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Abstract 

This paper studies an M/G/1 repairable queueing system with multiple vacations and N-policy, in 

which the service station is subject to occasional random breakdowns. When the service station 

breaks down, it is repaired by a repair facility. Moreover, the repair facility may fail during the 

repair period of the service station. The failed repair facility resumes repair after completion of its 

replacement. Under these assumptions, applying a simple method, the probability that the service 

station is broken, the rate of occurrence of breakdowns of the service station, the probability that 

the repair facility is being replaced and the rate of occurrence of failures of the repair facility 

along with other performance measures are obtained. Following the construction of the long-run 

expected cost function per unit time, the direct search method is implemented for determining the 

optimum threshold N* that minimises the cost function. 

 

Keywords: M/G/1 repairable queue; multiple vacations; min (N, V)-policy; reliability measure; 

cost function. 

 

1. Introduction 

In this paper, we consider an M/G/1 repairable queueing system with an unreliable service station, 

an unreliable repair facility operating under multiple vacations and N-policy simultaneously. 

Under this type of control policy, the server leaves for a vacation when the system becomes empty. 

Upon returning from his/her vacation, if there are one or more customers queueing up for service 

in the system, the server starts providing service immediately. Otherwise, if there are no 

customers waiting for service in the system, the server leaves for another vacation immediately. 
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This pattern continues until the system is not empty. Whenever the number of customers waiting 

for service in the system has accumulated to a predefined threshold value N, the server interrupts 

his/her vacation and returns to the system to serve customers immediately. This commences a new 

busy period and the server works until the system becomes empty. We call this discipline multiple 

vacations with min (N, V)-policy. We are interested in when the server should start his/her service 

due to the number of customers waiting in the system during his/her vacation period, that is, how 

to determine the threshold N. 

Vacation queueing models with control policy have received a lot of attention due to their 

abundant applications, especially in the production/inventory systems and the manufacturing 

systems. For example, Kella (1989), Lee et al. (1994), Gakis et al. (1995), Alfa and Frigui (1996), 

Reddy (1998) and Baek et al. (2014). Alfa and Li (2000) investigated the optimum (N,T)-policy 

for an M/G/1 queue with cost structure where the (N,T)-policy means that the system reactivates 

as soon as N customers are present or the waiting time of the leading customer reaches a 

predefined time T. Later, Hur et al. (2003) studied an M/G/1 system with N-policy and T-policy. 

In their work, the server takes a vacation of fixed length T when the system becomes empty. After 

T time units, if the server finds customers waiting in the system, he/she starts the service. 

Otherwise, he/she leaves for another vacation of length T. This continues until the system is not 

empty. Once the number of customers waiting for service reaches N, the server interrupts his/her 

vacation and starts providing service immediately. Although the fixed length T of vacation time 

greatly simplifies analysis, it makes it difficult to approximate the real world scenarios precisely. 

Thus, here a random amount V of vacation time is assumed. 

Accomplishing the development of manufacturing and communication systems, the reliability 

analysis for the queueing system with an unreliable service station has been done by a 

considerable amount of work in the past, and successfully used in various applied problems. 

Among some excellent papers in this area are those by Cao and Cheng (1982), Tang (1997), Wang 

et al. (2008), Choudhury and Deka (2008) and Gao and Wang (2014). We observe that authors 

usually supposed the service station breaks down during service period of customers, but the 

repair facility for the broken service station does not fail. However, in practice, the repair facility 

may fail during the repair period of the service station due to temperature changes, voltage 

fluctuations and human operational errors. Thus, repairable queueing systems with replaceable 

repair facility are more general. Once the repair facility fails, it should be replaced by another new 

one. In reliability theory, models with replaceable repair facility have been extensively studied, 

such as by Zhang and Wu (2009), Tang (2010), Yu et al. (2013) and others. So, the case of 

replaceable repair facility is taken into account in this paper. It is worth noticing that this work 

definitely differs from the previously studied models, since reliability aspects are applied not only 

to the service station, but also to the repair facility. 

This paper is arranged as follows. Section 2 gives the model description and some preliminaries. 

