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Abstract 

Heat-induced, pressure-induced, and centrifugal force-induced axisymmetric exact deformation and stresses in a thick-walled 

spherical vessel, a cylindrical vessel, and a uniform disc are all determined analytically at a specified constant surface 

temperature and at a constant angular velocity. The inner and outer pressures are both included in the formulation of annular 

structures made of an isotropic and homogeneous linear elastic material. Governing equations in the form of Euler-Cauchy 

differential equation with constant coefficients are solved and results are presented in compact forms.  For discs, three different 

boundary conditions are taken into account to consider mechanical engineering applications. The present study is also 

peppered with numerical results in graphical forms.  

Keywords: Thermo-Mechanical, Elasticity solution, Exact solution, Rotating disc, Pressure vessel, Linear elastic 

1. Introduction 

 

 

Annular structures such as cylindrical or spherical vessels including discs are essential structural elements 

mainly made of an isotropic and homogeneous material. (Fig. 1). From those vessels may store gases, 

vapors, and liquids at various pressures and temperatures. The pressure is obtained from an external 

source, or by the application of heat from an indirect or direct source. That is a pressure vessel is mostly 

subjected simultaneously to both the mechanical and thermal loads. In a pressure vessel design 

determination of both the displacements and stresses is of great importance. If the material of the vessel 

is isotropic and homogeneous then those may be calculated analytically. By choosing appropriate 

parameters, an analytical solution also allows the optimization of the design parameters of a vessel 

structure.  

 

Apart from vessels, a rotating disc is also one of the essential annular structural component. They are 

commonly used in a wide variety of engineering applications including space structures, electronic 

components and rotating machinery. Axisymmetric elasticity solutions to the both mechanical and thermal 

stress analysis of rotating discs have long been studied in the available literature.  However, most of those 

studies modelled the thermo-elastic behavior of a disc with boundary condition which commonly proper 
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for the cylindrical vessel having stress-free surfaces (Fig. 1c). But, in mechanical engineering applications 

rotating discs are commonly attached a rigid shaft at the center (Figs. 1d-e). 

 

 

 

 

 

 
 

(a) Sphere 

 

 

 

 

 

b) Infinite cylinder c) Disc / Circular annulus 

 

 

 

 

 

 

d) Disc having rigid case at the outer 

surface 

e) Disc mounted a shaft at its 

center 

 

Fig. 1. Rotating annular structural geometries 
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As is well known in the thin-walled structure analysis the uniform stress distribution along the thickness 

is taken for granted. Apart from this, the effect of the radial stress on the equivalent stress is neglected. 

That is the radial stress due to either/both inner or/and outer pressures are assumed to be virtually zero.  

 

However, in thick-walled structures, both the radial and hoop stresses play a role in the vessel design. It 

is obvious that the distribution of the stresses along the radial coordinate are no further uniform in thick-

walled annular structures.  

 

In the literature, the most number of studies are conducted with such structures subjected to just internal 

pressure. However, there are some types of structures such as submarine structures and vacuum tanks for 

which the predominant pressure is assumed to be the outer pressure and just the effect of this external 

pressure is considered in their analysis. In the present study effects of both the inner and the outer pressures 

are formulated analytically for each type of annular structures. 

 

In some thermal studies, for the aim of simplicity, the distribution of the temperature along the radial 

coordinate is assumed to be linear without solving related Fourier heat conduction differential equation in 

thick-walled annular structures. As might be expected, this not reflects the true thermal behavior of such 

structures. The appropriate temperature distribution, which is obtained in terms of a logarithmic function,   

is identically the same but not linear for discs and cylindrical structures (Fig. 2). The temperature 

distribution in spheres shows a hyperbolic variation.  In the present study, the exact temperature 

distributions obtained by the solution of Fourier heat conduction differential equation are used to study 

the thermo-elastic behaviors of such structures. 

 
Fig. 2. Temperature distribution in thick-walled annular structures 
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Apart from the above, one may also be confused undoubtedly when studying the disc and cylindrical 

geometries. Discs are modeled in the case of plane stress assumption while the cylinders are modeled 

under plane-strain assumptions. The strain-displacement relations together with the equilibrium equation 

are identically the same under axisymmetric conditions for two annular structural types. As stated above, 

the temperature distribution of two types of structures are also one and the same. In spite of those, there 

are differences in their stress-strain relations that is in Hooke’s law. This, sometimes, may cause some 

misperceptions in the formulation. In the present study the main differences in the formulation are 

demonstrated clearly.   

