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Abstract: The similarity measuring between 3D objects can be reduced to a distance between their descriptors. 

Therefore, the principal challenge is the mapping of objects into reduced and compact representations referred to as 

descriptors. Generally speaking, descriptors based on global features cannot be effective to describe incomplete 3D 

objects. This paper presents a novel partial 3D object retrieval approach called adaptive slices clustering (ASC). To 

ensure that similar objects will be decomposed similarly, normalization is applied to the objects as a preprocessing 

step. Then, we characterize each object by a set of 2D slices corresponding to its three principal axes, transforming 

the shape-matching problem between objects into similarity measuring between their slices. Next, we choose among 

the extracted 2D slices the most representative to reduce searching time without diminishing the performance of our 

approach. The results show that our approach provides better performance than the descriptors that characterize the 

whole object. 
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1. Introduction 

With the fast developing of 3D modelling and 

scanning tools, at a time with the growing 

popularization of the Internet, 3D objects are now 

frequently used in various domains [1-3]. However, 

how to index and retrieve 3D objects automatically 

in enormous database becomes a serious issue. 

The most important task in 3D object indexing 

and retrieval process is the features extraction; in 

fact, this step consists of transforming the 3D object 

into a reduced and compact representation. 

Generally, the 3D objects shape is characterized by 

a feature vector which serves like a search key in the 

database. Therefore, the retrieval technique depends 

strongly on the feature extraction approach used. 

These approaches can be divided into geometry 

based approaches [4], and 2D based ones [5]. 

Early 3D object indexing and retrieval methods 

principally appertain to geometry based approaches, 

and most of these approaches characterize global 

features of the 3D object. However, some 3D 

objects like art models can be incomplete or 

imperfect; therefore the features extraction process 

need to treat 3D objects with regard to partial 

similarity. Even if 3D objects visually differ overall, 

the partial 3D object search systems are predictable 

to retrieve models that have similar sub-parts which 

is not the case for the systems that describe global 

features of the 3D object. Thus, the partial 3D object 

retrieval systems are facing the difficulty of 

matching incomplete and imperfect objects that still 

exists for 3D object retrieval techniques. 

In our approach, we believe that global 

descriptors are not effective for incomplete 3D 

objects. Therefore, the purpose of our contribution is 

to introduce a novel method for 3D object indexing 

and retrieval that can solve the problem of matching 

incomplete 3D objects. In fact, the main advantage 

of our proposal is not only its ability to match 

normal and incomplete 3D objects, but also it 

achieved superior performance to the some 

commonly used retrieval approaches.  
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The main idea of our method is to use a set of 

local signature to describe a 3D object. Therefore, 

we start by a normalization step to assure that 

similar 3D objects will be decomposed same way. 

Next, we decompose each 3D object into 2D slices 

corresponding to its three principal axes. Then, Hu 

invariant moments are used to describe each 2D 

slice. Subsequently, we reduce the number of 

extracted slices so that we keep only the most 

representative ones. To achieve this task, we use a 

cluster validity index to automatically define the 

optimal number of representative slices according to 

the 3D object complexity. Finally, we use our 

proposed metric to compare representative slices of 

the request 3D object with those of the database. 

The remainder of this paper is structured as 

follows. First, we review the related work. Next, in 

section 3, we present our approach to index and 

retrieve 3D objects. Then, the experimental results 

are shown in section 4. Finally, a conclusion is 

provided in the last section. 

2. Related work 

Large researchers have been leaded and various 

3D object descriptors have been presented in the 

literature [6-7] for the 3D object indexing and 

retrieval. In this section, the 3D object descriptors 

are discussed by classifying them into two groups: 

geometry based descriptors, and 2D based 

descriptors. 

2.1 Geometry based descriptors 

Geometry-based approaches use 3D objects 

geometric properties to retrieve information and 

define the descriptor. Many geometry-based 

methods have been proposed which we can separate 

them into two families: Global based approaches, 

and Local based approaches. 

Most of the global based approaches try to 

characterize the whole 3D object without paying 

attention to its details which affect their results. 