Reliability measures of the service station and the repair facility are derived in Sections 3 and 

Sections 4, respectively. Other performance measures are calculated in Section 5. In Section 6, a 

long-run expected cost function per unit time is constructed. Section 7 gives conclusions. 
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2. Model description and some preliminaries 

2.1. Basic assumptions 

 

The detailed assumptions of the system are described as follows. 

Assumption 1. Initially, a queueing system with one server, a new service station and a new 

repair facility is installed, and there exists  0i i  customers in the system. At time t=0, the server 

does not take vacation if the system is empty. 

Assumption 2. Customers arrive to the system at the instants  1,2,n n  . The inter-arrival 

time 1n n n     00,1, ; 0n   are mutually independent and identically distributed random 

variables with exponential distribution ( ) 1 exp( )F t t   , 0  , 0t  . The service times{ , 1}n n   

of the customers provided by the server are independent identically random variables following 

general distribution ( )G t , 0t  with mean service time
0

0 1 ( )tdG t


   . 

Assumption 3. The operating time X of the service station is governed by an exponential 

distribution ( ) 1 exp( )X t t   , 0  , 0t  .When the service station breaks down, it is repaired 

by a repair facility, while the service to the customer being served will be stopped. The service 

station restarts its service to the customer as soon as the repair is finished. Furthermore, the 

repaired service station is as good as new. Assume that the repair timeY of the service station 

follows a general distribution ( )Y t , 0t  , with mean repair time
0

0 1 ( )tdY t


   . 

Assumption 4. The repair facility may fail during the repair timeY . If the repair facility fails, 

it should be replaced by another new one, while the broken service station has to wait. The repair 

facility resumes repair after completion of its replacement. Moreover, the working time R of the 

repair facility follows an exponential distribution ( ) 1 exp( )R t rt   , 0r  , 0t  , while the 

replacement timeW follows an arbitrary distribution ( )W t , 0t  , with mean replacement time 

0
0 1 ( )w tdW t



   . 

Assumption 5. The server leaves for a vacation when the system becomes empty. Upon 

returning from his/her vacation, if there exists customers in the system, he/she starts the service. 

Otherwise, he leaves for another vacation. Whenever the number of customers waiting in the 

system reaches N , the server interrupts his/her vacation and starts providing service immediately. 

The vacation time V follows an arbitrary distribution ( ), 0V t t  , with mean vacation 

time
0

0 1 ( )v tdV t


   . 

Assumption 6. The random variables involved in the system are assumed to be independent 
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of each other. 

We define the following notations for further use in the sequel. 

 

( )a s      the Laplace-Stieltjes transform of an arbitrary function ( )A t , i.e.,
0

( ) ( )sta s e dA t


   

*( )A s      the Laplace transform of an arbitrary function ( )A t , i.e.,
*

0
( ) ( )stA s e A t dt


   

( ) ( )kA t     the k -fold convolution of an arbitrary function ( )A t with itself, 1k  , and 

           
(0) ( ) 1A t  , 0t   

( )A t       the complement of the function ( )A t , i.e., ( ) 1 ( )A t A t   

( )* ( )A t U t the convolution product of functions ( )A t and ( )U t ,  

         i.e.,
0 0

( )* ( ) ( ) ( ) ( ) ( )
t t

A t U t A t x dU x U t x dA x      

( )e s     the real part of the complex variable s                                    

( )N t     the number of customers in the system at time t                            

 

2.2. Preliminaries 

Denote by nY  1,2,n  the “generalized repair time” of the service station after the n th broken, 

where
nY contains some replacement times of the repair facility owing to its failures. Further, 

setting ( ) { }, 0n nY t P Y t t   , and using the method provided in Cao and Cheng (1982), we obtain 

that 

( )

0
0

( )
( ) ( ) ( ) ( ), 0

!

j
t

j rx

n

j

rx
Y t Y t W t x e dY x t

j






    ,           (1) 

which is independent of n . The Laplace-Stieltjes transform of ( )Y t is 

 ( )

0
0

( )
( ) [ ( )] ( ) ( )

!

j
j s r t

j

rt
y s w s e dY t y s r rw s

j

 
 