 

Finally, one may spend relatively much time to obtain formulas with the same notation for thermo-

mechanical behavior of such structures. In this respect, this study offers a concise and a complete study. 

  

The subject of the present work is to form an infallible all-in-one source for the linear elastic behavior of 

such structures made of an isotropic and homogeneous material under thermal and mechanical loads (Fig. 

1).  Centrifugal forces, internal and external pressure forces are all classified as mechanical loads. To do 

so, governing equations which are second degree order non-homogeneous differential equations of 

constant coefficients are first derived from the elasticity field equations, and then they are solved 

analytically to obtain thermal and mechanical deformation and stresses.  In this study exact thermo- 

mechanical analysis of this types of structures are carried out according to the superposition principle since 

small displacements are assumed. That is, each elastic quantity, either displacement or stress, is first 

determined separately for the related loading type. The resultant elastic quantity is then determined as a 

sum of each contributions. 

 (��)����	
�	������� = (��)�������� + (��)�������� + (��)�������  (!�)����	
�	������� = (!�)�������� + (!�)�������� + (!�)�������                      (1) 

 (��)����	
�	������� = (��)�������� + (��)�������� + (��)������� 
2. Spherical Vessels  

In a spherical coordinate system, (", $, ∅), relations between the strain and displacement components for 

spherically symmetric case are as follows (see Notations) 

 

)(')( rur rr =ε  

r

ru
rr r )(
)()( == φθ εε                                                                (2) 
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0)()()( === rrr rr θφφθ γγγ  

 

 

where prime symbol denotes the first derivative of the quantity with respect to the radial coordinate. It 

may be noted that the properties in $ and ∅ directions are identical for axisymmetric hollow spheres. 

Denoting the rise in temperature with respect to the temperature where stress value in the material is zero 

by ∞−= TTrT )(∆ , Hooke’s law for a sphere made of an isotropic and homogeneous material is given by 
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Equilibrium equation for a spherical vessel rotating at a constant angular velocity is 

 

r
r

r rr
2)(

2
)(' ρωσσσ θ −=−+                                                                (5) 

 

Eqs. (2), (3), and (5) are referred to as the field equations of the elasticity. Substituting Eq. (2) into Eq. 

(3), and then successive substitution of Eq. (3) together with the first derivative of the radial stress into the 

equilibrium equation (5), the governing equation called Navier equation in terms of radial displacement is 

obtained as follow 

 !�''(r) + &� !�' (") − &�) !�(") = − *+)��,, + (1 + 2/)01'(") = − *+)��,, + (234)(2�4) 01'(")                   (6) 

 

This is a second order non-homogeneous Euler-Cauchy type differential equation with constant 

coefficient. Its solution consists of the sum of its homogeneous and particular solutions. Since small 

displacements are assumed, the superposition principle holds. 

 

To consider just mechanical loads due to either internal or external pressures, the following (5 =  61 =0) is solved with the boundary conditions [1]:  ��(8) = −9�, and ��(:) = −9;. 
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!� ''(r) + &� !�' (") − &�) !�(") = 0                                                        (7) 

 

In order to account for just the rotation as a mechanical load (9� = 9; = 0;  61 = 0) , Eq. (8) is solved 

under the boundary conditions:  ��(8) = 0  and  ��(:) = 0. 

 !� ''(r) + &� !�' (") − &�) !�(") = − *+)��,,                                                          (8) 

 

After determination of the temperature distribution along the thickness of the sphere, the thermo-elastic 

analysis is merely taken into consideration by the following [2-6] under the boundary conditions: ��(8) =0 ; ��(:) = 0. 

