \subset \overline{\cup p_{m}(H)}$
$\cup P_{m}(H) \subset P(H) \subset \overline{U P_{m}(H)}$
$\Rightarrow P(H)=\mathcal{N}(I-P)=\{0\}$
$\Rightarrow P(H)=\{0\}$ is closed
$\therefore P(H)=\overline{\bigcup_{m=1}^{\infty} P_{m}(H)}$
c). We determine $\mathcal{N}(P)$
$\mathcal{N}(P)=P(H)^{\perp} \subset P_{n}(H)^{\perp}$ for all n. Since $P(H) \supset P_{n}(H)$ by part (b). Hence $\mathcal{N}(P) \subset \cap P_{n}(H)^{\perp}=\cap \mathcal{N}\left(P_{n}\right)$
$\Rightarrow \mathcal{N}(P) \subset \cap \mathcal{N}\left(P_{n}\right)$
On other hand, if $x \in \cap \mathcal{N}\left(P_{n}\right)$, then $x \in \mathcal{N}\left(P_{n}\right)$ for all n. So that $P_{n} x=0$ and $P_{n} x \rightarrow P x \Rightarrow P x=0$. That is $x \in \mathcal{N}(P)$. Since $x \in \mathcal{N}\left(P_{n}\right)$ was arbitrary.

$$
\begin{equation*}
\cap \mathcal{N}\left(P_{n}\right) \subset \mathcal{N}(P) \tag{2}
\end{equation*}
$$

By combining (1) and (2) we gets
$\mathcal{N}(P)=\bigcap_{n=1}^{\infty} \mathcal{N}\left(P_{n}\right)$

Example 6

Let $P: C^{3} \rightarrow C^{3}$ be the linear operator defined by $P(x, y, z)=(x, y, 0), \forall x, y, z \in C^{3}$. Then P is orthogonal projection.

Solution

Since C^{3} is finite dimensional $P \in B\left(C^{3}\right)$ and clealy $P^{2}=P$.
Follows from $\langle P(x, y, z),(u, v, w)\rangle=x \bar{u}+y \bar{v}=\langle(x, y, z), P(u, v, w)\rangle$. Then P is self-adjoint. Therefore P is projection. Orthogonal projection of P has: $\operatorname{Imp}=\{(x, y, 0): x, y \in \mathbb{C}\}$ orthogonal projection P matrix representation:

$$
T=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

In generally a $n \times n$ diagonal matrix whose diagonal element either 0 or 1 is the matrix of an orthogonal projection $B\left(C^{3}\right)$.

5. SPECTRAL FAMILY

5.1.1 Definition

A one-parameter family of projection is called spectral family. Spectral family can be obtained from the finite dimension case as follows. Let $T: H \rightarrow H$ be a self-adjoint linear operator on a unitary space $\boldsymbol{H}=\mathbb{C}^{n}$. Then T is bounded and we may choose a basis for H and represent T by a Hermitian matrix which we denote simply by T. The spectrum of the operator consists of the eigenvalues of that matrix which are real. For simplicity let us assume that the matrix T has n different eigenvalues $\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots<\lambda_{n}$. Then theorem 1.1.1(6) implies that T has an orthonormal set of n eigenvectors $x_{1}, x_{2} \ldots x_{n}$ where x_{j} corresponding to λ_{j} and we write these vectors as column vectors. This a basis for H, so that every $x \in H$ has a unique representation

$$
\begin{equation*}
x=\sum_{j=1}^{n} \gamma_{j} x_{j}, \gamma_{j}=\left\langle x, x_{j}\right\rangle=x^{T} \overline{x_{j}} \tag{1}
\end{equation*}
$$

In (1) we obtain the second formula from the first one by taking the inner product $\left\langle x, x_{k}\right\rangle$, where x_{k} is fixed and using the orthonormality. The essential fact in (1) is that x_{j} is an eigen vectors of T, so that we have $\boldsymbol{T} \boldsymbol{x}_{\boldsymbol{j}}=\lambda_{\boldsymbol{j}} \boldsymbol{x}_{\boldsymbol{j}}$, consequently, if we apply T to (1) we simply obtain

$$
\begin{equation*}
T x=\sum_{j=1}^{n} \lambda_{j} \gamma_{j} x_{j} \tag{2}
\end{equation*}
$$

