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Abstract 

A broad parametric study is carried out to investigate the effects of both the inhomogeneity parameter, and a profile index 

of Stodola’s hyperbolic function on the static response of such structures subjected to both the inner and outer pressures. 

The investigation is based on the analytical formulas lately published by the author. The effects of those parameters on the 

variation of the radial displacement, the radial and hoop stresses are all graphically illustrated for an annulus pressurized 

at its both surfaces. It is observed that, especially, the variation of the hoop stress in radial coordinate is closely sensible 

to variation of those parameters. For the chosen problems it was observed that one of two materials whose Young’s 

modulus is higher than the other is better to locate at the inner surface of the disc having divergent profile to get reasonable 

maximum hoop stresses. However much smaller radial displacements may be obtained by using positive inhomogeneity 

indexes for all discs whose surfaces host a material whose Young’s modulus is smaller than the other. To reach a final 

decision, analytical formulas such as those used in the present study together with a failure criteria such as Von Mises and 

Tresca become indispensable means in a design process. 

Keywords: Pressurized disc, hyperbolic annulus, functionally graded, variable thickness, exact solution, elasticity 
solution, inhomogeneity parameter, thickness parameter.  

1. Introduction 

A pressurized annulus or disc or collar or ring is mainly used as a pipe flange to be attached to a pipe. 

It fulfills some functions such as providing increased support for strength, blocking off a pipeline or 

implementing the attachment of more items. There are gradually increasing number of analytical and 

numerical studies on beams, plates, shells and annular structures made of isotropic or anisotropic 

functionally graded materials in the available literature since 1990s [1-30]. The reason is that the 

structures like discs manufactured with functionally graded materials can have much more favorable 

thermal and mechanical properties along the desired directions. To do this, at least two materials are 

combined in the way that the overall material properties along the chosen direction must obey a certain 

material grading rule. As one of the pioneer researches of the subject, Horgan and Chan [1, 2] showed 

that the stress response of an inhomogeneous cylinder (or disk) is significantly different from that of a 

homogeneous body. For example, the maximum hoop stress does not, in general, occur on the inner 

surface in contrast with the situation for the homogeneous material.  
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In analytical studies the well-known simple power rule was frequently used  by researches like  Horgan 

and Chan [1-2], Bayat et al. [3], Yıldırım [4] and Çallıoğlu et al. [5] since this material grading rule 

makes the variable coefficients of the governing differential equation to be solved turned into constant 

coefficients. Nejad et al. [6-7] gave a closed-form analytical solution in terms of hyper-geometric 

functions to elastic analysis of exponentially functionally graded stationary discs subjected to internal 

and external pressures. Based on the hypergeometric functions, You et al. [8] developed an analytical 

elastic solution for circular disks made of functionally linearly graded materials subjected to internal 

and/or external pressure. For an exponentially grading rule [6-7, 9-14], Whittaker / Kumer functions 

or Frobenius series are also involved in the solution. Saidi et al. [15] used Green function in their 

analytical work.  

For arbitrary material grading rules, some numerical solution techniques are employed such as   

Fredholm integrals [16,17], the modified Runge-Kutta algorithm [12], the finite element method 

[18,19], the finite difference method [20, 21], finite volume method [22], complementary functions 

method [23,24,25] and whatnot numerical techniques.   

Uniform discs [1, 2, 5-7, 9, 16-17] were studied relatively very large in proportion to the discs having 

different profiles such as parabolic and hyperbolic types. Eraslan and Akış [13] used two variants of a 

parabolic function for disks made of functionally graded materials. Bayat et al. [3], based on the power-

law distribution, studied both analytically and semi-analytically the elastic response of rotating hollow 

discs having parabolic and hyperbolic thickness profiles. However, they consider a variable thickness 

disk as a combination of sub-uniform discs with different thicknesses. Ghorbani [26] also divided a 

variable thickness disk into virtual sub-uniform disks.  Tütüncü and Temel [23], Zheng et al. [21], 

Yıldırım [4], Boğa and Yıldırım [24], and Yıldırım and Kacar [25] considered continuously varying 

discs in their studies.  

In the present study, for a simple power-law graded annulus having a continuously varying hyperbolic 

profile, an investigation of the variation of the elastic field with some material and geometrical 

parameters is fastened on. To do this Yıldırım’s [4] closed-form solutions are exploited.  

2. Mathematical Background 

Yıldırım [4] studied analytically exact elastic response of a convergent/divergent hyperbolic rotating 

disc made of a power-law graded material under four different boundary conditions such as a stationary 

disc subjected to internal/external pressures, a rotating disc whose surfaces may expand freely, a 

rotating disc mounted a rigid shaft with/without a rigid casing located at the outer surface.  

