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Resumen

En este art́ıculo se considera un sistema Hamiltoniano dado por

− tD
α
T (0D

α
t u(t)) = ∇F (t, u(t)), a.e t ∈ [0, T ](0.1)

u(0) = u(T ) = 0.

donde α ∈ (1/2, 1), t ∈ [0, T ], u ∈ Rn, F : [0, T ] × Rn → R es una función dada y ∇F (t, u) es el
gradiente de F en u. La novedad de este trabajo es que, usando una versión modificada del teorema
del paso de montaña para funcional limitada desde abajo probamos la existencia de por lo menos
tres soluciones para (0.1).

Palabras claves. Calculo fraccionario, derivada fraccionaria, sistema Hamiltoniano fraccionario, prob-

lema de valor de contorno.

Abstract
In this paper we consider the fractional Hamiltonian system given by

− tD
α
T (0D

α
t u(t)) = ∇F (t, u(t)), a.e t ∈ [0, T ](0.2)

u(0) = u(T ) = 0.

where α ∈ (1/2, 1), t ∈ [0, T ], u ∈ Rn, F : [0, T ]× Rn → R is a given function and ∇F (t, u) is the
gradient of F at u. The novelty of this paper is that, using a modified version of mountain pass
theorem for functional bounded from below we prove the existence of at least three solutions for
(0.2).

Keywords. Fractional calculus, fractional derivatives, fractional Hamiltonian system, boundary value

problem

———————————————————————–

1. Introduction. Fractional order models can be found to be more adequate than integer
order models in some real world problems as fractional derivatives provide an excellent tool for the
description of memory and hereditary properties of various materials and processes. The mathe-
matical modeling of systems and processes in the fields of physics, chemistry, aerodynamics, electro
dynamics of complex medium, polymer rheology, etc. involves derivatives of fractional order. As
a consequence, the subject of fractional differential equations is gaining more importance and
attention. There has been significant development in ordinary and partial differential equations
involving both Riemann-Liouville and Caputo fractional derivatives. For details and examples, one
can see the monographs [17], [26], [28] and the papers [2], [3], [5], [6], [10], [19], [23], [25], [30], [33].
Moreover the existence of almost periodic, asymptotically almost periodic, almost automorphic,
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asymptotically almost automorphic, and pseudo-almost periodic solutions have been great atten-
tion in the qualitative theory of fractional differential equations, due to its mathematical interest
and applications. Some recent contributions on the existence of such solutions for abstract differ-
ential equations and fractional differential equations have been made, see [1], [3], [4], [6], [14], [15],
[22], [27] for details.

Recently, also equations including both left and right fractional derivatives are discussed. Apart
from their possible applications, equations with left and right derivatives is an interesting and new
field in fractional differential equations theory. In this topic, many results are obtained dealing with
the existence and multiplicity of solutions of nonlinear fractional differential equations by using
techniques of nonlinear analysis, such as fixed point theory [8] (including Leray-Schauder nonlinear
alternative), topological degree theory [20] (including co-incidence degree theory) and comparison
method [34] (including upper and lower solutions and monotone iterative method) and so on.

It should be noted that critical point theory and variational methods have also turned out
to be very effective tools in determining the existence of solutions for integer order differential
equations. The idea behind them is trying to find solutions of a given boundary value problem
by looking for critical points of a suitable energy functional defined on an appropriate function
space. In the last 30 years, the critical point theory has become to a wonderful tool in studying
the existence of solutions to differential equations with variational structures, we refer the reader
to the books due to Mawhin and Willem [24], Rabinowitz [29] and the references listed therein.

Motivated by the above classical works, in recent paper [21], for the first time, the authors
showed that the critical point theory is an effective approach to tackle the existence of solutions
for the following fractional boundary value problem

tD
α
T (0D

α
t u(t)) = ∇F (t, u(t)), a.e. t ∈ [0, T ],(1.1)

u(0) = u(T ) = 0.

and obtained the existence of at least one nontrivial solution by study the critical points of the
functional

I(u) =
1

2

∫ T

0

|0Dα
t u(t)|2dt−

∫ T

0

F (t, u(t))dt.(1.2)

After that, Torres [32] took further discussion of this type problem in scalar case by using moun-
tain pass theorem. Bonanno, Rodŕıguez-López and Tersian [12] considered this type problem with
impulsive effects and proved existence of three solutions by using a critical point theorem given in
[13]. We note that it is not easy to use the critical point theory to study (1.1), since it is often very
difficult to establish a suitable space and variational functional for the fractional boundary value
problem.