     , ( ) 0e s  ,          (2) 

and its expected value is given by 

0
[ ] ( )

s

d w r
E Y y s

ds w


     .                        (3) 
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Let
n represent the “generalized service time” of the n th customer, that is, the length of time 

since the n th customer starts to be served until the service is finished, where
n includes some 

repair times of the service station owing to its breakdowns during the service period of the 

customer, and some possible replacement times of the repair facility due to its failures during the 

repair period of the service station. Moreover, let ( ) { }n nG t P t  , 0t  , similar to Equation (1), 

we have that 

( )

0
0

( )
( ) ( ) ( ) ( )

!

l
t

l x

n

l

x
G t G t Y t x e dG x

l






   , 0t  ,                (4) 

Which is independent of n . Its Laplace-Stieltjes transform is given by 

 ( )

0
0

( )
( ) ( ) ( ) ( )

!

l
l

s t

l

t
g s y s e dG t g s y s

l

 
 

 
 



       , ( ) 0e s  ,        (5) 

And the mean of the generalized service time is 

 
0

[ ] ( )
s

w w rd
E g s

ds w

 


 

 
      .                 (6) 

The server's “generalized busy period” is the time interval from the server starts service until the 

system becomes empty. Let b be the length of server's generalized busy period beginning with one 

customer, and ( ) { }B t P b t  , 0t  .We have the following lemma from Tang (1997) 

Lemma 1. For ( ) 0e s  , the ( )b s is the root with the smallest absolute value of the 

equation ( )z g s z    , 1z  , and 

0

1, 1
lim ( ) lim ( )

, 1t s
B t b s



  


  


 ,  

, 1
(1 )[ ]

, 1

E b




 






 
  

 , 

Where
 w w r

w

  




    , (0 1)  is the root of the equation ( )z g z   . 

Denote by ib  the server's generalized busy period initiated with ( 1)i i  customers. Based on the 

Poisson arrival process, ib  can be expressed as
1 2

i

ib b b b      , 1i  , where
1 2, , , ib b b  are 

independent of each other with the same distribution ( )B t . Moreover, we have that 
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( )( ) { } ( )i i iB t P b t B t      , 0t  . 

We define i to be the i th idle period of the system, that is, the length of time since the system 

becomes empty until the first customer arrives. Thus, the Poisson arrival process 

implies { } ( ) 1 , 1, 0t

iP t F t e i t       . 

3. Reliability measures of the service station 

3.1. The probability that the service station is broken at time t  

 

First, we consider a classical simple repairable system (see Cao and Cheng, 2006). The operating 

time X of the system follows an exponential distribution with parameter  0   , while the 

repair timeY obeys a general distribution (1) above. The system is “as good as new” after being 

repaired, and restarts to operate immediately. Let 

( ) {I t P the system is broken at time t } , 0t  ,  

( ) {K t E the number breakdowns of the system during (0, ]t }, 0t  . 

Lemma 2. If ( ) 0e s  , then 

*
1 ( )

( )
( )

y s
I s

s s y s



 

  
   

, ( )
( )

k s
s y s



 


 
.               (7) 

We now discuss the reliability measures of the service station. Let 

( ) {i t P  the service station is broken at time t (0)N i , 0,1,i  . 

Theorem 1. The Laplace transform of  ( ) 0,1,i t i  are given by 

*

0

1 ( ) ( ) ( ) ( )
( ) 1

1 ( ) ( )( )

y s f s b s s
s

v s ss s y s



 

        
         

,                (8) 

*
1 ( ) ( ) ( )

( ) 1
1 ( ) ( )( )

i

i

y s b s s
s

v s ss s y s



 

        
         

, 1i  ,          (9) 

And the steady-state probability that the service station is broken is 

 

 

 

*

0

, 1,

lim ( ) lim ( )

, 1,

i i
t s

w r

w
t s s

w r

w r w









 

 

 



      

 
  

           (10) 

Which is independent of the initial state  (0) 0,1,N i i  , and ( )

0
( ) ( )s tv s e dV t


    , 
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1
( ) ( )

0 0
1

( )
( ) 1 ( ) ( ) ( ) ( )

!

mN
st N s t

m

t
s v s e V t dF t e dV t

m

 


 
  



       ,  

 1
( ) ( )

0 0
1

( )
( ) ( ) ( ) ( ) ( )

!

m

N
N st N s t

m

b s t
s b s e V t dF t e dV t

m


 

  



    . 

Proof. 1) Under the present assumptions, the service station breaks down only in the server's 

generalized busy period, and it operates at the beginning of every server's generalized busy period. 