In this study the following differential equation which governs the axisymmetric static behavior of a 

hyperbolic annulus subjected to both the inner and outer pressures and made of a linear elastic power-

law graded material (Fig. 1) is used [4].  

 

(−1 + 𝑚𝜈 + 𝛽𝜈)𝑢𝑟

𝑟2
+

(1 + 𝑚 + 𝛽)𝑢𝑟′

𝑟
+ 𝑢𝑟

′′ = 0                                  (1) 

 

Where 𝑟 is the radial coordinate,  𝑢𝑟 is the radial displacement (Fig. 1), 𝛽 is the inhomogeneity constant 

of a power-graded material with the following Young’s modulus 

 

E(r)= 𝐸𝑎 (
𝑟

𝑎
)

𝛽

                                                             (2) 
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Fig. 1. Loading and geometry of a pressurized uniform annulus 

 

and, 𝑚 is the profile/thickness parameter of a disc with hyperbolically varying thickness (Fig. 2). 

 

ℎ(𝑟) = ℎ𝑎 (
𝑟

𝑎
)

𝑚

                                                           (3) 

 

 

Convergent (m<0)                                                     Divergent (m>0) 
 

Fig. 2. A hyperbolic annulus  

Resulting disc profiles with the changing profile thickness parameters, m, are illustrated in Fig. 3 for 

both convergent and divergent hyperbolic discs (a=0.02m, b=0.1m, ℎ𝑎 = 𝑎).  

Solution of Eq. (1), which is derived from stress-strain relations, strain-displacement relations, and the 

equilibrium equation in the radial direction under axisymmetric assumption, is given by Yıldırım [4] 

as  

𝑢𝑟(r) = 𝑟
1

2
(−𝑚−𝛽−𝜉)(𝐶1 + 𝐶2𝑟𝜉)                                           (4) 

 

Where 
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ξ=√(4 + (𝑚 + 𝛽)(𝑚 + 𝛽 − 4𝜈))                                            (5) 

 

 
Fig. 3. The chosen thickness parameters and corresponding profiles considered in the present study  
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Poisson’s ratio, 𝜈, is assumed to be constant along the radial direction. With the help of the Hooke’s 

law, the radial stress, 𝜎𝑟, and hoop stress, 𝜎𝜃 , are found as  

 

𝜎𝑟  = −
1

2
𝐶11𝑟

1
2

(−2−𝑚−𝛽−𝜉)
(𝐶2𝑟𝜉(𝑚 + 𝛽 − 2𝜈 − 𝜉) + 𝐶1(𝑚 + 𝛽 − 2𝜈 + 𝜉)) 

(6) 

𝜎𝜃  =
1

2
𝑟

1
2

(−2−𝑚−𝛽−𝜉)
(𝐶2𝐶11𝑟𝜉(2 − 𝜈(𝑚 + 𝛽 − 𝜉)) − 𝐶1𝐶11(−2 + 𝜈(𝑚 + 𝛽 + 𝜉))) 

Where 

𝐶11 =
𝐸𝑎 (

𝑟
𝑎)

𝛽

1 − 𝜈2
 

                                                                   (7) 

In Eq. (7) 𝐸𝑎 stands for Young’s modulus of the material located at the inner surface. The boundary 

conditions at both surfaces are defined by 𝜎𝑟(𝑎) = −𝑝𝑎 ,   𝜎𝑟(𝑏) = −𝑝𝑏 (Fig. 1). The integration 

constants in Eqs. (4) and (6) are expressed by 

 

𝐶1 =
2(𝜈2−1)𝑎

𝜉−𝛽
2 𝑏

𝜉−𝛽
2

𝐸𝑎

𝑎𝛽
(𝑎𝜉−𝑏𝜉)(𝛽+𝑚−2𝜈+𝜉)

(𝑝𝑎𝑎
𝑚

2
+1𝑏

𝛽+𝜉

2 − 𝑝𝑏𝑏
𝑚

2
+1𝑎

𝛽+𝜉

2 )                           (8a) 

 

 

𝐶2 = 𝑎−𝛽 2⁄ 𝑏−𝛽 2⁄ (𝑝𝑏𝑎𝛽 2⁄ 𝑏
1

2
(𝑚+𝜉+2)

− 𝑝𝑎𝑏𝛽 2⁄ 𝑎
1

2
(𝑚+𝜉+2)

)
2(𝜈2−1)

𝐸𝑎

𝑎𝛽
(𝑎𝜉−𝑏𝜉)(𝛽+𝑚−2𝜈−𝜉)

         (8b) 