Looking at (1) more closely, we see that we can define an operator

$$
\begin{equation*}
P_{j}: H \rightarrow H \tag{3}
\end{equation*}
$$

$x \mapsto \gamma_{j} x_{j} \Rightarrow p_{j} x=\gamma_{j} x_{j}=\left\langle x, x_{j}\right\rangle x_{j} . P_{j}$ is the projection (orthogonal projection) of H onto the eigenspace of T corresponding to λ_{j}. Formula (1) can now be written,

$$
\begin{equation*}
x=\sum_{j=1}^{n} P_{j} x \tag{4}
\end{equation*}
$$

Hence, $I=\sum_{j=1}^{n} P_{j}$. Where I is identity operator on H. Formula (2) becomes

$$
\begin{equation*}
T x=\sum_{j=1}^{n} \lambda_{j} P_{j} x \tag{5}
\end{equation*}
$$

Hence $T=\sum_{j=1}^{n} \lambda_{j} P_{j}$. This is representation of T in terms of projection. Instead of the projection $P_{1}, P_{2}, \ldots, P_{n}$ themselves we take sums of such projection. More precisely, for any real λ we define,

$$
\begin{equation*}
E_{\lambda}=\sum_{\lambda_{j} \leqq \lambda} P_{j} \quad(\lambda \in \mathbb{R}) \tag{6}
\end{equation*}
$$

Hence $E_{\lambda}{ }^{2}=E_{\lambda}$, moreover E_{λ} is symmetric operator. This is one-operator family of projection, λ being the parameter. From (6) we see that for any λ the operator E_{λ} is the projection of H onto the subspace V_{λ} spanned by all those x_{j} for which $\lambda_{j} \leqq \lambda$ it follows that $V_{\lambda} \subset V_{\mu}(\lambda \leqq \mu)$. As λ traverse \mathcal{R} in the positive sence E_{λ} grows from 0 to I. The growth occurring at the eigenvalues of T and E_{λ} remaining unchanged for λ in any interval that is free of eigenvalues.

Properties of $\boldsymbol{E}_{\boldsymbol{\lambda}}$

- $E_{\lambda} E_{\mu}=E_{\mu} E_{\lambda}=E_{\lambda}$, if $\lambda<\mu$
- $E_{\lambda}=0$, if $\lambda<\lambda_{1}$
- $E_{\lambda}=I$, if $\lambda \geqq \lambda_{n}$
- $E_{\lambda+o}=\lim _{\mu \rightarrow \lambda+o} E_{\mu}=E_{\lambda}$

Definition

A real spectral family (or real decomposition unity) is a one parameter family $\varepsilon=\left(E_{\lambda}\right), \lambda \in \mathbb{R}$ of projection E_{λ} defined on Hilbert space H (of any dimension) which depends on a real parameter λ and such that,

$$
\begin{equation*}
E_{\lambda} \leqq E_{\mu} \tag{7}
\end{equation*}
$$

Hence, $E_{\lambda} E_{\mu}=E_{\mu} E_{\lambda}=E_{\lambda}, \lambda<\mu$

$$
\begin{align*}
& \lim _{\lambda \rightarrow-\infty} E_{\lambda} x=0 \tag{8a}\\
& \lim _{\lambda \rightarrow+\infty} E_{\lambda} x=x \tag{8b}\\
& E_{\lambda+o} x=\lim _{\mu \rightarrow \lambda+o} E_{\mu} x=E_{\lambda} x(\forall x \in H) \tag{9}
\end{align*}
$$