That is, the service station is broken at time t if and only if the time t is in one server's generalized 

busy period and the service station is broken at time t . Let
1

k

j j

j

s V


 ,
1

, 1
k

j j

j

l k


  , 0 0 0s l  . 

For 0i   

0 ( )t {P the service station is broken at time t , 1 1 1
ˆ ˆt b     

1

1 1

{
N

k m

P
 

 

 the service station is broken at time t , 1 1 1 2 1 2 1 2
ˆ ˆ ˆ ˆ, ,k k k m k mb s t s s l s l               

1

{
k

P




 the service station is broken at time t , 

1 1 2 1 1 2 1 2 1
ˆ ˆ ˆ ˆ, ,N k k N kb l t s s l s               

0
{

t

P  the service station is broken at time t x , 1 0 ( )b t x dF x    

1
( ) ( 1)

0 0 0
1 1

( )
( ) ( ) ( ) ( )* ( )

!

mN t t x t x y
y z k

m

k m

z
t x y e dV z dV y d F x B x

m

    
  

 

          

( ) ( 1)

0 0 0
1

( ) ( ) ( ) ( ) ( )* ( )
t t x t x y

y N k

N

k

t x y V z e dF z dV y d F x B x
   

 



         .          (11) 

Similarly, for 1i  , we have 

( )i t {P the service station is broken at time t , 0ib t     

1
( ) ( 1) ( )

0 0 0
1 1

( )
( ) ( ) ( ) ( )

!

mN t t x t x y
y z k i

m

k m

z
t x y e dV z dV y dB x

m

    
  

 

       

( ) ( 1) ( )

0 0 0
1

( ) ( ) ( ) ( ) ( )
t t x t x y

y N k i

N

k

t x y V z e dF z dV y dB x
   

 



      .           (12) 

2) Let ( ) {iQ t P the service station is broken at time t , 0ib t    , 1i  .We decompose 
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( )I t by server's generalized busy period ib  (see Fig. 1), then 

 

 

Figure 1. Case of the service station in server’s generalized busy period. 

 

( )

0
( ) ( ) ( ) ( )

t
i

iQ t I t I t x dB x   , 1i  .                   (13) 

3) Substituting expression (13) into expressions (11) and (12), and by taking the Laplace 

transform, it yields that 

* *

0 ( ) ( ) ( ) 1 ( )s I s f s b s   
  

1
* ( )

0
1

( ) ( ) ( )
( ) ( )

! 1 ( )

mN
s t

m

m

t f s b s
s e dV t

m v s

 



 
 



 
 

   

* ( )

0

( ) ( )
( ) ( ) ( )

1 ( )

st N

N

f s b s
s e V t dF t

v s 




  ,                           (14) 

* *( ) ( ) 1 ( )i

i s I s b s   
  

1
* ( )

0
1

( ) ( )
( ) ( )

! 1 ( )

m iN
s t

m

m

t b s
s e dV t

m v s

 



 
 



 
 

   

* ( )

0

( )
( ) ( ) ( )

1 ( )

i
st N

N

b s
s e V t dF t

v s 




  .                           (15) 

Furthermore, we obtain expressions (8) and (9) from expressions (14) and (15). The expression 

(10) is derived from the L'Hospital rule. 

 

3.2. The expected number of the service station breakdowns during (0, t] 

 

For 0t  , let 

( ) {iM t E the number of service station breakdowns during (0, ]t (0)N i , 0,1,i  . 

Theorem 2. The Laplace-Stieltjes transform of  ( ) 0,1,iM t i  are 

0

( ) ( ) ( )
( ) 1

1 ( ) ( )( )

f s b s s
m s

v s ss y s



 

 
   

      

,                (16) 

( ) ( )
( ) 1

1 ( ) ( )( )

i

i

b s s
m s

v s ss y s



 

 
   

      

, 1i  ,             (17) 

And the rate of occurrence of breakdowns of the service station is given by 
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 

0

, 1
( )

lim lim ( )

, 1

i
i

t s

M t
M sm s

wt

w r w






 


 

 





   

 
  

,            (18)  

Which is independent of the initial state  (0) 0N i i  , ( )s and ( )s are given in Theorem 1. 