Osada et al. [8] measured the global geometric 

properties of the 3D object by using a probability 

distribution of its shape. In fact, the authors 

proposed five shape distribution based on the 3D 

object’s global characteristics. The proposed 

descriptors are easy and fast to compute, however 

they are still unable to offer a well representation of 

the object. Monteverde et al. [9] proposed D2a, an 

improvement of D2, the authors combined ratio of 

areas of surfaces and distance between point pairs 

into only one descriptor. Zaharia et al. [10] proposed 

Shape Spectrum Descriptor (SSD); the proposed 

descriptor computes a histogram of shape index over 

the 3D object. This approach furnishes satisfying 

results, however, the shape index is not defined for 

flat faces, and it needs a pretreatment step for 

meshes that are not orientable or not topologically 

correct. Bouksim et al. [11] presented a compact 

descriptor by using the Data envelopment analysis 

method to combine three criteria (dihedral angle, 

shape index, and the Shape Diameter Function). The 

principal inconvenient of this method is that it takes 

relatively a long time to generate the descriptors, 

since it uses three features, and combines them 

using DEA. Kazhdan et al. [12] proposed Spherical 

Harmonic Descriptor (SHD); the authors compute 

the functions restriction to concentric spheres, and 

afterward keeping the norm of each frequency. 

Ankerst et al. [13] introduced three methods for 

decomposing the 3D object: the first one (Shell) 

consists of decomposing the 3D object into 

concentric shells around the center of mass, while 

the second method (Sector) tends to decompose the 

3D object into sectors that come out from the center 

point of the object, whereas the last one (SecShell) 

is the combination of the first-mentioned. Horn [14] 

presented the Extended Gaussian Images (EGI); the 

proposed method describes a 3D object from the 

point of view of the distribution of surface normals. 

The local based approaches tend to describe the 

3D object by using local geometric characteristics, 

unlike global approaches, which try to characterize 

globally the shape of the 3D objects. Godil et al. 

[15] proposed an approach that can be applied to the 

articulated, non-rigid and deformable 3D objects 

retrieval. The proposed method uses the voxel grid 

inspired by the Scale Invariant Feature Transform 

(SIFT) for the 3D salient local features. Sipiran et al. 

[16] use data-aware partition method for generic 

forms with improved the Bag of-Feature system. 

Zou et al. [17] introduced a mixed shape distribution 

descriptor based on group integration and main 

plane analysis. 

The shared feature of the geometry based 

approaches is that they are almost all 

derived straight from the elemental unit of a 3D 

object. In fact, 3D objects are considered and treated 

as a polygon mesh set, a vertex set, or a voxel set. 

Their advantages repose in their relatively good 

representation power, together with their direct and 

easy diversion from 3D object structures. However, 

most of these methods do not address the searching 

of 3D objects which are almost identical to a request, 

when the obtainable information for the 3D object is 

not complete. Also, the computation processes are 

sensitive for small features and mostly too time-

consuming. 
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2.2 2D based descriptors 

This type of descriptors characterizes and 

compares 3D objects by using a set of 2D images 

taken from the models. Actually, these descriptors 

describe the 3D object by using the information 

contained in its 2D projections caught from different 

viewpoints.  

Ouazzani taybi et al. [18] extract for each 3D 

object an ensemble of slices corresponding to its 

three main axes, and then they use the K-means 

clustering method to pull out the representative ones, 

transforming the shape matching problem between 

3D objects into comparison between their 2D slices. 

This approach produces satisfactory results if the 

number of clusters is correctly chosen. El Wardani 

et al. [19] improved the bag of features method by 

incorporating characteristics extracted from 3D 

object’s 2D views and using the Scale Invariant 

Feature Transform (SIFT) method into histograms. 

The new solution employees a vector quantization 

based on a global visual codebook. Su et al. [20] 

present an approach that address the problem of 3D 

object recognition by compiling the information in 

multiple 2D views of an object into a compact 

object descriptor using a new architecture called 

multi-view CNN. Wang et al. [21] proposed a 2D 

projective views method to characterize 3D object. 

They evaluated the discriminative ability of each 3D 

object’s views by using category classification 

performance. Therefore, the shortest Mahalanobis 

distance between different categories was used to 

measure the discriminativeness of each view. Nie et 

al. [22] propose a novel multilayer deep network. 

The authors extracted multiple images from a 3D 

object and passed through view-pooling layer into a 

representative view, which is the actual input of the 

network. Then, the obtained representative views 

was used to train and test the novel multi-layer 

network structure. 