 !� ''(r) + &� !�' (") − &�) !�(") = (234)(2�4) 01'(")                                                  (9) 

 

As stated above, before conducting the thermo-elastic analysis, a thermal analysis which defines the 

distribution of the temperature along the radial coordinate is required. Under the steady-state condition, in 

the absence of heat generation, temperature distribution along the thickness of the spherical vessel is found 

from the solution of the following heat conduction equation (Fourier’s equation) with the first kind 

boundary conditions (Dirichlet):   aTaT =)(  and bTbT =)( . 
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Solution of the above is found as 
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Eq. (9), now, takes the following form with Eq. (11)  

 !� ''(r) + &� !�' (") − &�) !�(") = �;(�?��@)A(234)(��;)�)(2�4) = B�)                                       (12) 

 

Solution of the above inhomogeneous equation with the boundary conditions, ��(8) = 0 , and ��(:) = 0, 

gives the following   

2
)( 12

2 Ψ
−+= rB

r

B
rur                                                               (13a) 

 C2 = D(4�2)B(��;)(�3;)�A(432)(�E�?�;E�@)(&D32)(4�2)(�E�;E)     (13b) 
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C& = �);)(D(4�2)B(��;)3�;A(432)(�?��@))&(D�2)(4�2)(�E�;E)     (13c) 

 

 

Compact forms of the thermo-elastic radial displacement, radial and hoop stresses are 

 !�(") = F2(G − 1)"&(8H − :H) 

 F = 0I8HI:H(G + 1)I−(1� − 1;)J + :(G + 1)"&(1� − 1;) + 2(G − 1)"H1�J+ 8&:"&(1� − 1;)(:G + : − 2G") + 8:&"&(1� − 1;)(:G + : − 2G")− 2:H(G − 1)"H1;J   
)14( ��(r)= 

8:0K(8 − ")(: − ")(1� − 1;)(8(: + ") + :")(G − 1)"H(8H − :H)  

 ��(") = − 8:0K(1� − 1;)("&(8& + 8: + :&) + 8&:& − 2"H(8 + :))2(G − 1)"H(8H − :H)  

 

Nayak et al. [4] offered the following thermal stresses for hollow spheres. 

 

��(r)= 
− 0K(1� − 1;)(1 − G) L :" − 1:8 − 1 − :H"H − 1:H8H − 1 M = ���������� (�N.2P) 

  

)15(  

��(r)= 
− 0K(1� − 1;)(1 − G) L :2" − 1:8 − 1 + :H2"H + 1:H8H − 1  M = ���������� (�N.2P) 

 

Nayak et al. [4] stated that from References [5-6] one can easily verify that Eq. (15) is indeed the 

expression for radial and tangential stresses for an isotropic and homogeneous thick spherical vessel. It is 

also readily verified that Nayak et al.’s [4] equations in (15) and present equations in (14) are identical. 

For the mechanical load due to internal and external pressures, analytical solution is found as 

 !�(") = Q&"& + Q2" 

 ��  = Q22(2Q&(−1 + /) + Q2"H(1 + 2/))"H  

 ��  = Q22(Q& − Q&/ + Q2"H(1 + 2/))"H  

 (16) Q2 = − I&4)34�2JI�ER?�;ER@J�(&D32)(4�2)(�E�;E)  ; Q& = �E;E(&4)34�2)(R?�R@)&�(D�2)(4�2)(�E�;E) 
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Compact forms of the above in which radial and hoop stresses coincide with Roark’s formulas [2] are. 

 !�(") = − 8H9�(:H(G + 1) + 2(1 − 2G)"H)2"&(8H − :H)K + :H9;(8H(G + 1) + 2(1 − 2G)"H)2"&(8H − :H)K  
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Fig. 3. Displacements and stresses induced by mechanical loads 
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Fig. 4. Displacements and stresses induced by thermal loads 
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Fig. 5.  Total and equivalent stresses for thermo-mechanical loads  

 

Analytical solutions for mechanical load due to just rotation at a constant angular velocity is  
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For a numerical example, geometrical and material properties together with boundary conditions of the 

sphere are assumed to be [4]: 

 

C
o

/11058.10
6
  

−=α;  MPayield 700=σ;    29.0=ν;    GPaE 2.209= 

mb 0.1=;ma 8.0=; srad /100=ω; 0=bp ;MPapa 200=; CTb
ο0=; CTa

ο27= 

 