Proof.  Similar to the proof of Theorem 5 in Tang (1997). 

 

4. Reliability measures of the repair facility  

4.1. The probability that the repair facility is being replaced 

 

The “generalized busy period” of the repair facility denotes the time interval from the instant 

when it starts to repair the broken service station to the moment that the repair is completed, 

where it includes some possible replacement times of the repair facility due to its failures. 

Obviously, the “generalized busy period” of the repair facility is the “generalized repair time” of 

the service station. 

We first consider a classical one-unit system (see Cao and Cheng, 2006). The working time R of 

the unit follows an exponential distribution with parameter  0r r  . When the unit fails, it should 

be replaced by a new one. LetW be the replacement time of the unit, which is governed by an 

arbitrary distribution ( )W t , 0t  . Let 

( ) {C t P the unit is failed at time t } , 0t  ,  

( ) {D t E the number of the unit failures during (0, ]t }, 0t  . 

Lemma 3. If ( ) 0e s  , then 

 
 

*
1 ( )

( )
( )

r w s
C s

s s r rw s




 
,   ( )

( )

r
d s

s r rw s


 
.           (19) 

We now turn our interest to the reliability measures of the repair facility. First, set 

( ) {i t P  the repair facility is being replaced at time t (0)N i , 0,1,i  . 

Theorem 3. The Laplace transform of  ( ) 0,1,i t i  are given by 

 
 

*

0

1 ( ) ( )1 ( ) ( ) ( )
( ) 1

( ) 1 ( ) ( )( )

y s f sr w s b s s
s

s s r rw s v s ss y s



 

        
        

,         (20) 

 
 

*
1 ( )1 ( ) ( ) ( )

( ) 1
( ) 1 ( ) ( )( )

i

i

y sr w s b s s
s

s s r rw s v s ss y s



 

        
        

, 1i  ,        (21) 
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And the steady-state probability that the repair facility is being replaced is 

 

*

0

, 1

lim ( ) lim ( )

, 1
i i

t s

r

w
t s s

r

w r w









 

 





      

 
  

,              (22) 

Which is independent of the initial state  (0) 0N i i  , ( )s and ( )s are given in Theorem 1. 

Proof. 1) Under the given assumptions, the repair facility is perfect when it does not repair 

broken service station. That is, it is being replaced at time t if and only if the time t is within one 

server's generalized busy period and within one generalized repair time of the service station. 

For 0i  , we get 

0 1
0

( ) ( ) ( )
t

t t x dF x    .                        (23) 

For 1i  , we obtain 

( ) ( )i it t  
1

( ) ( 1) ( )

0 0 0
1 1

( )
( ) ( ) ( ) ( )

!

mN t t x t x y
y z k i

m

k m

z
t x y e dV z dV y dB x

m

    
  

 

       

( ) ( 1) ( )

0 0 0
1

( ) ( ) ( ) ( ) ( )
t t x t x y

y N k i

N

k

t x y V z e dF z dV y dB x
   

 



      ,       (24) 

Where ( ) {i t P  the time t is in one generalized repair time of the service station and the repair 

facility is being replaced, 0ib t    . 

2) In order to compute ( )i t , we consider the following probability. Let 

( ) {t P  the time t is in one generalized repair time of the service station and the 

repair facility is being replaced}. 

Actually, the service station can be in one of two states: operating or breakdown in every server's 

generalized busy period, thus, the evolution course forms an alternating renewal 

process   , , 1i iX Y i   (see Fig. 1). We obtain that 

1

1 1 1

( ) { ( ) ( )
j j

l l j l l

j l l

t P X Y X t X Y


  

         , the repair facility is being replaced at time t }  

( ) ( 1)

1

( )* ( ) ( )j j

j

U t X t Y t






     ,                                          (25) 

Where ( )U t = { 0P Y t  , the repair facility is being replaced at time t } . 

Similarly, the repair facility can be in one of two states: normal or failure in each generalized 
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repair time of the service station, and the evolution course also forms an alternating renewal 

process ( , ), 1i iR W i  . Decomposing ( )C t byY , we get 

( ) ( )U t C t 
0

( ) ( )
t

C t x dY x .                  (26)  

Therefore, we obtain ( )t from expressions (25), (26) and Lemma 3. 