2D based descriptors transform the complex 3D 

issues into relatively mature 2D image processing 

approaches to minimize the difficulty. The function 

mapping approaches render the retrieval process 

more flexible, as many more descriptors can be 

extracted for a 2D shape. Also, they can render the 

feature descriptor more compact and mainly 

decrease the complexity of feature computation. 

However, for 2D image mapping, how to determine 

the perfect number of 2D images to represent the 3D 

object is another problem in practice. 

3. The proposed approach 

In this section, we describe our approach for 3D 

objects indexing and retrieval. The main idea of the 

proposed method is to represent the 3D objects by a 

set of slices transforming the shape-matching 

problem between 3D objects into similarity 

measuring between their 2D slices. First, we 

normalize the 3D objects to ensure invariance under 

translation, scaling, and rotation. Second, we extract, 

for each 3D object, the 2D slices corresponding to 

its three principal axes. Then, we compute the 

numerical signature for each 2D slice by using the 

Hu’s invariant moments. Next, we reduce the 

number of the initial slices, so that only keeps the 

most representative. Finally, we use our proposed 

metric to measure the similarity between the sets of 

representative slices corresponding to the 3D object 

request and each 3D object in the database. 

3.1 Normalizing 3D objects 

3D objects obtained by various acquisition 

sources frequently have their geometrical properties 

arbitrarily defined, and most 3D model retrieval and 

indexing approaches do not please geometrical 

invariance. Thus, it is important to normalize 3D 

objects into a canonical coordinate to ensure a 

unique representation. 

In fact, the normalization is a common 

preprocessing step not only for 3D object indexing 

and retrieval systems but also in 3D object 

recognition, visualization, and 3D shape matching. 

It tries to normalize 3D objects to a canonical pose, 

where the representation of the object is independent 

of its position, scale and orientation. So that all 3D 

objects can be compared under the same pose. 

In our approach, the translation normalization is 

addressed by calculating the center of mass of a 3D 

object and translates it to coincide with the origin. 

To achieve the scale normalization, the average 

distance of the surface of an object from its centroid 

is equal to 1. The rotation normalization is attained 

by using the Principal Component Analysis (PCA).  

The alignment is typically the most difficult 

point in the normalization process, and still under 

investigation. We have implemented the classic 

version of the principal component analysis (PCA) 

and the continuous version (CPCA), and we have 

deduced that the CPCA is more stable than the PCA 

for a longer computing time, affirming the results of 

Vranic et al. [23-24]. We have also noticed that the 

classic version of PCA gives incorrect results for 

some 3D models, in particular, the inversions 

between the main axes of the object. Zaharia et al. 

[25] showed that the application of this method in 

the discrete case could show feebleness like the axes 
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inversion. In fact, the order of the axes may be 

unstable, if the 3D model has similar sizes in two or 

three dimensions. 

3.2 Creating the initial set of 2D slices 

Amongst various representation tools to 

represent 3D objects, triangle meshes provide an 

efficient way. Characteristically, geometry, 

connectivity and property data are at a time used to 

represent a 3D triangle mesh. In fact, our approach 

consists of creating a set of 2D initial slices gotten 

by the intersection of an ensemble of plans with the 

3D triangle mesh. So as to obtain the slice in a 

determined direction, we displace the radius in the 

related plan and we compute whenever the distance 

D between the radius’s origin O and the intersection 

with the 3D triangle mesh. 

Let us consider I the point gotten by the 

intersection of a triangle mesh ABC and the radius 

oriented by the vector 𝑣⃗ . The following relation 

determine the intersection point: 

 

𝑂𝐼 = 𝐷. 𝑣⃗ (1) 

 

The intersection point I, in the delimited surface 

by the facet ABC, checked this equation: 

 

𝑂𝐴⃗⃗⃗⃗ ⃗⃗ . 𝑛⃗⃗ = 𝑂𝐼⃗⃗⃗⃗⃗. 𝑛⃗⃗ (2) 

 

With 𝑛⃗⃗ is the normal vector to the triangle ABC, 

it is defined by the following equation: 

 

𝑛⃗⃗ =
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ∧ 𝐴𝐶⃗⃗⃗⃗⃗⃗

∥ 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ∧ 𝐴𝐶⃗⃗⃗⃗⃗⃗ ∥
 

 