Variation of the displacements and stresses induced by separate mechanical and thermal loads are 

illustrated in Figs. 3-4. From these figures it is observed that the radial displacement and hoop stresses 

which are tension in nature decrease with increasing ab /  ratios for each individual mechanical loads. The 

maximum radial stress which is compression in nature is observed at the inner surface for mechanical 

pressure loads, and at the vicinity of the middle surface as being tension in nature for mechanical rotational 

loads. Variation of the displacements and stresses induced by thermal loads is illustrated in Fig. 4 at 

different temperatures of the inner surface. From the figure it is observed that the radial displacement 

increases with increasing ab /  ratios and with increasing inner surface temperature. The maximum radial 

stress in compression is observed at the vicinity of the middle surface and increases with increasing surface 

temperature differences.  Tangential stress varies from compressive to tensile for thermal load, from inside 

surface to outside. Considering superposition principle, variation of the thermo-mechanical stresses and 

equivalent stress in Eq. (19) which is given by [4] based on the Von-Mises criteria is illustrated in Fig. 5. 

It is observed that the equivalent stress gradually decreases in the radial direction, from inside surface to 

outside for thermo- mechanical loads and sets up tensile stresses. From this figure it is also observed that 

the equivalent stress exceeds the yield strength at the inner surface, 5.3/ =ayield pσ . 

 

)(2 req σσσ θ −=                                                                            (19) 

3. Cylindrical Vessels 

 

In a polar coordinate system, (", $), axisymmetric relations between the strain and displacement 

components are as follows (Fig. 1) 

 

)(')( rur rr =ε  ;      
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ru
r r )(
)( =θε   ;          0)( =rrθγ                                        (20) 

 

Stress-strain relations for a cylindrical structure are given in the form of 
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Equilibrium equation for a cylindrical vessel or a disc rotating at a constant angular velocity, is 

 

r
r

r rr
2)(

1
)(' ρωσσσ θ −=−+                                                            (22) 

 

Substituting Eqs. (20) into Eqs. (21), and then successive substitution of Eqs. (21) with the first derivative 

of radial stress into the equilibrium equation in (22), a second order non-homogeneous Navier differential 

equation which governs the thermo-mechanical behavior of a cylindrical vessel is obtained as follows 

 !� ''(r) + 2� !�' (") − 2�) !�(") = − *+)��,, + (1 + 2/)01'(")                                (23) 

 

In order to study thermo-elastic analysis alone of such structures, let’s neglect the rotation together with 

inner/outer pressures  

 !� ''(r) + 2� !�' (") − 2�) !�(") = (1 + 2/)01'(")                                      (24) 

 

Solution of the above equation consists of the sum of its homogeneous and particular solutions. To get the 

particular solution, first, the temperature distribution due to the temperature difference between the 

cylinder surfaces at specific temperatures is required. Let’s consider the Fourier heat conduction equation 

in polar coordinates for cylinders or discs 

 

=








dr

rdT

dr

d

r

)(1
0)(

1
)( =′+′′ rT

r
rT                                                     (25) 

 

Temperature distribution along the thickness of a cylinder or a disc is found from the solution of the 

above equation with the first kind boundary conditions: aTaT =)(     and   bTbT =)( .   

 1�S���T��(") = 1U��V(") = WX"Y2 + Y& 

(26) Y2= 
�?��@Z[��Z[;      ;  Y& = �Z[;�?3Z[��@Z[��Z[;  

 

It may be noted that the temperature distribution in both cylinder and disc is govern by the same differential 

equation under the same boundary conditions. Considering the temperature distribution in Eq. (26) and its 

derivative, Navier equation for the thermo-elastic analysis of a cylindrical vessel made of a homogeneous 

and isotropic material is achieved as follows 

 !� ''(r) + 2� !�' (") − 2�) !�(") = (1 + 2/)01'(") = (1 + 2/) A� \ �?��@Z[��Z[; ]                     (27) 

 

In the present work, the above differential equation is solved for the boundary conditions: ��(a)=0  and  ��(b)=0 .  Solution of Eq. (27) is obtained as follows 
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!�(r)= − ^2(G − 1)"(8 − :)(8 + :)(W_`(8) − W_`(:)) 