On the other hand, the service station is operating at the beginning time and ending time of 

server's generalized busy period ib  . So does the repair facility. By the memory less of the 

exponential distribution, decomposition of ( )t by ib  , it yields 

( )

0
( ) ( ) ( ) ( )

t
i

i t t t x dB x     , 1i  .                (27) 

Taking the Laplace transform on both sides of expressions (23)--(27), the proof is finished by 

Theorem 1, Lemma 3 and L'Hospital rule. 

4.2. The expected replacement number of the repair facility during (0, t]  

 

Set 

( ) {iH t E the replacement number of the repair facility during (0, t] (0)N i , 0,1,i  . 

Theorem 4. The Laplace-Stieltjes transform of  ( ) 0,1,iH t i  are 

0

1 ( ) ( ) ( ) ( )
( ) 1

( ) 1 ( ) ( )( )

y s f sr b s s
h s

s r rw s v s ss y s



 

       
        

,      (28) 

1 ( ) ( ) ( )
( ) 1

( ) 1 ( ) ( )( )

i

i

y sr b s s
h s

s r rw s v s ss y s



 

       
        

, 1i  ,     (29) 

And the rate of occurrence of failures of the repair facility is given by 

 

0

, 1
( )

lim lim ( )

, 1

i
i

t s

r

H t
H sh s

rwt

w r w









 

 





   

 
  

,           (30) 

Which is independent of the initial state  (0) 0,1,N i i  , ( )s and ( )s are determined by 

Theorem 1. 

Proof.  See Appendix A. 

 

5. Other system performance measures    

Denote by min( , )N VC the busy cycle which is the time span between two consecutive starting points 
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of the server's generalized busy period. Clearly, a busy cycle consists of a server's generalized 

busy period and a server's idle period. The server's idle period min( , )N VI is defined as the time 

interval since the system becomes empty until the server starts to serve customers. Let min( , )N VN be 

the number of customers in the system when the server's generalized busy period begins. One 

checks easily that 

 
 

min( , )
0

1
( )

1 ( ) !

n

x

N V

x
P N n e dV x

v n






 

  , 1,2, , 1n N  , 

 
 

min( , )
0

1
( )

1 ( ) !

n

x

N V

n N

x
P N N e dV x

v n





 




 


 . 

Performing some algebraic manipulation, the mean of min( , )N VN is 

 
 1

0
0

min( , ))

( )
!

[ ]
1 ( )

n
N

x

n
N V

x
N n N e dV x

n
E N

v





 




 





.                 (31) 

Thus, the mean length of the server's generalized busy period
min( , )[ ]N VE b is 

min( , ) min( , )[ ] [ ] [ ]N V N VE b E b E N min( , )[ ]
(1 )

N VE N


 



, 1  .          (32) 

Moreover, the Poisson arrival process implies that 

min( , )

min( , )

[ ]
[ ]

N V

N V

E N
E I


 .                          (33) 

Finally, the mean length
min( , )N VE C   of a busy cycle is given by 

min( , )

min( , ) min( , ) min( , )

[ ]
[ ] [ ]

(1 )

N V

N V N V N V

E N
E C E b E I

 
      

, 1  .       （34） 

6. Cost analysis and optimal threshold N* 

 

The investigated model can be effectively applied to many real-world systems. For illustration, we 

consider a manufacturing system. Raw materials arrive to the system according to a Poisson 

process, while the processing time of raw materials follows an arbitrary distribution. Suppose that 

the operator (server) of the production machine takes additional tasks (e.g., preventive 

maintenance) when there is no raw material. Upon completion of each additional task, he/she 

returns to check the status of the system. If there are raw materials, the operator serves them 

immediately; otherwise, he/she takes another additional task. Moreover, the operator must 

terminate his/her additional task and start providing service as soon as N raw materials accumulate 
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in the system. Otherwise, the storage overflows and the entire production system may stop. 

Further, the production machine may be interrupted due to its breakdowns. Once the production 

machine breaks down, it is repaired by a repair facility (e.g., crane, cutting machine). The repair 

facility is also subject to occasional random failures during the repair period owing to the 

environment influence and others. Once it fails, it is replaced by another new one and then 

proceeds to repair the broken production machine. The production resumes again when the broken 

production machine has been repaired. Consequently, such a practical example provides a good 

approximation of our model. In such a system, managers are interested in what is an appropriate 

threshold value N that minimizes the long-run expected cost function per unit time of the system. 