We see from the definition that a real spectral family can be regarded as a mapping $\boldsymbol{R} \rightarrow \boldsymbol{B}(\boldsymbol{H}, \boldsymbol{H}), \lambda \rightarrow E_{\lambda}$; Strongly operator continuous from right. To each $\lambda \in R$ there is corresponds a projection $\boldsymbol{E}_{\boldsymbol{\lambda}} \in \boldsymbol{B}(\boldsymbol{H}, \boldsymbol{H})$, where $\mathcal{B}(H, H)$ is the space of all bounded linear operators from H into H. We assume, for simplicity, that the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of T are all different and $\lambda_{1}<\lambda_{2},<\cdots<\lambda_{n}$. Then we have,

$$
\begin{aligned}
& E_{\lambda_{1}}=P_{1} \\
& E_{\lambda_{2}}=P_{1}+P_{2} \\
& E_{\lambda_{3}}=P_{1}+P_{2}+P_{3} \\
& \vdots \\
& E \lambda_{n}=P_{1}+P_{2}+\cdots+P_{n} .
\end{aligned}
$$

Hence, conversely ;
$P_{1}=E_{\lambda_{1}}$
$P_{j}=E \lambda_{j}-E \lambda_{j-1} \mathrm{j}=2, \ldots, \mathrm{n}$
Since E_{λ} remains the same for λ in the interval $\left[\lambda_{j-1}, \lambda_{j}\right.$), this can be written $P_{j}=E \lambda_{j}-E \lambda_{j-0}$. Now equation (4) becomes $x=\sum_{j=1}^{n} P_{j} x=\sum_{j=1}^{n}\left(E \lambda_{j}-E \lambda_{j-0}\right) x$ and equation (5) becomes
$T x=\sum_{j=1}^{n} \lambda_{j} P_{j} x=\sum_{j=1}^{n} \lambda_{j}\left(E \lambda_{j}-E \lambda_{j-0}\right) x$.
If we drop the x and write $\delta E_{\lambda}=E_{\lambda}-E_{\lambda-0}$. Since $E_{\lambda}=\sum_{\lambda_{j} \leqq \lambda} P_{j}$. We arrive at
$T=\sum_{j=1}^{n} \lambda_{j} \delta E \lambda_{j}$
This is the spectral representation of the self-adjoint linear operator T with eigenvalues $\lambda_{1}<\lambda_{2},<\cdots<\lambda_{n}$ on that n-dimensional Hilbert space H. The representation shows that for
any $x, y \in H$,

$$
\begin{equation*}
\langle T x, y\rangle=\sum_{j=1}^{n} \lambda_{j}\left\langle\delta E_{\lambda_{j}} x, y\right\rangle \tag{11}
\end{equation*}
$$

We note that this may be written as a Riemann-stieltjes integral

$$
\begin{equation*}
\langle T x, y\rangle=\int_{-\infty}^{+\infty} \lambda d w(\lambda) \tag{12}
\end{equation*}
$$

\qquad
Where $w(\lambda)=\left\langle E_{\lambda} x, y\right\rangle$.

5.2 Spectral Family of a Bounded Self-Adjiont Linear Operator

To define Spectral family (ε) we need the operator $T_{\lambda}=T-\lambda I$ from resolvent theorem $\left\|T_{\lambda} x\right\| \geqq c\|x\|$. Then $\mathcal{B}_{\lambda}{ }^{2}=T_{\lambda}{ }^{2}$, the positive square root of $T_{\lambda}{ }^{2}$ denote by $\mathcal{B}_{\lambda}{ }^{2} . \mathcal{B}_{\lambda}=\left(T_{\lambda}{ }^{2}\right)^{\frac{1}{2}}=\left|T_{\lambda}\right|$ and operator $T_{\lambda}{ }^{+}=\frac{1}{2}\left(\mathcal{B}_{\lambda}+T_{\lambda}\right)$ which is called positive part of T_{λ}. The spectral family ε of T is then defined by $\varepsilon=\left(E_{\lambda}\right), \lambda \in \mathbb{R}$, where E_{λ} is the projection of H onto the null space $\mathcal{N}\left(T_{\lambda}^{+}\right)$of T_{λ}^{+}. We proceed step wise and consider at first the operator:
$\mathcal{B}=\left(T^{2}\right)^{\frac{1}{2}}\left(\right.$ Positive square root of $\left.T^{2}\right)$,
$T^{+}=\frac{1}{2}(\mathcal{B}+T)($ Positive part of $T)$,
$T^{-}=\frac{1}{2}(\mathcal{B}-T)($ Negative part of $T)$,
and the projection of H onto the null space of T^{+}which we denote by E.
$E: H \rightarrow V=\mathcal{N}\left(T^{+}\right)=\operatorname{ker}(\lambda I-T)^{+}$