 ^ = a(G + 1)0 \1�(8& log(8) (:& − 2G"& + "&) − :& log(:) (8& − 2G"& + "&)+ (G − 1)"&(8 − :)(8 + :) + 2(G − 1)"&(8 − :)(8 + :) log(:)+ "&(8 − :)(8 + :) log("))+ 1;I8& log(8) I−(:& − 2G"& + "&)J + :& log(:) (8& − 2G"& + "&)+ "&(:& − 8&) log(") − (G − 1)"&(8 − :)(8 + :)− 2(G − 1)"&(8 − :)(8 + :) log(8)J]e 

(28) 
 ��(r) = (1� − 1;)0K(:&("& − 8&)ln: + 8&ln8(: − ")(: + ") + "&(8 − :)(8 + :)ln")2(G − 1)"&(8 − :)(8 + :)(ln8 − ln:)  

 ��(r) = (1� − 1;)0K(8&ln8(−(:& + "&)) + :&(8& + "&)ln: + "&(8 − :)(8 + :)(ln" + 1))2(G − 1)"&(8 − :)(8 + :)(ln8 − ln:)  

 

In equations (28) stress formulas coincides with the literature [7]. However an error is found in the 

definitions of those stresses in Reference [8]. Solutions in Reference [8] is unfortunately employed in 

Reference [9]. The analytical formulas, again derived in the present study, for the radial displacements 

and stresses due to mechanical loads such as internal/external pressure and rotation at a constant angular 

velocity are presented below for the sake of the completeness of the study. 

 !�(") =   g− 8&(G + 1)9�(:& − 2G"& + "&)"(8& − :&)K h + g:&(G + 1)9;(8& − 2G"& + "&)"(8& − :&)K h 

 ��(r)= g8&9�(:& − "&)"&(8& − :&) h + g:&(8 − ")(8 + ")9;"&(:& − 8&) h (29) ��(r)= g− 8&9�(:& + "&)"&(8& − :&) h + g:&(8& + "&)9;"&(8& − :&) h    !�(r)= g(G + 1)5&jI8&(2G − 3)(:& + (1 − 2G)"&) − (2G − 1)"&(:&(2G − 3) + "&)J8(G − 1)"K h 

 ��(r)= g(2G − 3)5&(8 − ")(8 + ")("& − :&)j8(G − 1)"& h (30) ��(r)= g5&jI8&(2G − 3)(:& + "&) + "&(:&(2G − 3) + (2G + 1)"&)J8(G − 1)"& h  
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Table 1. Material properties for cylinders 

 

 METALS E (GPa) )3ρ(kg/m ν  k (W/mK) α (1/K) 

Metals Titanium (Ti-6Al-4V) 122.557 2370 0.29 13.723 6-7.579x10 

Aluminum (Al) 70 2700 0.3 204 6-23x10 

Nickel (Ni) 199.5 8900 0.3 90.7 6-13.3x10 

Stainless-Steel (SUS304) 201.04 7800 0.3262 15.379 6-12.33x10 

Ceramics )4N3Nitride (Si-Silicon 348.43 4429 0.24 1.209 6-5.8723x10 

)2Oxide (ZrO-Zirconium 116.4 3657 0.3 1.78 6-8.7x10 

)3O2(Al Oxide-Aluminum 393 3970 0.3 30.1 6-8.8x10 

 

For numerical example, geometrical and material properties of the cylindrical vessel are assumed to be:

ma 8.0= ; mb 0.1= . Variation of the displacements and stresses induced by thermal loads at different 

temperature differences is illustrated in Figs. 6-7 for both ceramics and metallic materials whose properties 

are given in Table 1. From these figures it is observed that the characteristics of the curves of the elastic 

quantities are similar for both ceramics and metals since they are both isotropic and homogeneous: The 

radial displacement gradually increases with increasing radial coordinate. The maximum thermo-elastic 

radial displacement is observed at the vicinity of the middle surface. The thermo-elastic radial stresses are 

compression in nature. The maximum hoop stresses are observed at the inner surface of the cylindrical 

vessel. The thermo-elastic hoop stresses are gradually changed their signs from inside surface to the outer 

surface. The numerical values of the hoop stresses are 10-times more than radial stresses. So the hoop 

stresses become leading in the thermo-elastic analysis.  