In this section, based on the system performance measures, we develop a long-run expected cost 

function per unit time for the system under consideration, in which N is a decision variable. Our 

aim is to determine the optimum threshold N , say N*, so as to minimize the cost function. First, 

let 

hc holding cost per unit time for each customer present in the system, 

rc  repair cost per unit time of the broken service station, 

1c depreciation cost incurred by every breakdown of the service station, 

pc  replacement cost per unit time of the failed repair facility, 

2c purchase cost incurred by every failure of the repair facility, 

3c setup cost per busy cycle. 

Applying the definitions of the cost elements and its corresponding system performance measures, 

the long-run expected cost function per unit time is  1   

min( , ) 1 2 3

min( , )

1
( ) h N V r p

N V

C N c L c c M c c H c
E C

     
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,                                (35) 
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Where the mean number of customers
min( , )N VL in the system has been obtained in our other 

research work, 
2

2

2
0

( )
s

d
E g s

ds




       . 

Would have been a hard task to derive analytic result for the optimal value N* because the cost 

function is highly non-linear and complex. In spite of that, since N is a discrete variable, we can 

use direct substitution of successive values of N into the cost function until the minimum value 

of ( )C N , say *( )C N , is achieved. All the calculations have been done on Matlab Software and all 

the dates are provided here in four decimal places. 

Example 1. First, the distributions of the random times involved in the system are given as 

follows: 

(i) Service time of each customer: ( ) 1 exp( )G t t   , 

(ii) Repair time of the broken service station: ( ) 1 exp( )Y t t   , 

(iii) Replacement time of the failed repair facility: ( ) 1 exp( )W t wt   , 

(iv) Server's vacation time: 
0,

( )
1,

t T
V t

t T


 


. 

Substituting these distributions into ( )C N and after some manipulations, it yields 

     

 

2 22 ( )( )
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h

w w r w r rw w r
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  
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 
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  



. 

For convenience, we select 0.75  , 3.0  , 0.36  , 4.5  , 0.2r  , 5.5w  , 25T  , 

20hc  , 45rc  , 75pc  , 1 180c  , 2 260c  , and 3 380c  .We compute 0.2707 1   . Substituting 
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these parameters into ( )C N , the numerical results for different threshold values of N are displayed 

in Table 1 and Fig. 2. From the computational results, *( ) (5)C N C =107.3214 is the minimum of 

the long-run expected cost per unit time. Therefore, once the number of customers waiting in the 

queue reaches 5, the server should interrupt his/her vacation and serve customers.  

 

 

 

 

Table 1. The long-run expected cost per unit time for different values of N. 

N C(N) N C(N) N C(N) N C(N) N C(N) 

1 233.5955 8 121.7215 15 176.7547 22 215.1439 29 223.8394 

2 139.6741 9 128.8096 16 184.2132 23 217.7439 30 224.0442 

3 115.0337 10 136.4388 17 191.1444 24 219.7364 31 224.1696 

4 107.7135 11 144.4168 18 197.4378 25 221.2153 32 224.2440 

5 107.3214 12 152.5848 19 203.0119 26 222.2781 33 224.2869 

6 110.3928 13 160.7951 20 207.8207 27 223.0172 34 224.3108 

7 115.4417 14 168.9009 21 211.8556 28 223.5149 35 224.3239 

0 5 10 15 20 25 30 35
100
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200

220

240

N
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(5, 107.3214)

 

Figure 2. The plots of C(N) for different values of N. 

Example 2. In this example, the distributions of the service time, repair time and replacement 

time are exactly the same as in Example 1, and server's vacation time is ( ) 1 exp( )V t vt   . 

Substituting these distributions into ( )C N and after some calculations, it follows that 

 ( )
( ) h

w w r
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     
 

  
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( )
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N N

N

v v

 

 
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1 2 2

3
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c

w v
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   


     

  
 

. 