$$
\begin{aligned}
& T=T^{+}-T^{-} \Rightarrow \frac{1}{2}(\mathcal{B}+T)-\frac{1}{2}(\mathcal{B}-T)=T^{+}-T^{-} \\
& \Rightarrow \frac{1}{2} \mathcal{B}+\frac{1}{2} T-\frac{1}{2} \mathcal{B}+\frac{1}{2} T=T^{+}-T^{-} \\
& \Rightarrow \boldsymbol{T}=\boldsymbol{T}^{+}-\boldsymbol{T}^{-} \text {by subtraction } \\
& \mathcal{B}=T^{+}+T^{-} \Rightarrow T^{+}+T^{-}=\frac{1}{2}(\mathcal{B}+T)+\frac{1}{2}(\mathcal{B}-T) . \\
& =\frac{1}{2} \mathcal{B}+\frac{1}{2} T+\frac{1}{2} \mathcal{B}-\frac{1}{2} T . \\
& =\mathcal{B} \\
& \Rightarrow \mathcal{B}=\boldsymbol{T}^{+}+\boldsymbol{T}^{-} \text {by addition. }
\end{aligned}
$$

5.2.1 Lemma

The operators just defined have the following properties

- \mathcal{B}, T^{+}and T^{-}are bounded and self-adjoint
- \mathcal{B}, T^{+}and T^{-}commute with every bounded linear operator that T commute with; in particular
- $\quad \mathcal{B} T=T \mathcal{B} T^{+} T=T T^{+} T^{-} T=T T^{-} T^{+} T^{-}=T^{-} T^{+}$
- E commutes with every bounded self-adjoint linear operator that T commute with; in particular
- $E T=T E E \mathcal{B}=\mathcal{B E}$
- Furthermore
- $T^{+} T^{-}=0 T^{-} T^{+}=0$
- $\quad T^{+} E=E T^{+}=0 T^{-} E=E T^{-}=T^{-}$
- $T E=-T^{-} T(I-E)=T^{+}$
- $T^{+} \geqq 0 T^{-} \geqq 0$

Proof. a

- Claim $1 \mathcal{B}$ is bounded

Proof of Claim 1

$$
\begin{aligned}
\|\mathcal{B}\|^{2} & =\langle\mathcal{B}, \mathcal{B}\rangle \leq\left\langle T^{+}+T^{-}, T^{+}+T^{-}\right\rangle \\
& =T^{+} T^{+}+T^{+} T^{-}+T^{-} T^{+}+T^{-} T^{-} \\
& \leq\left\|T^{+}\right\|^{2}+T^{+} T^{-}+T^{-} T^{+}+\left\|T^{-}\right\|^{2} \\
& =\left\|T^{+}\right\|^{2}+2 \operatorname{Re}\left\langle T^{+}, T^{-}\right\rangle+\left\|T^{-}\right\|^{2} \\
& \leq\left\|T^{+}\right\|^{2}+2\left|\left\langle T^{+}, T^{-}\right\rangle\right|+\left\|T^{-}\right\|^{2} \\
& \leq\left(\left\|T^{+}\right\|+\left\|T^{-}\right\|\right)^{2} \\
\|\mathcal{B}\| & \leq\left\|T^{+}\right\|+\left\|T^{-}\right\|
\end{aligned}
$$

