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Abstract: 

Aorta artery is the most vital artery in humans and almost all animals. Aorta artery is also the largest artery in human 

body. This artery is the first artery coming out from the left ventricle of the heart and extending down to the abdomen, 

where it splits into two smaller iliac arteries. Aorta artery conveys oxygenated blood to all parts of the body so that this 

artery is the one, which is under the influence of the highest blood pressure. It is well known that aorta artery consists of 

three main layers, which cover five sub-layers. In this paper, we aimed to show the difference between functionally graded 

material (FGM) and laminated composite material and to show which model fits to the structure of aorta artery. 
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1. Introduction 

The mechanic model of aorta artery has a long history and variety in literature. For example, a 

fundamental paper about mechanic model of aorta artery presented by Gozna et al. in 1974 with the 

effect of age in man [1]. Gozna et al. have found regression equations between aging and aorta artery 

mechanic behavior. These equations have showed that there is a linear relation between aging and 

aorta artery mechanic behavior. More recently, the stability of aorta artery has been investigated in 

case of buckling under blood pressure by Han in 2007 [2]. Further researches of Han et al. proved 

that arteries may buckle and become turtous due to reduced axial strain, hypertensive pressure, and 

weakened artery wall [3-9]. In 2013, Han et al. has introduced new phenotypes, models, and 

applications of aorta artery [10]. In the review, Han et al. summarized the common forms of buckling 

that occurs in blood vessels including cross-sectional collapse, longitudinal twist buckling, and bent 

buckling. Also the phenomena, model analyses, experimental measurements, effect on blood flow, 

and clinical relevance have been discussed. From this and further works Han et al. clearly showed 

that mechanical buckling of aorta artery is an important issue for vasculature, in addition to wall 

stiffness and strength, and requires further studies [11-20]. 
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2. Anatomy of Aorta Artery 

It is well known that aorta artery is composed of three main layers like most of other arteries [21]. 

These layers are “intima”, “media”, and “adventitia” respectively from inner layer to outermost layer. 

Intima is the innermost layer of the artery which is covering the lumen side of vessels and it is 

composed of endothelial cells and lines the entire circulatory system, from the heart and the large 

arteries all the way down to the very tiny capillary beds. The intima layer also contains extracellular 

matrix and a supporting layer of collagenous tissue. Endothelial cells sorted in a single layer along 

the lumen side. Media is the muscular middle layer of the arteries and veins. It is composed of smooth 

muscle layers. Adventitia is outermost layer of vessels surrounding the media layer. It is mainly 

composed of collagen and, in arteries, is supported by external elastic lamina . The demonstration of 

these three main layers have been shown in Fig. 1. 

 

 

Fig. 1. Main layers of aorta artery 

 

More specifically, these three main layers “intima”, “media”, and “adventitia” consist of five sub-

layers. These sub-layers are Endotel, internal elastic layer, smooth muscle, external elastic layer, 

collagens and elastic tendons from inside to outside of aorta artery respectively as it is shown in Fig. 

2. 
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Fig. 2. Sub-layers of aorta artery 

 

In 2005, Holzapfel et al. have made an experimental research to determine the material properties of 

the layers of aorta artery separately [22]. Within these experiments, 13 nonstenotic human aorta artery 

have been harvested at autopsies. The age of human were mean 71.5±7.3 years old. The artery 

samples have been subjected to cyclic quasi-static uniaxial tension tests from the individual layers in 

axial and circumferential directions. The outer diameter to total wall thickness ratio was 0.189±0.014 

and the ratios of intima, media, and adventitia to total thickness were 0.27±0.02, 0.36±0.03, 0.4±0.03 

respectively. The axial stretch was 1.044±0.06 and decreased with age of humans. Holzapfel et al. 

have found that the stress-stretch responses for the individual tissues performed pronounced 

mechanical heterogeneity. According to researches and experiments, intima have been found to be 

the stiffest layer and media the softest. Although intima and media have been found the stiffest and 

softest layers, these two layers have performed similar ultimate tensile stresses. These values have 

been found three times smaller than ultimate tensile stresses which have been calculated for adventitia 

(1430±604 kPa circumferential and 1300±692 kPa longitudinal). This study have clearly showed that 

aorta artery need to be modelled as composite structure which consist of three solid mechanically 

relevant layers with different material properties. The innermost layer “intima” have performed 

significant thickness, load-bearing capacity, and mechanical strength compared with other main 

layers “adventitia and media”. In order to calculate the material properties of the layers of aorta artery, 

Holzapfel et al.  harvested thirteen hearts from ten men and three women within 24 hour of their 

death. A scalpel has been used in order to separate three main layers. After separating layers, uniaxial 

tensile tests with bidimensional measurements were performed with the aid computer controlled, 

screw-driven high-precision tensile testing machine. According to Holzapfel et al., the mean density 

of adventitia, media, and intima have been calculated dimensionless as 0.55±0.18, 0.25±0.09, 

0.51±0.14 and the average stiffness have been calculated as 7.56±4.66 kPa, 1.27±0.63 kPa, 

27.90±10.59 kPa respectively  [22]. 
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Fig. 3. FGM, single layered, and laminated models of aorta artery 

In Fig. 3, different mechanical models of aorta artery have been demonstrated. Functionally graded 

material (FGM) and laminated composite materials have been chosen to be applied to aorta artery. 