 

 
 

Fig. 6. Thermo-elastic radial displacement and the radial and hoop stresses for cylindrical vessels 

made of different metallic materials 
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Fig. 7. Thermo-elastic radial displacement and the radial and hoop stresses for cylindrical vessels 

made of different ceramic materials 

 

As expected, in a thermo-elastic analysis, the ceramic materials are more strength to the metallic materials. 

However, thermo-elastic behavior of a titanium-alloy is very similar to a zirconia.  The titanium-alloy 

offers smaller displacements than the zirconia.  
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Fig. 8. Boundary conditions considered for discs  
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4. Discs at Different Boundary Conditions 

In a polar coordinate system, (", $), axisymmetric field equations are as follows 

0)( =rrθγ;            
r

ru
r r )(
)( =θε;       )(')( rur rr =ε 

)()1()()( 111111 rTCrCr C r ∆αλελε θ +−+=)()()()()( 12111211 rTCCrCr Cr rr ∆αεεσ θ +−+= 

)31( 

)()1()()( 111111 rTCrC rC r ∆αλεελ θ +−+=)()()()()( 12111112 rTCCrC rCr r ∆αεεσ θθ +−+=    

111112 CC C λν == ;      
211

)1( ν−
=

E
C 

 

From the above field equations, the following Navier differential equation which governs the thermo-

mechanical behavior of the uniform disc is obtained.  

 !� ''(r) + 2� !�' (") − 2�) !�(") = − *+)��,, + (1 + /)01'(")                                (32) 

 

As stated above, temperature distribution for both discs and cylindrical vessels obey the same 

differential equations. So, from Eq. (26) the following is rewritten under the first kind boundary 

conditions 

 1(")�S���T�� ��T U��n = WX"Y2 + Y& = WX" �?��@Z[��Z[; + �Z[;�?3Z[��@Z[��Z[;                       (33) 

 

In order to study thermo-elastic analysis alone of such structures, the rotation is omitted in Eq. (32).  

 !� ''(r) + 2� !�' (") − 2�) !�(") = (1 + G)0 o,�   = (1 + G) A� \ �?��@Z[��Z[; ]                        (34) 

 

In the present work, the above differential equation is solved for each boundary condition given in Fig. 

8 and the results are presented in Table 2. As ease of reference, the analytical formulas in Reference 

[10] for the uniform discs subjected to the mechanical loads are presented for different boundary 

conditions in the Appendix.  

 

For a numerical study, geometrical and material properties of the disc are assumed to be: ma 1.0= ; 

mb 0.1= , GPaE 2.209= ; 29.0=ν ; MPayield 700=σ ; C  o/11058.10 6−=α . Variation of the 

displacements and stresses induced by thermal loads is illustrated in Fig. 9 under different boundary 

conditions and for different temperature differences. From Fig. 9 it is observed that the radial 

displacement gradually increases with increasing ab / ratios for BC=1 and BC=2. The maximum 

radial displacement is observed at the outer surface for both BC=1 and BC=2 while it is at the vicinity 

of the middle surface for BC=3. BC=1 and BC=3 present radial stress as compression in nature while 

BC=2 offers radial stress in tension. The maximum radial stress is observed at the inner surface for 

BC=2, at the close to the inner surface for the others. From Fig. 9, for all types of boundary conditions, 

maximum hoop stress is observed at the inner surface of the disc.  Hoop stresses are gradually changed 

their signs from inside surface to the outer surface. 
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Fig. 9. Thermo-elastic behavior of a rotating disc at different boundary conditions 

 

As stated above, some existing formulas in the literature contain some errors. Poworoznek [8] 

conducted an analytical study for cylindrical pressure vessels based on the theory proposed by 

Timoshenko [11]. He suggested some analytical formulas for both hollow cylinders (plain strain) and 

hollow discs (plain stress) for BC=1. 