$\therefore \mathcal{B}$ is bounded \Leftrightarrow continuous. Since $\lambda=1$
Claim $2 \mathcal{B}$ is self-adjoint
Proof of Claim 2 Since $\mathcal{B}=T^{+}+T^{-}$

$$
\begin{aligned}
& \langle\mathcal{B} x, y\rangle=\left\langle\left(T^{+}+T^{-}\right) x, y\right\rangle=\left\langle x,\left(T^{+}+T^{-}\right)^{*} y\right\rangle \\
& =\left\langle x, \mathcal{B}^{*} y\right\rangle \\
& \Rightarrow \mathcal{B}=\mathcal{B}^{*} \\
& \therefore \mathcal{B} \text { is self-adjoint }
\end{aligned}
$$

- Suppose $T S=S T$. Then $T^{2} S=T S T=S T^{2}$ and $\mathcal{B} S=S \mathcal{B}$ follows from theorem (positive square root) $T^{+} S=$ $\frac{1}{2}(\mathcal{B S}+T S)=\frac{1}{2}(S \mathcal{B}+S T)=S T^{+} \quad$ Therefore, $\quad T^{+} S=S T^{+} \Rightarrow T^{-} S=S T^{-} \Rightarrow T^{-} S=\frac{1}{2}(\mathcal{B} S-T S)=$ $\frac{1}{2}(S \mathcal{B}-S T)=S T^{-}$.

Then show that $\mathrm{T}^{+} \mathrm{T}^{-}=\mathrm{T}^{-} \mathrm{T}^{+}$.
$T^{+} T^{-}=\frac{1}{2}(\mathcal{B} S+T S) \cdot \frac{1}{2}(\mathcal{B} S-T S)=\frac{1}{2}(S \mathcal{B}-S T) \cdot \frac{1}{2}(S \mathcal{B}+S T)=T^{-} T^{+} \Rightarrow T^{+} T^{-}=T^{-} T^{+}$.

- For every $x \in H$ we have $y=E x \in Y=\mathcal{N}\left(T^{+}\right)=\operatorname{Ker}\left(T^{+}\right)$. Hence $T^{+} y=0$ and $S T^{+} Y=S 0=0$. From $\mathrm{TS}=\mathrm{ST}$ and (b) we have $\mathrm{S} T^{+}=T^{+} S$ and $T^{+} S E x=T^{+} S y=S T^{+} y=S 0=0 \Rightarrow T^{+}$SEx $=0$, hence SEx \in Y. since E projects H onto Y. We thus have $E S E x=S E x$. For every $x \in H$.that is $E S E=S E$. A projection is self adjoint. $E S=E^{*} S^{*}=(S E)^{*}=(E S E)^{*}=E^{*} S^{*} E^{*}=E S E=S E$. Therefore, $E S=S E$.

We prove (3) - (6)

Proof (3)

From $\quad B=\left(T^{2}\right)^{\frac{1}{2}} \Rightarrow B^{2}=T^{2}$, and also $B T=T B$ by (6) Hence $T^{+} T^{-}=T^{-} T^{+}=\frac{1}{2}(B-T) \cdot \frac{1}{2}(B+T)=$ $\frac{1}{4}\left(B^{2}+B T-T B-T^{2}\right)=0 \Rightarrow T^{+} T^{-}=T^{-} T^{+}=0$

Proof (4)

Let $T^{+} E x=0 \forall x \in H$, since T^{+}is self adjoint. We have $E T^{+} x=T^{+} E x=0$ by (3) and (c). Therefore, $E T^{+}=$ $T^{+} E=0$. Furthermore $T^{+} T^{-} x=0$ by (8), so that $T^{-} x \in \mathcal{N}\left(T^{+}\right)=\operatorname{ker}\left(T^{+}\right)$. Hence $E T^{-} x=T^{-} E x=T^{-} x \forall x \in H$. Therefore, $E T^{-}=T^{-} E=T^{-}$

Proof (5)

From a, b and (4), since $T=T^{+}-T^{-}$we have $T E=\left(T^{+}-T^{-}\right) E=T^{+} E-T^{-} E=-T^{-} E . T E=-T^{-}$, since T^{-}is self adjoint. Again by (4) $T(I-E)=T-T E=T+T^{-}=T^{+}$. Therefore, $T(I-E)=T^{+}$.