A natural question is whether problem

− tD
α
T (0D

α
t u(t)) = ∇F (t, u(t)), a.e. t ∈ [0, T ],(1.3)

u(0) = u(T ) = 0.

is also solvable. In this case, the corresponding functional I on Eα given by

(1.4) I(u) =
1

2

∫ T

0

|0Dα
t u(t)|2dt+

∫ T

0

F (t, u(t))dt,

where Eα = C∞
0 [a, b]

∥.∥α
and

∥u∥2α =

∫ T

0

|u(t)|2dt+
∫ T

0

|0Dα
t u(t)|2dt.

We note the difference between I and I: I is neither bounded from below nor from above, whereas
under some condition I is bounded from below, so we can applied the least action principle to
find at least one weak solution. In this paper we consider the multiplicity of weak solution for the
problem (1.3). For that purpose let 1

2 < α < 1 and F satisfies the following conditions
(F0) F (t, 0) for almost every t ∈ [0, T ].
(F1) F (t, x) is measurable in t for every x ∈ Rn and continuously differentiable in x for almost

every t ∈ [0, T ], and there exist a ∈ C(R+,R+) and b ∈ L1([0, T ],R+) such that

|F (t, x)| ≤ a(|x|)b(t), |∇F (t, x)| ≤ a(|x|)b(t)

for all x ∈ Rn and for almost every t ∈ [0, T ].
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(F2) ĺım|x|→∞ F (t, x) = ∞ uniformly in t.
(F3) There are d0, d1 ∈ Rn, with d0 ̸= d1, such that

(F3)1
∫ T

0
mı́n|ξ−d0|<δ F (t, ξ) =

∫ T

0
F (t, d0)dt for some δ > 0;

(F3)2
∫ T

0
F (t, d0) ≥

∫ T

0
F (t, d1)dt.

The following are the main results of this paper.
Theorem 1. Suppose that F satisfies (F0)-(F3), then (1.3) admits at least three weak solu-

tions.
The main ingredient in the proof of Theorem 1 is a version of the mountain pass theorem for
functional bounded from below due to Bonanno [11]. We recall this result

Theorem 2. Let X be a real Banach space, and let I : X → R be a continuously Gâteaux-
differentiable function wick satisfies (PS) and is bounded from below. Assume that

(a) There are u0, u1 ∈ X and r ∈ R, with 0 < r < ∥u1 − u0∥, such that

ı́nf
∥u−u0∥=r

I(u) ≥ máx{I(u0), I(u1)}

Then, I admits at least three distinct critical points.
This article is organized as follows. In Section 2 we present preliminaries with the main tools

and the functional setting of the problem . In Section 3 we prove the Theorem 1.

2. Preliminaries.

2.1. Fractional operators. In this subsection we introduce some basic definitions of frac-
tional calculus which are used further in this paper. For the proof see [17], [28] and [31].

Definition 1. (Left and Right Riemann-Liouville fractional integral) Let u be a function
defined on [a, b]. The left (right ) Riemann-Liouville fractional integral of order α > 0 for function
u is defined by

aI
α
t u(t) =

1

Γ(α)

∫ t

a

(t− s)α−1u(s)ds, t ∈ [a, b],

tI
α
b u(t) =

1

Γ(α)

∫ b

t

(s− t)α−1u(s)ds, t ∈ [a, b],

provided in both cases that the right-hand side is pointwise defined on [a, b].
Definition 2. (Left and Right Riemman-Liouville fractional derivative) Let u be a function

defined on [a, b]. The left and right Riemann - Liouville fractional derivatives of order α > 0 for
function u denoted by aD

α
t u(t) and tD

α
b u(t), respectively, are defined by

aD
α
t u(t) =

dn

dtn
aI

n−α
t u(t),

tD
α
b u(t) = (−1)n

dn

dtn
tI

n−α
b u(t),

where t ∈ [a, b], n− 1 ≤ α < n and n ∈ N.
Remark 1. According to definition 1 and definition 2, if α becomes an integer n ∈ N we

recover the usual definitions, namely

aI
n
t u(t) =

1

Γ(n)

∫ t

a

(t− s)n−1u(s)ds, t ∈ [a, b], n ∈ N,

tI
n
b u(t) =

1

Γ(n)

∫ b

t

(s− t)n−1u(s)ds, t ∈ [a, b], n ∈ N,

and

aD
n
t u(t) = u(n)(t), t ∈ [a, b],

tD
α
b u(t) = (−1)nu(n)(t), t ∈ [a, b].

Remark 2. If u ∈ C[a, b], it is obvious that the Riemann-Liouville fractional integral of order
α > 0 is bounded in [a, b]. On the other hand, following [17], it is knows that the Riemann-Liouville
fractional derivative of order α ∈ [n− 1, n) exists a.e. on [a.b] if u ∈ ACn[a, b], where ACn[a, b] is
the space of functions u such that u ∈ Cn−1([a, b]) and u(n−1) is absolutely continuous on [a, b].
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Now we enounce some properties of the Riemann-Liouville fractional integral and derivative
operators.