As it can be seen in the middle, also single layered model have been demonstrated. In vivo, aorta 

artery is embedded in tissue and this tissue can be modeled as elastic matrix. In literature many paper 

can be found about static and dynamic analysis of beams and shells with composite materials [23-

25]. 

 

3. Functionally Graded Materials (FGM) 

 

Functionally graded materials (FGM) are relatively new advanced composite materials compared 

other composite materials. After the invasion of this composite materials, great deals of research have 

been made on the production and applications process of this new material concept. Functionally 

graded materials are characterized by gradually changed physical properties. 

 

p = p0 [1 +
p−1

T
+ p1T + p2T2 + p3T3]    (1) 

 

In Eq. (1) pi are the coefficients of temperature defined in the unit of Kelvin and them are unique to 

the constituent materials. 

 

p = ∑ pjVf
k
j=1        (2) 

 

In Eq. (2) pj and Vf are the material property and volume fraction of the constituent material j, 

respectively. The sum of volume fraction can be stated as 

 

∑ Vf = 1k
j=1        (3) 

 

To adopt the aorta artery as functionally graded material, a shell model with uniform thickness can 

be used. The volume fraction of the shell can be stated as 
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Vf = (
z

h
+

1

2
 )

N

      (4) 

 

The power-law exponent is defined by N. The material properties for a two-constituent functionally 

graded can be stated as [26] 

 

E(z) = (E1 − E2) (
z

h
+

1

2
 )

N

+ E2    (5) 

v(z) = (v1 − v2) (
z

h
+

1

2
 )

N

+ v2    (6) 

ρ(z) = (ρ1 − ρ2) (
z

h
+

1

2
 )

N

+ ρ2    (7) 

 

4. Laminated Composite Materials 

 

Laminated composite materials have attracted much attention due to their higher resistance, lighter 

weight when compared with traditional materials. Laminated composite materials have been widely 

used in aerospace industry, automotive industry and material engineering. Many researches have been 

published papers aimed to investigate the applications of laminated composite materials to shells, 

plates, and beams in case of static and dynamic analyses [27-35]. 

General equations of laminated composite materials can be stated as follows 

 

σi1 =
Ei1

1−vi12vi21
(εi1 + vi21εi12)     (8) 

σi2 =
Ei2

1−vi12vi21
(vi12εi1 + εi2)     (9) 

 

τi12 = Gi12γi12 = 2Gi12εi12     (10) 

 

Where Ei1 and Ei2 are the Young’s modulus in longitudinal “1” and transverse “2” direction 

respectively. On the other hand, vi12 is the Poisson’s ratio for which strains are in longitudinal 

direction “1” and stress in transverse direction “2”. Similarly, Gi12 is the shear modulus. 

Eqs. (8-10) can be written in matrix form as follows 

 

{

σ1

σ2

τ12

} = [
Q11 Q12 0
Q21 Q22 0

0 0 Q66

] {

ε1

ε2

γ12

}    (11) 

 

By simplifying Eq. (11) we obtain 
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{σ} = [Q]{ε}      (12) 

 

Where 

 

Q11 =
E1

1−v12v21
      (13) 

Q12 = Q21 = v21
E1

1−v12v21
= v12

E1

1−v12v21
   (14) 

Q22 =
E2

1−v12v21
      (15) 

Q66 = G12      (16) 

 

According to Betty-Maxwell theorem the Young’s modulus and Poisson’s ratios should fulfil the 

following equation 

E1v21 = E2v12      (17) 

 

5. Concluding remarks 

 

In present paper the most convenient mechanical model of aorta artery have been investigated. Two 

of most used composite materials types have been analyzed. Functionally graded materials and 

laminated composite materials models fundamental equations have been given. As it can be seen from 

Fig. 2, aorta artery has a layered structure which is composed of three main layers which consist of 

five sub-layers. Each layer has their own material properties (density, Young’s modulus etc.). To 

conclude it is possible to say that aorta artery can be modelled by using laminated composite material 

theories. Three main layers can be adapted in laminated composite theories or to have more accurate 

result, five sub-layers can be adapted in laminated composite theories in order to investigate the 

mechanical behavior of aorta artery. 
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