For convenience, we choose 0.8  , 2.0  , 0.4  , 3.0  , 0.2r  , 4.5w  , 0.25v  , 

40hc  , 55rc  , 90pc  , 1 160c  , 2 240c  , and 3 350c  .We compute 0.4557 1   . Substituting 

these parameters into ( )C N , the numerical results for different threshold values of N are shown in 

Table 2 and Fig. 3. From the computational results, *( ) (3)C N C =163.9966 is the minimum of 

the long-run expected cost per unit time. Therefore, the server should interrupt his/her vacation 

and start providing service as soon as 3 customers accumulate in the system. 

 

Table 2. The long-run expected cost per unit time for different values of N. 

N C(N) N C(N) N C(N) N C(N) N C(N) 

1 218.5005 8 194.0399 15 220.67927 22 228.2504 29 229.9614 

2 169.8938 9 199.7243 16 222.4976 23 228.6823 30 230.0505 

3 163.9966 10 204.7166 17 223.9970 24 229.0294 31 230.1212 

4 167.5068 11 209.0358 18 225.2275 25 229.3076 32 230.1771 

5 173.8316 12 212.7294 19 226.2329 26 229.5301 33 230.2213 

6 180.8434 13 215.8579 20 227.0510 27 229.7076 34 230.2562 

7 187.6989 14 218.4864 21 227.7143 28 229.8489 35 230.2837 
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Figure 3. The plots of C(N) for different values of N. 
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7. Conclusion 

 

In this paper, we considered the M/G/1 repairable queue with multiple vacations, min(N,V)-policy, 

unreliable service station and unreliable repair facility that has potential applications in modeling 

the industrial systems, the manufacturing systems and others. Applying the probability 

decomposition technique, various system performance measures are calculated. We then 

developed the long-run expected cost function per unit time of the system. In addition, using the 

direct search method, the optimum threshold *N and the minimum cost *( )C N are numerically 

determined. It should be pointed out that our model is useful to managers who design a system 

with economic management. For future research, an interesting extension is to consider the 

Geom/G/1 repairable system with multiple vacations and N-policy (T-policy, D-policy, etc.). 
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Appendix A. The proof of Theorem 4. 

 

Proof.  1) For 0i  , we have that 

0 1
0

( ) ( ) ( )
t

H t H t x dF x  .                        (A1) 

For 1,2,i  ,  

( ) ( ) ( )i i iH t J t N t 
1

( ) ( 1) ( )

0 0 0
1 1

( )
( ) ( ) ( ) ( )

!

mN t t x t x y
y z k i

m

k m

z
H t x y e dV z dV y dB x

m
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  

 
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( ) ( 1) ( )
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1
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y N k i
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H t x y V z e dF z dV y dB x
   

 



     ,             (A2) 
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Where ( ) {iJ t E the replacement number of the repair facility during (0, t], 0}ib t    ,  

( ) {iN t E the replacement number of the repair facility during (0, ]ib  , }ib t   . 

2) To compute ( )iJ t and ( )iN t , we first derive the following probability. Let 

( ) {Z t E the replacement number of the repair facility during (0, t] within the 

alternating renewal process   , , 1k kX Y k  . 

Because that the repair facility fails only within the generalized repair time of the service station. 

We have the following relationship 

0
( ) ( ) { }

t

Z t T t x dP X x   ,                        (A3) 

Where ( ) {T t E the replacement number of the repair facility during (0, t] within the alternating 

renewal process   , , 1k kY X k  .  

Decomposition of ( )T t by 1Y , we know that 

0
( ) ( ) ( ) ( ) ( )

t

T t t t t x dY x      ,                 (A4) 

Where ( ) {t E  the replacement number of the repair facility during (0, ]t , 1 0Y t  ,  

( ) {t E  the replacement number of the repair facility during 1(0, ]Y , 1Y t .  

Decompose ( )D t byY , similar to expression (26), we have 

( ) ( ) ( ) ( )* ( )t t D t D t Y t    ,                         (A5) 

Thus, we get ( )Z t from expressions (A3), (A4) and (A5). 

Moreover, decompose ( )Z t by server's generalized busy period
ib 

, we obtain that 

( )

0
( ) ( ) ( ) ( ) ( )

t
i

i iJ t N t Z t Z t x dB x    , 1i  .                (A6) 

3) Taking the Laplace-Stieltjes transform of the expressions (A1)-(A6), and employing the 

L'Hospital rule, this proof is completed. 

. 


