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Abstract  

In this study, the static behavior of nanobeams subjected to end concentrated loads is theoretically investigated in the 
Laplace domain. A closed form of solution for the title problem is presented using Euler-Bernoulli beam theory.  
Nonlocal elasticity theory proposed by Eringen is used to represent small scale effect. A system of differential 
equations containing a small scale parameter is derived for nanobeams. Laplace transformation is applied to this system 
of differential equations containing a small scale parameter. The exact static response of the nanobeam with end 
concentrated loads is obtained by applying inverse Laplace transform. The calculate results are plotted in a series of 
figures for various combinations of concentrated loads. 
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1. Introduction 

   Single walled carbon nanotubes (nanobeams) are non-classical nanomaterials of current interest in 
several applicative sectors, such as electronics, medicine and engineering. They have superior 
mechanical and electrical properties and their potential applications in optics, electronics and other 
fields of nanotechnology. Classical continuum theory is size-free theory and this theory lacks the 
accountability of the size effects arising from the small-size.  There have been different non classical 
continuum theories used to overcome small size effects. Integral type, differential equation type or 
gradient nonlocal elasticity type models abandon the classical elasticity assumption of local model, 
and stated that stress depends not only on the strain at that point.  

Eringen [1] proposed the new higher order continuum theory known as “nonlocal elasticity theory” 
in 1970s. In this theory small size effect can be considered in the constitutive equations simply as a 
material scale parameter. Nonlocal elasticity theory based nano sized structures are new materials 
(nanomaterials) which are designed to achieve a higher performance in physical and mechanical 
properties.  The nonlocal continuum theory has been widely applied to many mechanical problems of 
a wide range of interest, including the  bending, buckling, and vibration of beam-like structures [2-4] 
and plate-like structures [5-7]  and elements in nano and micro sized structures. Many research 
papers correlated to nonlocal continuum theories have been addressed the small scale effects in 
nanostructures and apply these higher order elasticity theories to determine the mechanical behavior 
of nanostructures, see Refs. [8-25]. 
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In this work, a Laplace transformation is introduced for the bending analysis of the cantilever 
nanobeams with end concentrated loads (initial value problems). A systems of differential equations 
is derived with initial and boundary conditions. Laplace transformation is applied to this systems of 
differential equations containing nonlocal elasticity parameter with known initial conditions. The 
closed form of solutions of the nanobeam with end concentrated loads is derived by applying inverse 
Laplace transform. 

2. Formulation of the problem 

The constitutive relation, the equations of equilibrium and geometrical compatibility condition of a 
nanobeam in the two dimensional plane are [26].  
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where M and T are the bending moment and the shear force, w and ϕ are the lateral displacement and 
the slope of the beam. On the other hand, Eq. (2) takes a different form in nonlocal elasticity [27]. 
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above relation takes the following form 
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then according to nonlocal elasticity theory, the system of differential equations is given by [26]. 
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where EI  is the flexural rigidity of the nanobeam, E  is Young's modulus, I  is the moment of inertia 
of the cross-sectional area A, P1  the axial concentrated force, P2  the lateral concentrated force,  a the 
internal characteristic length and e0 is a constant. The initial conditions can be calculated as follows; 
 

 
 Fig. 1. A cantilever nanobeam with end concentrated forces 

 
 0,(0)w =  (8) 

 
 0,(0)ϕ =  (9) 

 
 2(0) ,M P L= −  (10) 

 
 2 .(0)T P=  (11) 

 
The following systems of differential equations can be derived from the Eq. (7): 
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3. Closed form of solutions 

By applying Laplace transform to these equations: 
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then using the initial conditions given in Eqs. (8-11), following equations are derived in Laplace 
domain: 
 

                       
2 2

2 2 2 2
1 1 0

,
( ( ) )

( )
P LP s

s P EIs Ps e a
w S

− +

− − +
= −  (20) 

 

 2 2
2 2 2 2

1 1 0

,
( ( ) )

( )
P LP s

s P EIs Ps e a
Sϕ

− −

+ −
= −  (21) 

 

 
2 2

2 2 1 2 0 1 2 0
2 2 2

1 1 0

( ) ( )
,

( ) )
( )

EIP EILP s PP e a LP P s e a

P EIs Ps e a
M S

− − +

− − +
= −  (22) 

 

 2 .( )
P

s
T S =  (23) 

 
Inverse Laplace transforms of above equations give the closed form of solutions: 
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4. Numerical results 
 

 To evaluate the significance of end loads on the static analysis of nonlocal beams, this section 
considers a nano-sized beam with the end concentrated forces. Here we assume E*I = 1 nN.m2, e0a=1 
nm.  In order to investigate the significances of end axial concentrated forces on the mechanical 
behaviors of the nanobeam, its bending behaviors are compared. The significances of the end axial 
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and lateral forces on the linear bending deflection of the cantilever nanobeam are investigated by 
using the nonlocal elastic Euler-Bernoulli beam model.  Figs. 2 and 3 reveal the effect of the end 
concentrated forces on the deflection with end lateral force and the deflection with end axial force of 
a cantilever nanobeam, respectively. 
 

                          
                       Fig. 2. Static deflection for different concentrated forces (P1 =1.2 nN). 

                             
                            Fig. 3. Static deflection for different axial forces (P2 =1.0 nN). 

 

The effects of end forces on the slope of cantilever nanobeams are presented in Figs. 4 and 5. The 
figures show increase and decrease in the slope with increase in distance from fixed end which 
highlights the significance of end concentrated forces. So, it can be concluded that the lateral 
deflection is highly increased with higher values of the end lateral concentrated forces. 
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Fig. 4. Slope for different concentrated forces ( P1 =1.2 nN). 

 

                               
Fig. 5. Slope for different axial forces (P2 =1.0 nN). 

 
The effects of end forces on the bending of cantilever nanobeams are presented in Figs. 6 and 
7.  Again the influences of the axial force and the lateral force on the bending moment are 
quite obvious. 

                                
Fig. 6. Moment diagram for zero axial force (P1 =0.0 nN). 

 



M. Ö. Yaylı, S. Y. Kandemir 

109 
 

                               
Fig. 7. Moment diagram for constant axial force (P1 =5.0 nN). 

  
 

 

5. Conclusions 

In present work, It has been shown that the Laplace transform could be applied to solve nonlocal 
initial value problem that contains homogeneous linear differential equations. The single walled 
carbon nanotube is modeled as beam via Euler-Bernoulli theory. Nonlocal elasticity theory is used 
for small scale effect. One can easily transform the system of differential equations with constant 
coefficients into a system of (algebraic) equations with constant coefficients. Then these systems of 
algebraic equations can be solved and takes the inverse Laplace transform to get closed form 
solutions of the original equations.  
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