Proof (11) By (4) and (b) $T^{-}=E T^{-}+E T^{+}=E\left(T^{-}+T^{+}\right)=E B \geqq 0$, since E and B are self-adjoint and $E \geqq 0$ and $B \geqq 0$ by definition of positive operators.

$$
\begin{aligned}
& T^{+}=B-T^{-}=B-E B=(I-E) B \geqq 0 \\
& \therefore T^{+} \geqq 0, \text { since } I-E \geqq 0 \text { and } B \geqq 0
\end{aligned}
$$

In second step instead of \boldsymbol{T} we consider $\boldsymbol{T}_{\lambda}=T-\lambda I$
Instead of B, T^{+}, T^{-}and E we now have to take $B_{\lambda}=\left(T_{\lambda}{ }^{2}\right)^{\frac{1}{2}}, T_{\lambda}{ }^{+}=\frac{1}{2}\left(B_{\lambda}+T_{\lambda}\right) . T_{\lambda}{ }^{-}=\frac{1}{2}\left(B_{\lambda}-T_{\lambda}\right)$ and projection $E_{\lambda}: H \rightarrow Y_{\lambda}=\mathcal{N}\left(T_{\lambda}{ }^{+}\right)$.

5.2.2. Lemma

The previous lemma remains true if we replace. T, B, T^{+}, T^{-}, E by $T_{\lambda}, B_{\lambda}, T_{\lambda}{ }^{+}, T_{\lambda}{ }^{-}, E_{\lambda}$ Respectively, where λ is real, moreover, for any real $\kappa . \lambda, \mu, v, \tau$ following operator all commute: $T_{\kappa}, B_{\lambda}, T_{\mu}{ }^{+}, T_{v}{ }^{-}, E_{\tau}$

5.2.1. Theorem

Let $T: H \rightarrow H$ is a bounded self-adjoint linear operator on a complex Hilbert space H. Furthermore, let $E_{\lambda}(\lambda$ is real $)$ be the projection of H onto the null space $Y_{\lambda}=\mathcal{N}\left(T_{\lambda}{ }^{+}\right)$of the positive part $T_{\lambda}{ }^{+}$of $T_{\lambda}=T-\lambda I$.then $\varepsilon=$ $\left(E_{\lambda}\right)_{\lambda \in \mathbb{R}}$ is spectral family on the interval $[m, M] \subset \mathbb{R}$, where m and M are given by (1) see section 3.2.

Proof. We shall prove $\lambda<\mu \Rightarrow E_{\lambda}<E_{\mu}$
$\lambda<m \Rightarrow E_{\lambda}=0$.
$\lambda \geq M \Rightarrow E_{\lambda}=I$.
$\mu \rightarrow \lambda+0 \Rightarrow \mathrm{E}_{\mu} x \rightarrow E_{\lambda} x$.
In the proof we use part of Lemma 5.2.2 formulated for $\boldsymbol{T}_{\boldsymbol{\lambda}}, \boldsymbol{T}_{\boldsymbol{\mu}}, \boldsymbol{T}_{\boldsymbol{\lambda}}{ }^{+}$etc instead of T, T^{+}etc
$T_{\mu}{ }^{+} T_{\mu}{ }^{-}=0$
$T_{\lambda} E_{\lambda}=-T_{\lambda}{ }^{-} T_{\lambda}\left(I-E_{\lambda}\right)=T_{\lambda}{ }^{+} T_{\mu} \mathrm{E}_{\mu}=-T_{\mu}{ }^{-}$
$T_{\lambda}{ }^{+} \geqq 0 T_{\lambda}{ }^{-} \geqq 0 T_{\mu}{ }^{+} \geqq 0 T_{\mu}{ }^{-} \geqq 0$

Proof (7)