(3) 

 

To insure that the point I is not empty, it is 

sufficient that this point verifies the conditions in the 

following equation: 

 

{

(𝐼𝐴⃗⃗⃗⃗⃗ ∧ 𝐼𝐵⃗⃗⃗⃗⃗). 𝑛⃗⃗ > 0

 (𝐼𝐵⃗⃗⃗⃗⃗ ∧ 𝐼𝐶⃗⃗⃗⃗⃗). 𝑛⃗⃗ > 0

(𝐼𝐶⃗⃗⃗⃗⃗ ∧ 𝐼𝐴⃗⃗⃗⃗⃗). 𝑛⃗⃗ > 0

 

 
(4) 

 

In order to better describe the 3D objects’ shape, 

and also to get around the PCA’s weakness, 

including the problem of inversion principal axes, 

we extract a set of 2D slices corresponding to the 

three main axes for each 3D object. 

In our implementation, for each principal axis, 

we take the intersection of the 3D object with 100 

plans equally spaced and orthogonal to the axis. At 

the end of this operation, we get the set of initial 

slices (IS): 𝐼𝑆 = {𝐼𝑆𝑜𝑥, 𝐼𝑆𝑜𝑦, 𝐼𝑆𝑜𝑧 }  such as: 𝐼𝑆𝑜𝑥 =

{𝐼𝑆1
𝑜𝑥 , … , 𝐼𝑆100

𝑜𝑥  } , 𝐼𝑆𝑜𝑦 = {𝐼𝑆1
𝑜𝑦

, … , 𝐼𝑆100
𝑜𝑦

 } , and 

𝐼𝑆𝑜𝑧 = {𝐼𝑆1
𝑜𝑧, … , 𝐼𝑆100

𝑜𝑧  }. Where𝐼𝑆𝑜𝑥 , 𝐼𝑆𝑜𝑦  and 𝐼𝑆𝑜𝑧 

respectively represent the set of the initial slices 

corresponding to the 𝑋, 𝑌, and 𝑍 axes of the object. 

3.3 Computing the numerical signature for each 

2D slice 

To describe the initial set of slices, the descriptor 

used must be easily computed and invariance to 

geometric transformations of translation, rotation, 

and scaling. Hu invariant moments [26] are applied 

to meet these requirements. 

In fact, Hu invariant moments work directly with 

regions of pixels by using statistical and central 

moments. Those moments are readily extractable 

and provide a generic representation of 2D image. 

Therefore, each slice is represented by seven 

invariant moments of Hu in the form of a vector. 

3.4 Extracting the 2D representative slices 

The number of representative slices of a 3D 

object must be large enough to give a complete 

representation of the 3D object, but not too 

important so as not to get over-representation 

detrimental to the performance of the approach. 

To meet these constraints, we used a selection 

algorithm of representative slices adapting the 

number of slices in accordance with the complexity 

of the 3D object, more precisely the complex nature 

of the 3D object according to its principal axis. 

In reality, depending on the complexity of the 

main axes of the object to be characterized, the 

number of slices can vary greatly. For example, to 

represent slices corresponding to the X-axis of the 

3D object in Fig. 2.a, a small number of slices are 

enough (Fig. 2.b), since the extracted slices of the 

object are almost identical. However, to represent 

slices corresponding to the main axes of a complex 

object like the object in Fig. 1.a requires a greater 

number of 2D slices (Fig 1.b-d). The general idea of 

our approach is to generate an initial set of 2D slices 

and select the slices that best represent the 3D object. 

In fact, the task of finding the subset of 

representative slices is equivalent to a clustering 

problem. 

At the beginning of our work, we were 

interested in the K-means classification algorithm. 

This method produces satisfactory results if the 

number of clusters is correctly chosen. Otherwise, 

the clustering process produces under-partition or 

over-partition. Also in our case, the number of 

clusters is related to the complexity of each 3D 
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object. Accordingly, the automatic determination of 

the optimal number of clusters (K*) is of great 

importance. For this purpose, we use the cluster 

validity index proposed by Do et al. [27]. 

Compared to other studies using other indexes, 

this index takes into account the characteristics 

around the optimal number of clusters during the 

partitioning process. 