 (��)��p���q��V/U�s� = K01�2(1 − G) WX \:8] (− WX t:"u − 8&:& − 8& (1 − :&"&) WX t:8u) 

(��)��p���q��V/U�s�3�v���U�� = �A�?& ��\@?] \1 − WX \;�] − �);)��) \1 + ;)�)] WX \;�]]            (35) 

(��)��p���q��V/�v���U�� = K01�2 WX \:8] (− WX t:"u − 8&:& − 8& (1 − :&"&) WX t:8u) 

 

Let’s re-consider analytical formulas derived in this study for the radial and hoop stresses for discs 

(Table 2) and cylinders (Eq. (28)) under BC=1. Comparison shows that there are some syntax errors 

in those formulas suggested by Poworoznek [8] as follows 

 (��)�������/U�s� = (1 − G)(��)��p���q��V/U�s� 

 (��)�������/U�s� =  (��)��p���q��V/U�s� 

(36) (��)�������/�v���U�� = 1(1 − G) (��)��p���q��V/�v���U�� 

   (��)�������/�v���U�� = 1(1 − G) (��)��p���q��V/�v���U�� 
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Before anything else, it is not proper to get the identical result for the hoop stresses in both plane strain 

and plane stress conditions as in Reference [8] while the radial stresses are found somewhat different 

for cylinders and discs.   The author thinks that there must be some typing errors or some confusion 

between the elastic constants of plane stress and plain stress cases in those formulas in Reference [8]. 

 

To study the thermo-elastic behavior of the uniform discs under plane stress assumption the following 

differential equation should be used (See Eq. (32)). 

 !�''(r) + 1" !�' (") − 1"& !�(") = (1 + /������s�����)01'(") 

(37) 

νλ =−StressPlane  

 

Under plane strain assumption, the following differential equation governing the thermo-elastic 

behavior of the cylindrical structures should be used. 

 !�''(r) + 2� !�' (") − 2�) !�(") = (1 + 2/������s�����)01'(")     
(38) 

ν

ν
λ

−
=−

1
StrainPlane  

 

Temperature distributions along the radial direction for both cylinders and uniform discs are identical. 

 

 1(")�S���T�� ��T U��n = WX"Y2 + Y&                                            (39) 

 

From the above it is revealed that it is possible to confuse easily with the elasticity constants in the 

formulation. The present results for cylinders exactly coincides with the literature [7].  

 

To gain insight into the issue in question, an additional numerical example is performed for both the 

discs and cylindrical vessels having the same inner and outer radii (a=0.5m, b=1m) for BC=1. The 

results are shown in Fig. 10 in a comparative manner by using the same axis-scales. From the overall 

picture the characteristics of the curves are similar to each other. However numerical values of the 

quantities are not the same. For example, the same temperature difference results in higher stresses in 

cylinders than discs. 

 

Finally, it is possible to obtain plane-stress formulas from the plane strain formulas by using 

appropriate coefficients. The converse is also true. In the elementary elasticity theory those coefficients 

are given for    mechanical loads such as rotation and internal/external pressures. For instance, if one 

replace formally G with 
42�4, and  E with 

�2�4) he may get the results for the plain-strain case from the 

plane stress solutions. As it is known G should be replaced formally with 
4234, and E is to be replaced 

with 
�(23&4)(234))  to get the plane stress results from the plain strain solutions. However this does not work 

alone for thermo-elastic analysis. 
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Fig. 10. Comparison of results for discs and cylinders (a=0.5m, b=1m) under BC=1 
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5. Conclusions 

 

In this study thermo-mechanical analysis of annular structures made of a homogeneous and isotropic 

linear elastic material is handled analytically under different boundary conditions. The closed form 

formulas for the radial stress, hoop stress and the radial displacement are derived for each boundary 

condition and for each structural type.  Apart from those, some muddles in the formulation of both 

cylinders and discs are clarified.   

 

For the spherical rotating vessel with 9� = 200 ��8, 5 = 100 ��T� , 1� = 300F, 1; = 273F, it is 

observed from Figs. 3-5 that  

 

• Maximum radial displacement occurs at the inner surface for both pressure and centrifugal 
loads while it is located at the outer surface for thermal loads. For the given problem, thermal 

radial displacement are much excessive than mechanical load induced radial displacements. 

 

• If radial stresses are considered, its maximum value is at the inner surface as in compression 
under pressure loading, at the mid-surface for both centrifugal force and thermal loads. 

 

• As to the hoop stress, it reaches its maximum value at the inner surface as in tension for 

mechanical loads and it is also maximum at the inner surface as in compression for thermal 

loads. This contributes the almost uniform distribution of the total hoop stress along the 

thickness. 