Let $\lambda<\mu$ we have $T_{\lambda}=T_{\lambda}{ }^{+}-T_{\lambda}{ }^{-} \leqq T_{\lambda}{ }^{+}$becuase $-T^{-} \leqq 0$. Hence $T_{\lambda}{ }^{+}-T_{\mu} \geqq T_{\lambda}-T_{\mu}=(\mu-\lambda) I \geqq 0$. $T_{\lambda}{ }^{+}-T_{\mu}$ is self-adjiont and commutes with $T_{\mu}{ }^{+}$by Lemma of 5.2.2 and $T_{\mu}{ }^{+} \geqq 0$. Theorem 3.3.1 $T_{\mu}{ }^{+}\left(T_{\lambda}{ }^{+}-T_{\mu}\right)=$ $T_{\mu}{ }^{+}\left(T_{\lambda}{ }^{+}-T_{\mu}{ }^{+}+T_{\mu}{ }^{-}\right) \geqq 0$. Here $T_{\mu}{ }^{+} T_{\mu}{ }^{-}=0$. Hence $T_{\mu}{ }^{+} T_{\lambda}{ }^{+} \geqq T_{\mu}{ }^{+2} \forall x \in H .\left\langle T_{\mu}{ }^{+} T_{\lambda}{ }^{+} x, x\right\rangle \geqq\left\langle T_{\mu}{ }^{2} x, x\right\rangle=\left\|T_{\mu}{ }^{+} x\right\|^{2} \geqq$ 0 . Since $T_{\mu}{ }^{+}$is self-adjoint. This show that $T_{\lambda}{ }^{+} x=0 \Rightarrow T_{\mu}{ }^{+} x=0$. Hence $\mathcal{N}\left(T_{\lambda}{ }^{+}\right) \subset \mathcal{N}\left(T_{\mu}{ }^{+}\right)$.

$$
E_{\lambda}<E_{\mu} \text { for } \lambda<\mu
$$

Proof (8)

Suppose not $E_{\lambda} \neq 0 \Rightarrow E_{\lambda} z \neq 0$ for $\exists z$, we set $x=E_{\lambda} z$. Then $E_{\lambda} x=E_{\lambda}{ }^{2} z=E_{\lambda} z=x$, we may assume $\|x\|=1$.
$\left\langle T_{\lambda} E_{\lambda} x, x\right\rangle=\left\langle T_{\lambda} x, x\right\rangle=\langle T x, x\rangle-\lambda \geqq \inf f_{\|\tilde{x}\|=1}\langle T \tilde{x}, \tilde{x}\rangle-\lambda=m-\lambda>0$, contradiction the fact that $\lambda>m$. $T_{\lambda} E_{\lambda}=-T_{\lambda}{ }^{-} \leqq 0$.

$$
\begin{aligned}
& T_{\lambda} E_{\lambda}=0 \Rightarrow E_{\lambda}=0 \\
& \therefore \lambda<m \Rightarrow E_{\lambda}=0
\end{aligned}
$$

Proof (9)
Suppose $\lambda>M$ but $E_{\lambda} \neq I$ so that $I-E_{\lambda} \neq 0$. Then $\left(I-E_{\lambda}\right) x=x$ for some x of norm 1 . Hence $\left\langle T_{\lambda}(I-\right.$ $\left.\left.E_{\lambda}\right) x, x\right\rangle=\left\langle T_{\lambda} x, x\right\rangle=\langle T x, x\rangle-\lambda \leq \sup _{\|\tilde{x}\|}\langle\langle T \tilde{x}, \tilde{x}\rangle-\lambda\rangle=M-\lambda<0$. Then there is contradiction.

$$
\begin{aligned}
& T_{\lambda}\left(I-E_{\lambda}\right)=\left(T_{\lambda}^{+}\right) \geqq 0 \\
& \therefore \lambda \geq M \Rightarrow E_{\lambda}=I
\end{aligned}
$$

6. REFERENCES

1. Erwin Kreysyzing. Introductory Functional Analysis With Applications. John Wiley and sons New York. 1978
2. E.TAYLOR. A. Introduction to Functional Analysis New York, john Wiley and sons, Inc 1958
3. E.TAYLOR. A and C. LAY. D. Introduction to Functional Analysis second edition John Wiley and son.inc 1980.
4. PEDERSON.M. Function Analysis In Applied Mathematics And Engineering. Florid.CRC press LLC 2000.
5. Deumlich. R. Functional Analysis (I) and (II) Teaching Material, Addis Ababa University 1997.