In fact, clusters structures can have one of three 

states: under-partition state (K < K*), optimal 

partition state (K = K*) or over-partition state (K > 

K*). It is possible to find the optimal number of 

clusters using two measures: mean intra-cluster 

distance (MICD) and minimum inter-cluster 

distance (ICMD). 

The MICD of the ith cluster MICDi is defined by: 

 

𝑀𝐼𝐶𝐷𝑖 =  
1

𝑛𝑖
∑ ∥ 𝑉𝑖 − 𝑥 ∥

𝑥∈𝜒𝑖

 

 

(5) 

 

Where 𝜒𝑖 , 𝑉𝑖 and 𝑛𝑖  respectively represent the data 

set of the ith cluster, the centroid of the ith cluster and 

the number of data in the ith cluster. 

𝐼𝐶𝑀𝐷𝑚𝑖𝑛 =  min
𝑖≠𝑗

∑ ∥ 𝑉𝑖 − 𝑉𝑗 ∥

𝑥∈𝜒𝑖

 
 

(6) 

 

Where 𝑉𝑖  and 𝑉𝑗  respectively represent the centroid 

of the ith and jth cluster. 

 Let 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 be a finite data set, and let 

𝑉 = [𝑣1, 𝑣2, … , 𝑣𝐾]𝑇  be a 𝐾  centroid, each 𝑣𝑖 

characterizes one of the 𝐾  clusters. The under-

partition measure 𝑣𝑢𝑛𝑑𝑒𝑟(𝐾, 𝑉, 𝑋) and over-partition 

measure 𝑣𝑜𝑣𝑒𝑟(𝐾, 𝑉)  , respectively defined by Eq. 

(7) and Eq. (8), have different scales depending on 

the structure and the number data. Thus, a 

normalization of these functions is necessary. 

 

𝑣𝑢𝑛𝑑𝑒𝑟(𝐾, 𝑉, 𝑋) =  
1

𝐾
∑ 𝑀𝐼𝐶𝐷𝑖

𝐾

𝑖=1

 

 

(7) 

 

𝑣𝑜𝑣𝑒𝑟(𝐾, 𝑉) =  
𝐾

𝐼𝐶𝑀𝐷𝑚𝑖𝑛
 

 

(8) 

 

For 2≤K≤Kmax. 

Let us define partition measure vectors as: 

 

 

 

 

 

  

  

  

 (b)  (e) 

 

 

 

 
 (c)  (f) 

 

 

 

 

(a)  (d)  (g) 

Figure. 1 Example of a complex 3D object (a) with its representative slices corresponding to its three principal axes 

using our approach (b-d) and the cluster validity index measure function correspondent to its main axes (e-g) 

0

0.5

1

2 5 8 11 14 17 20 23 26 29 32 35 38C
lu

st
er

 v
a

li
d

it
y

 

in
d

ex

Number of clusters

0

0.5

1

2 5 8 11 14 17 20 23 26 29 32 35 38

C
lu

st
er

 v
a

li
d

it
y

 

in
d

ex

Number of clussters

0

0.5

1

2 5 8 11141720232629323538C
lu

st
er

 v
a

li
d

it
y

 

in
d

ex

Number of clusters



Received:  July 20, 2018                                                                                                                                                    258 

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019           DOI: 10.22266/ijies2019.0228.25 

 

𝑉𝑢𝑛𝑑𝑒𝑟

= [𝑣𝑢𝑛𝑑𝑒𝑟(2, 𝑉, 𝑋), … , 𝑣𝑢𝑛𝑑𝑒𝑟(𝐾𝑚𝑎𝑥 , 𝑉, 𝑋)] 
(9) 

 

𝑉𝑜𝑣𝑒𝑟 = [𝑣𝑜𝑣𝑒𝑟(2, 𝑉), … , 𝑣𝑜𝑣𝑒𝑟(𝐾𝑚𝑎𝑥, 𝑉)] (10) 

 

For each vector, maximum and minimum values 

are computed as: 

 

𝑉𝑢𝑛𝑑𝑒𝑟_𝑚𝑎𝑥 = max
𝐾

( 𝑣𝑢𝑛𝑑𝑒𝑟(𝐾, 𝑉, 𝑋)) (11) 

 