Theorem 3.

aI
α
t (aI

β
t u(t)) = aI

α+β
t u(t) and

tI
α
b (tI

β
b u(t)) = tI

α+β
b u(t), ∀α, β > 0,

in any point t ∈ [a, b] for continuous function u and for almost every point in [a, b] if the function
u ∈ L1[a, b].

Theorem 4. (Left inverse) Let u ∈ L1[a, b] and α > 0,

aD
α
t (aI

α
t u(t)) = u(t), a.e. t ∈ [a, b] and

tD
α
b (tI

α
b u(t)) = u(t), a.e. t ∈ [a, b].

Theorem 5. For n− 1 ≤ α < n, if the left and right Riemann-Liouville fractional derivatives

aD
α
t u(t) and tD

α
b u(t), of the function u are integral on [a, b], then

aI
α
t (aD

α
t u(t)) = u(t)−

n∑
k=

[aI
k−α
t u(t)]t=a

(t− a)α−k

Γ(α− k + 1)
,

tI
α
b (tD

α
b u(t)) = u(t)−

n∑
k=1

[tI
k−α
n u(t)]t=b

(−1)n−k(b− t)α−k

Γ(α− k + 1)
,

for t ∈ [a, b].
Theorem 6. (Integration by parts)

(2.1)

∫ b

a

[aI
α
t u(t)]v(t)dt =

∫ b

a

u(t)tI
α
b v(t)dt, α > 0,

provided that u ∈ Lp[a, b], v ∈ Lq[a, b] and

p ≥ 1, q ≥ 1 and
1

p
+

1

q
< 1 + α or p ̸= 1, q ̸= 1 and

1

p
+

1

q
= 1 + α.

(2.2)

∫ b

a

[aD
α
t u(t)]v(t)dt =

∫ b

a

u(t)tD
α
b v(t)dt, 0 < α ≤ 1,

provided the boundary conditions

u(a) = u(b) = 0, u′ ∈ L∞[a, b], v ∈ L1[a, b] or

v(a) = v(b) = 0, v′ ∈ L∞[a, b], u ∈ L1[a, b],

are fulfilled.

2.1.1. Fractional Derivative Space. In order to establish a variational structure which
enables us to reduce the existence of solutions of BVP (1.1) to the one of finding critical points of
corresponding functional, it is necessary to construct appropriate function spaces. For this setting
we take some results from [21].

Let us recall that for any fixed t ∈ [0, T ] and 1 ≤ p < ∞,

∥u∥Lp[0,t] =

(∫ t

0

|u(s)|pds
)1/p

,

∥u∥Lp =

(∫ T

0

|u(s)|pds

)1/p

and

∥u∥∞ = máx
t∈[0,T ]

|u(t)|.

Definition 3. Let 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative spaces Eα,p
0 is defined

by

Eα,p
0 = {u ∈ Lp[0, T ]/ 0D

α
t u ∈ Lp[0, T ] and u(0) = u(T ) = 0} = C∞

0 [0, T ]
∥.∥α,p

.
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where ∥.∥α,p is defined by

(2.3) ∥u∥pα,p =

∫ T

0

|u(t)|pdt+
∫ T

0

|0Dα
t u(t)|pdt.

Proposition 1. [21] Let 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative space Eα,p
0 is a

reflexive and separable Banach space.
Lemma 1. [31] Let 0 < α ≤ 1 and 1 ≤ p < ∞. For any u ∈ Lp[0, T ] we have

(2.4) ∥0Iαξ u∥Lp[0,t] ≤
tα

Γ(α+ 1)
∥u∥Lp[0,t], for ξ ∈ [0, t], t ∈ [0, T ].

Proposition 2. [21] Let 0 < α ≤ 1 and 1 < p < ∞. For all u ∈ Eα,p
0 , if α > 1/p we have

0I
α
t (0D

α
t u(t)) = u(t).

Moreover, Eα,p
0 ∈ C[0, T ].

Proposition 3. [21] Let 0 < α ≤ 1 and 1 < p < ∞. For all u ∈ Eα,p
0 , if α > 1/p we have

(2.5) ∥u∥Lp ≤ Tα

Γ(α+ 1)
∥0Dα

t u∥Lp .

If α > 1/p and 1
p + 1

q = 1, then

(2.6) ∥u∥∞ ≤ Tα−1/p

Γ(α)((α− 1)q + 1)1/q
∥0Dα

t u∥Lp .