 

• The equivalent maximum stress is located at the inner surface due to all loadings, namely 

pressure, centrifugal force and thermal loads.  

  

For the cylinders it is observed from Fig. 6 that the radial displacement progressively increases with 

increasing radial coordinate. The maximum thermo-elastic compressional radial displacement is 

examined at the vicinity of the middle surface. The maximum hoop stresses are watched at the inner 

surface of the cylindrical vessel. The thermo-elastic hoop stresses are in compression at the inner 

surface while they are in tension at the outer surface. The numerical values of the hoop stresses are 

nearly 10-times more than radial stresses. So the hoop stresses are guiding stresses in the thermo-elastic 

analysis.  

 

The thermo-elastic behavior of stress-free discs is very similar to cylindrical vessels. However the 

same inner and outer radius together with the same temperature difference yield higher stresses in 

cylinders than stress-free discs. For other types of discs attached a shaft at its center (for BC=2 and 

BC=3) have much higher hoop stresses at the inner surface as in compression due to thermal loads.  

 

By using the closed-form formulas offered in the present study, such structures may be tailored to the 

user’s need. The author also hopes that this study may form an infallible all-in-one source for the 

readers studying the linear elastic behavior of such structures made of an isotropic and homogeneous 

material under thermal and mechanical loads. 
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APPENDIX: Displacement and stresses of uniform isotropic and homogeneous discs 

subjected to mechanical loads [10] (9� = �XX�" 9"���!"�,  9; = �!��" 9"���!"�)    
 

 

 ��(8) = −9� ��(:) = −9; 

 !�= − 8&9�(:&(G + 1) − (G − 1)"&)K"(8& − :&) + :&9;(8&(G + 1) − (G − 1)"&)K"(8& − :&)  

 ��= 
8&9�(:& − "&)"&(8& − :&) + :&9;(8 − ")(8 + ")"&(:& − 8&)   �� = − 8&9�(:& + "&)"&(8& − :&) + :&9;(8& + "&)"&(8& − :&)  

 

 

 

 ��(8) = 0 ��(:) = 0 

 !� = j5&(8&(G + 3)(:&(G + 1) − (G − 1)"&) − (G − 1)"&(:&(G + 3) − (G + 1)"&))8K"  

 ��= 
j5&(G + 3)(8& − "&)("& − :&)8"&   �� = j5&(8&(G + 3)(:& + "&) + "&(:&(G + 3) − (3G + 1)"&))8"&  

 

 
 

 !�(8) = 0 ��(:) = 0 

 !�=
5&jI8&(G + 3)(:&(G + 1) − (G − 1)"&) − (G − 1)"&(:&(G + 3) − (G + 1)"&)J8"K  

 ��=
(G + 3)5&(8 − ")(8 + ")("& − :&)j8"&  

 ��= 
5&jI8&(G + 3)(:& + "&) + "&(:&(G + 3) − (3G + 1)"&)J8"&  

 

 
 

 !�(8) = 0 !�(:) = 0 

 !�= 
(G& − 1)5&("& − 8&)("& − :&)j8"K  

 

��= 
5&j \8&I(G + 1)"& − :&(G − 1)J + "&(:&(G + 1) − (G + 3)"&)]8"&  

 ��= 
5&jI8&(:&(G − 1) + (G + 1)"&) + "&(:&(G + 1) − (3G + 1)"&)J8"&  
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Notations 

a, b Inner radius and outer radius, respectively 

21 , CC  Integration constants 

ijC  elastic constants in Hooke’s law 

E  Young’s modulus 9�, 9; Pressures at inner and outer surfaces, respectively 

r radial coordinate 

aT , bT  temperature at the inner and outer surfaces, respectively 

ru  radial displacement 

rε  radial strain 

θε
 

tangential strain 

α  thermal expansion coefficient 

θφφθ γγγ   rr ,,
 

engineering shear strain components ∅ Azimuthal coordinate 

ν Poisson’s ratio j density of the vessel material 

     rσ  radial stress 

     θσ  hoop stress $ tangential coordinate 5 constant angular velocity (rad/s) 
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