𝑉𝑜𝑣𝑒𝑟_𝑚𝑎𝑥 = max
𝐾

( 𝑣𝑜𝑣𝑒𝑟(𝐾, 𝑉)) (12) 

 

𝑉𝑢𝑛𝑑𝑒𝑟_𝑚𝑖𝑛 = min
𝐾

( 𝑣𝑢𝑛𝑑𝑒𝑟(𝐾, 𝑉, 𝑋)) (13) 

 

𝑉𝑜𝑣𝑒𝑟_𝑚𝑖𝑛 = min
𝐾

( 𝑣𝑜𝑣𝑒𝑟(𝐾, 𝑉)) (14) 

 

For 𝐾 = 1,2, … , 𝐾𝑚𝑎𝑥 

The normalization of each function becomes: 

 

𝑉𝑢𝑛𝑑𝑒𝑟𝑁(𝐾, 𝑉, 𝑋)

=
𝑣𝑢𝑛𝑑𝑒𝑟(𝐾, 𝑉, 𝑋) − 𝑣𝑢𝑛𝑑𝑒𝑟_𝑚𝑖𝑛

𝑣𝑢𝑛𝑑𝑒𝑟_𝑚𝑎𝑥 − 𝑣𝑢𝑛𝑑𝑒𝑟_𝑚𝑖𝑛
 

 

(15) 

 

𝑉𝑜𝑣𝑒𝑟𝑁(𝐾, 𝑉) =
𝑣𝑜𝑣𝑒𝑟(𝐾, 𝑉) − 𝑣𝑜𝑣𝑒𝑟_𝑚𝑖𝑛

𝑣𝑜𝑣𝑒𝑟_𝑚𝑎𝑥 − 𝑣𝑜𝑣𝑒𝑟_𝑚𝑖𝑛
 

(16) 

 

Therefore 𝑣𝑢𝑛𝑑𝑒𝑟 and 𝑣𝑜𝑣𝑒𝑟 always lies between 

0 to 1. As a result, normalization partition measure 

vectors are defined as: 

 

𝑣𝑢𝑛𝑑𝑒𝑟𝑁 = [
𝑣𝑢𝑛𝑑𝑒𝑟𝑁(2, 𝑉, 𝑋), …

, 𝑣𝑢𝑛𝑑𝑒𝑟𝑁(𝐾𝑚𝑎𝑥, 𝑉, 𝑋)
]

𝑇

 
 

(17) 

 

𝑣𝑜𝑣𝑒𝑟𝑁

= [𝑣𝑜𝑣𝑒𝑟𝑁(2, 𝑉), … , 𝑣𝑜𝑣𝑒𝑟𝑁(𝐾𝑚𝑎𝑥 , 𝑉)]𝑇 

 

(18) 

 

The validity index, noted by 𝑉𝑆𝑉, is formulated by 

adding 𝑣𝑢𝑛𝑑𝑒𝑟𝑁 and 𝑣𝑜𝑣𝑒𝑟𝑁, thus is written as: 

 

𝑉𝑆𝑉(𝐾, 𝑉, 𝑋) = 𝑣𝑢𝑛𝑑𝑒𝑟𝑁(𝐾, 𝑉, 𝑋)
+ 𝑣𝑜𝑣𝑒𝑟𝑁(𝐾, 𝑉) 

(19) 

 

The optimal number of group is obtained for the 

smallest value of 𝑉𝑆𝑉(𝐾, 𝑉, 𝑋) for 𝐾 varying from 2 

to 𝐾𝑚𝑎𝑥. 

In our method, the application of this cluster 

validity index, taking the interval [2, 40], allows us 

to fully determine the optimal number of cluster 

depending on the complexity of the 3D object. Fig. 

1.e-g and Fig. 2.c show validity related functions 

with respect to the number 𝐾. In fact, we can easily 

notice a valley at the optimal clusters number 𝐾*. 

Subsequently, we represent each cluster by one 

slice, which correspond to the nearest one to the 

centroid of the cluster, and we call it representative 

slice to form a subset of representative slices (RS):  

𝑅𝑆 = {𝑅𝑆𝑜𝑥, 𝑅𝑆𝑜𝑦, 𝑅𝑆𝑜𝑧 }  such as: 𝑅𝑆𝑜𝑥 =

{𝑅𝑆1
𝑜𝑥, … , 𝑅𝑆𝑙

𝑜𝑥  } , 𝑅𝑆𝑜𝑦 = {𝑅𝑆1
𝑜𝑦

, … , 𝑅𝑆𝑚
𝑜𝑦

 }  and 

𝑅𝑆𝑜𝑧 = {𝑅𝑆1
𝑜𝑧, … , 𝑅𝑆𝑛

𝑜𝑧 }. 