 

In the above, 𝑝𝑎 and 𝑝𝑏 denote the inner and outer pressures, respectively (Fig. 1). Yıldırım’s [4] study 

comprises explicit form of elastic responses in terms of integration constants as seen in Eqs. (4), (7) 

and (8). Now, it is time to expand those formulas [4] for the present study.   Substitution of integration 

constants 𝐶1 and 𝐶2 into Eqs. (4) and (6) gives the following closed-form formulas  

 

𝑢𝑟 =
1

E𝑎

𝑎𝛽
(𝑎𝜉 − 𝑏𝜉)(𝛽 + 𝑚 − 2𝜈 − 𝜉)(𝛽 + 𝑚 − 2𝜈 + 𝜉)

 (2(𝜈2

− 1)𝑝𝑎𝑎
1
2

(−𝛽+𝑚+𝜉+2)
𝑟

1
2

(−𝛽−𝑚−𝜉)
(𝑏𝜉(𝛽 + 𝑚 − 2𝜈 − 𝜉) − 𝑟𝜉(𝛽 + 𝑚 − 2𝜈 + 𝜉)))

+  
1

E𝑎

𝑎𝛽
(𝑏𝜉 − 𝑎𝜉)(𝛽 + 𝑚 − 2𝜈 − 𝜉)(𝛽 + 𝑚 − 2𝜈 + 𝜉)

 (2(𝜈2

− 1)𝑝𝑏𝑏
1
2

(−𝛽+𝑚+𝜉+2)
𝑟

1
2

(−𝛽−𝑚−𝜉)
(𝑎𝜉(𝛽 + 𝑚 − 2𝜈 − 𝜉) − 𝑟𝜉(𝛽 + 𝑚 − 2𝜈 + 𝜉))) 

 (9a) 
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𝜎𝑟= {
𝑝𝑎(𝑏𝜉 − 𝑟𝜉)𝑎

1
2

(−𝛽+𝑚+𝜉+2)
𝑟

1
2

(𝛽−𝑚−𝜉−2)

𝑎𝜉 − 𝑏𝜉
} + {

𝑝𝑏(𝑎𝜉 − 𝑟𝜉)𝑏
1
2

(−𝛽+𝑚+𝜉+2)
𝑟

1
2

(𝛽−𝑚−𝜉−2)

𝑏𝜉 − 𝑎𝜉
} 

(9b) 

𝜎𝜃

= {
1

(𝑎𝜉 − 𝑏𝜉)(𝛽 + 𝑚 − 2𝜈 − 𝜉)(𝛽 + 𝑚 − 2𝜈 + 𝜉)
 (𝑝𝑎𝑎

1
2

(−𝛽+𝑚+𝜉+2)
𝑟

1
2

(𝛽−𝑚−𝜉−2)
(𝑏𝜉(𝛽 + 𝑚 − 2𝜈

− 𝜉)(𝜈(𝛽 + 𝑚 + 𝜉) − 2) − 𝑟𝜉(𝜈(𝛽 + 𝑚 − 𝜉) − 2)(𝛽 + 𝑚 − 2𝜈 + 𝜉)))}

+ {
1

(𝑏𝜉 − 𝑎𝜉)(𝛽 + 𝑚 − 2𝜈 − 𝜉)(𝛽 + 𝑚 − 2𝜈 + 𝜉)
 (𝑝𝑏𝑏

1
2

(−𝛽+𝑚+𝜉+2)
𝑟

1
2

(𝛽−𝑚−𝜉−2)
(𝑎𝜉(𝛽 + 𝑚 − 2𝜈

− 𝜉)(𝜈(𝛽 + 𝑚 + 𝜉) − 2) − 𝑟𝜉(𝜈(𝛽 + 𝑚 − 𝜉) − 2)(𝛽 + 𝑚 − 2𝜈 + 𝜉)))} 

(9c) 

In the above, 𝑚 = 0 gives uniform disk profiles that is unchanging thickness along the radial 

coordinate. For uniform discs made of such kind of materials, one may easily derive the following 

radial stress from Eq. (9b) by eliminating the thickness profile  

 

𝜎𝑟(𝑚=0)=
𝑎

1
2

(−𝛽+𝜉+2)
𝑝𝑎𝑟

1
2

(𝛽−𝜉−2)
(𝑏𝜉 − 𝑟𝜉)

𝑎𝜉 − 𝑏𝜉
  +

𝑏
1
2

(−𝛽+𝜉+2)
𝑝𝑏𝑟

1
2

(𝛽−𝜉−2)
(𝑎𝜉 − 𝑟𝜉)

𝑏𝜉 − 𝑎𝜉
 

  (10)               