According to (2.5), we can consider in Eα,p
0 the following norm

(2.7) ∥u∥α,p = ∥0Dα
t u∥Lp ,

and (2.7) is equivalent to (2.3).
Proposition 4. [21] Let 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1

p and {uk} ⇀ u in

Eα,p
0 . Then uk → u in C[0, T ], i.e.

∥uk − u∥∞ → 0, k → ∞.

We denote by Eα = Eα,2
0 , this is a Hilbert space with respect to the norm ∥u∥α = ∥u∥α,2 given

by (2.7).

3. Main result. We recall the notion of solution for (1.3).
Definition 4. u ∈ Eα be a weak solution of (1.3) if

(3.1)

∫ T

0

(0D
α
t u(t)0D

α
t v(t) + ⟨∇F (t, u(t)), v(t)⟩) dt = 0, for any v ∈ Eα.

Under (F1) the corresponding functional I on Eα given by

(3.2) I(u) =
1

2

∫ T

0

|0Dα
t u(t)|2dt+

∫ T

0

F (t, u(t))dt,

is continuously differentiable and weakly lower semicontinuous on Eα (see [21]), and

I ′(u)v =

∫ T

0
0D

α
t u(t)0D

α
t v(t)dt+

∫ T

0

(∇F (t, u(t)), v(t))dt, ∀v ∈ Eα.

Therefore critical points of I are weak solutions of (1.3).
Proof of Theorem 1 Our aim is to apply Theorem 2. To this end, let X be the fractional space
Eα and let I be the functional defined in (3.2). We are going to prove that I is bounded from
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below and that it satisfies the (PS) condition. In fact: By (F2), there are a constants K0 and C1

such that

F (t, x) ≥ −K0 + C1,

Therefore

I(u) =
1

2

∫ T

0

|0Dα
t u(t)|2dt+

∫ T

0

F (t, u(t))dt

≥ 1

2
∥u∥2α −K0T + C1T,(3.3)

hence I(u) → ∞ as ∥u∥α → ∞ and I is bounded from below.
To show that I satisfies the Palais - Smale condition, let {uk} ∈ Eα such that

(3.4) |I(uk)| ≤ M, ĺım
k→∞

I ′(uk) = 0.

By (3.3), {uk} is bounded in Eα. Since Eα is reflexive space, going if necessary to a subsequence,
we may assume that uk ⇀ u in Eα, thus we have

⟨I ′(uk)− I ′(u), uk − u⟩ = ⟨I ′(uk), uk − u⟩ − ⟨I ′(u), uk − u⟩
≤ ∥I ′(uk)∥∥uk − u∥α − ⟨I ′(u), uk − u⟩ → 0.(3.5)

as k → ∞. Moreover according (2.6) and Proposition 4, we get that uk is bounded in C[0, T ] and

ĺım
k→∞

∥uk − u∥∞ = 0.

Hence we have ∫ T

0

⟨∇F (t, uk(t))−∇F (t, u(t)), uk(t)− u(t)⟩dt → 0, k → ∞.

Moreover, an easy computation show that

⟨I ′(uk)− I ′(u), uk − u⟩ = ∥uk − u∥2α

+

∫ T

0

⟨∇F (t, uk(t))−∇F (t, u(t)), uk(t)− u(t)⟩dt.

So ∥uk − u∥α → 0 as k → ∞. That is {uk} converges strongly to u in Eα.
Now, let

k =
Tα− 1

2

Γ(α)(2α− 1)1/2

given by 2.6. Put r = δ
k where δ is given by (F3), u0(t) = d0 and u1(t) = d1 for all t ∈ [0, T ].

Clearly, u0, u1 ∈ X,

I(u0) =

∫ T

0

F (t, d0)dt and I(u1) =

∫ T

0

F (t, d1)dt.

Moreover, fix u ∈ X such that ∥u− u0∥α = r. Taking (2.6) into account, one has

∥u− u0∥∞ ≤ k∥u− u0∥α = kr = δ.

Therefore,

I(u) =
1

2
∥u∥2α +

∫ T

0

F (t, u(t))dt

≥
∫ T

0

F (t, u(t))dt ≥
∫ T

0

mı́n
|ξ−d0|<δ

F (t, ξ)dt
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for all u ∈ X such that ∥u− u0∥α = r; that is,

ı́nf
∥u−u0∥α=r

I(u) ≥
∫ T

0

mı́n
|ξ−d0|≤δ

F (t, ξ)dt.

From (F3)1 and (F3)2, and owing to our setting, one has

ı́nf
∥u−u0∥=r

I(u) ≥ I(u0) ≥ I(u1).

Hence, Theorem 2 ensures the conclusion.
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