Where (see Eq. (5)) 

ξ = √4 + 𝛽2 − 4βν                                                           (11) 

Horgan and Chan [1] proposed formulas for linear elastic response of uniform cylinders or stress-free 

discs made of a power-graded material. Horgan and Chan’s [1] equation for radial stress is rewritten 

here by using the present notation 

𝜎𝑟−𝐻𝑂𝑅𝐺𝐴𝑁 = −
𝑎

−𝛽
2 𝑏

−𝛽
2 𝑟

1
2

(−2−𝜉+𝛽)

𝑏𝜉 − 𝑎𝜉
(−𝑎𝜉+

𝛽
2𝑏1+

𝜉
2𝑝𝑏 + 𝑎

𝛽
2𝑏1+

𝜉
2𝑝𝑏𝑟𝜉 + 𝑏

𝛽
2𝑎1+

𝜉
2𝑝𝑎(𝑏𝜉 − 𝑟𝜉)) 

     (12) 

or in the form of 

𝜎𝑟−𝐻𝑂𝑅𝐺𝐴𝑁 =  
𝑎

1+
𝜉
2

−
𝛽
2 𝑟

1
2

(−2−𝜉+𝛽)

𝑎𝜉−𝑏𝜉 𝑝𝑎(𝑏𝜉 − 𝑟𝜉) +
𝑝𝑏𝑏

1+
𝜉
2

−
𝛽
2 𝑟

1
2

(−2−𝜉+𝛽)

𝑏𝜉−𝑎𝜉 (−𝑟𝜉 + 𝑎𝜉)         (13) 
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Yıldırım [4] validated that Eqs. (10), (12) and (13) are identical in his study. Moreover he also verified 

that Roark’s formulas [31] for uniform discs made of an isotropic and homogeneous material may be  

obtained from Eq. (9) by using 𝐶11 =
E

1−𝜈2 , 𝛽 = 𝑚 = 0, and  ξ = 2 as follows 

 

𝑢𝑟= −
𝑎2𝑝𝑎(𝑏2(𝜈 + 1) − (𝜈 − 1)𝑟2)

𝐸𝑟(𝑎2 − 𝑏2)
+

𝑏2𝑝𝑏(𝑎2(𝜈 + 1) − (𝜈 − 1)𝑟2)

𝐸𝑟(𝑎2 − 𝑏2)
 

 

𝜎𝑟= 
𝑎2𝑝𝑎(𝑏2 − 𝑟2)

𝑟2(𝑎2 − 𝑏2)
+

𝑏2𝑝𝑏(𝑎 − 𝑟)(𝑎 + 𝑟)

𝑟2(𝑏2 − 𝑎2)
 

                       (14) 

𝜎𝜃 = −
𝑎2𝑝𝑎(𝑏2 + 𝑟2)

𝑟2(𝑎2 − 𝑏2)
+

𝑏2𝑝𝑏(𝑎2 + 𝑟2)

𝑟2(𝑎2 − 𝑏2)
 

3. Numerical Examples 

The geometrical and material features are chosen as: 𝑎 = 0.02 𝑚; 𝑏 = 0.1 𝑚;  𝜈 = 0.3; 𝐸𝑎 =
200 G𝑃𝑎; 𝑝𝑎 = 1 G𝑃𝑎; 𝑝𝑏 = 0.1 G𝑃𝑎.  

From the definition of 𝛽 in Eq. (2), a positive inhomogeneity index, 𝛽 > 0,  means that 𝐸𝑎 < 𝐸𝑏 that 

is one of the materials having smaller Young’s modulus is located at the inner surface and Young’s 

modulus of the mixture material continuously increase towards the outer surface. If the inhomogeneity 

index is negative, 𝛽 < 0, a material whose Young’s modulus is higher than the other is placed at the 

inner surface. 

3.1. Effect of the thickness parameter 

Variation of the elastic quantities with the profile parameter (see Fig. 3) is shown in Figs. 4-6 for the 

particular values of inhomogeneity parameters 𝛽 = −5, 𝛽 = 0, and 𝛽 = 5. 

 𝛽 = 5 gives positive radial displacements for all profile indexes, converse is true for 𝛽 = −5. 

For 𝛽 = 0, that is for isotropic and homogeneous discs, divergent profiles give negative radial 

displacements towards the outer surface. 

 Positive inhomogeneity indexes with divergent profiles give the smallest radial displacements. 

 The radial stress is in compression for all profiles and inhomogeneity indexes. For both 

divergent, convergent and uniform disc profiles, on the other hand, the maximum radial stress 

is at the inner surface for all inhomogeneity indexes due to the boundary conditions. 

 The radial stress with 𝑚 ≥ 1 seems to offer higher stresses than the initial stress at the vicinity 

of the inner surface. 

 The hoop stress may be either in tension or in compression for all profiles and inhomogeneity 

indexes. For an isotropic and homogeneous disc, in general the maximum hoop stress is located 

at the inner surface as Horgan and Chan [1] stated.  

 The divergent profiles offer smaller hoop stresses for all profiles.  

 𝛽 = −5 presents the smallest hoop stress in magnitude for both divergent, convergent and discs 

profiles including uniform ones. On the other hand, the absolute maximum hoop stress is at the 

outer surface for 𝛽 = 5, while it is at the inner surface for 𝛽 = −5. 

 For a negative inhomogeneity index and a convergent disc, maximum hoop stress is located at 

the inner surface and it is tension in character. However for a negative inhomogeneity index 
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and a divergent disc with 𝑚 ≥ 1, maximum hoop stress is set at the inner surface as in 

compression.  

 

Fig. 4. Variation of pressure-induced elastic responses with profile parameters for free-free boundary 

condition and 𝛽 = −5 
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Fig. 5. Variation of pressure-induced elastic responses with profile parameters for free-free boundary 

condition and 𝛽 = 0 

3.2. Effect of the inhomogeneity parameter 

Variation of the elastic quantities with the inhomogeneity parameter is shown in Figs. 7-9 for the values 

of 𝑚 = −1, 𝑚 = 0, and 𝑚 = 1. From Figs. 7-9 the followings may be concluded 
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 For convergent, divergent and uniform disc profiles the plausible radial displacements are 

obtained with positive inhomogeneity indexes. 

 For all inhomogeneity indexes, a divergent profile offers a close radial stress variation along 

the radial coordinate.  

 Convergent disc profiles give radial stresses in compression for all inhomogeneity indexes. 

 

Fig. 6. Variation of pressure-induced elastic responses with profile parameters for free-free boundary 

condition and 𝛽 = 5 
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Fig. 7. Variation of pressure-induced elastic responses with inhomogeneity parameters for free-free boundary 

condition and 𝑚 = −1 

 Divergent profiles offer much smaller hoop stresses for all inhomogeneity indexes. 

 Maximum absolute hoop stress is located at the inner surface for negative inhomogeneity 

indexes and convergent profiles. For convergent discs and positive inhomogeneity indexes, 

maximum hoop stress is located either at the inner or the outer surface. 

 Maximum absolute hoop stress is set at the outer surface for positive inhomogeneity indexes 

and divergent profiles. 

 For divergent profiles and negative inhomogeneity indexes, maximum hoop stress is build up 

either at the inner or vicinity of the inner surface. 
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Fig. 8. Variation of pressure-induced elastic responses with inhomogeneity parameters for free-free boundary 

condition and 𝑚 = 0 

4. Conclusions 

For an annulus having continuously varying thickness and pressurized at both surfaces, a parametric 

study is performed to observe the effects of both the inhomogeneity index of a simple power law 

material grading, and the thickness parameter.  Analytical formulas of late published by the author are 

tailored for the present parametric study.  The thickness parameters presenting either convergent or 

divergent disc profiles are assumed to be in the range of  −1 ≤ 𝑚 ≤ 1. Inhomogeneity indexes for the 

material grading rule are also chosen in a wide range as −4 ≤ 𝛽 ≤ 4.  
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The effects of those parameters on the variation of the radial displacement, the radial and hoop stresses 

are all graphically illustrated and discussed. As expected, it is observed that those parameters have 

considerable influence on the static response of such an annulus. Those variations are obviously 

observed for the hoop stresses. In other words, the variation of the hoop stress in radial coordinate is 

closely sensible to variation of those parameters. That is its amplitude and sign may be drastically 

changed with those parameters. 

 

Fig. 9. Variation of pressure-induced elastic responses with inhomogeneity parameters for free-free boundary 

condition and m=1 
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For the chosen problems in the present study it may be concluded that 

 Positive inhomogeneity indexes always offer smaller radial displacements. 

 If 𝐸𝑎 < 𝐸𝑏 (𝛽 > 0) and a divergent profile is used, then one may get much smaller radial 

displacements. 

 𝐸𝑎 > 𝐸𝑏 that is 𝛽 < 0 is better together with divergent profiles than 𝐸𝑎 < 𝐸𝑏 (𝛽 > 0) for 

getting much smaller hoop stresses. That is to say a material having higher elasticity 

modulus is better to locate at the inner surface. 

 Divergent profiles offer much smaller hoop stresses for all inhomogeneity indexes. 
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