Where 𝑙 , 𝑚 and 𝑛 respectively represent the 

number of the representative slices corresponding to 

the 𝑋, 𝑌, and 𝑍axes of the 3D object. 

3.5 Computing the dissimilarity 

In our approach, the shape-matching problem is 

turned into how to measure the dissimilarity 

between the sets of representative slices 

corresponding to different 3D objects. So once 3D 

objects are represented as characteristic slices, their 

similarity can be computed by using distance 

functions, such as Euclidean distance, Minkowsky 

distance, Manhattan distance, etc. However, the 

number of representative slices depends on the 

complexity of each 3D object, which gives 

unordered sets of different sizes. 

At the beginning of our work, we were interested in 

the Hausdorff distance [28] to measure the content 

dissimilarity. This metric minimizes the comparison 

of two ensembles to a comparison of only a single 

element from each. In fact, the Hausdorff distance 

do not care every elements in set should be matched. 

When some disturbed elements existed in a set, it is 

tough to compute similarity based on Hausdorff 

distance. For this purpose, we define our metric that 

takes into consideration all elements in set. 

 

 

   

(b) 

 

(a) (c) 

Figure. 2 Example of a simple 3D object (a) with its 

representative slices corresponding to the first 

principal axe using our approach (b) and the cluster 

validity index measure function correspondent to its 

first main axe(c) 
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Since each 3D object from the database 𝑂 

represented by a set of representative slices 

(𝑅𝑆𝑂 ),𝑂 = {𝑅𝑆𝑜𝑥
𝑂 , 𝑅𝑆𝑜𝑦

𝑂 , 𝑅𝑆𝑜𝑧
𝑂  }  and the 3D object 

query 𝑄 represented by a set of representative slices 

( 𝑅𝑆𝑄 ), 𝑄 = {𝑅𝑆𝑜𝑥
𝑄 , 𝑅𝑆𝑜𝑦

𝑄 , 𝑅𝑆𝑜𝑧
𝑄  } . So the distance 

between 𝑄 and 𝑂 is defined as: 

 

𝐷(𝑂, 𝑄)

=  max (
∑ 𝑖𝑛𝑓1≤𝑗≤𝑀 (𝑑𝑂𝑖𝑄𝑗

)1≤𝑖≤𝑁

𝑁
,

∑ 𝑖𝑛𝑓1≤𝑖≤𝑁 (𝑑𝑂𝑖𝑄𝑗
)1≤𝑗≤𝑀

𝑀
) 

 

 

 

(20) 

 

Where 𝑑𝑂𝑖𝑄𝑗
represents the Euclidean distance 

between 𝑂𝑖  and 𝑄𝑗 , 𝑁  and 𝑀  account respectively 

for the global number of representative slices 

correspond to the object 𝑂 and query 𝑄. 

 

4. Experiments  

In order to evaluate our system, we made two 

different databases. All the 3D objects used in both 

databases have been taken from the Princeton Shape 

Benchmark (PSB) database; this database is freely 

available online and widely used in many works. It 

appeared in 2004 and contains 1814 3D objects 

collected from the internet. 

To make the first database (DB1), we choose 

from the PSB database 225 objects divided 

according on their forms into 14 classes. In order to 

exhibit the robustness of our approach concerning 

the incomplete 3D objects, we create a second 

database (DB2) composed of 225 normal objects 

and 112 incomplete 3D objects. The incomplete 3D 

objects were created using meshLab software by 

randomly removing parts of the object. 

So as to equitably evaluate our approach and to 

compare how well 3D object retrieval methods work, 

we use qualitative visualizations (Precision-recall 

plot, and the top six retrieval results) and 

quantitative statistics (Nearest neighbor (NN), First-

tier (FT) and Second-tier (ST), E-Measure (EM),  

Discounted Cumulative Gain (DCG), Normalized 

Discounted Cumulative Gain (N-DCG)) evaluation 

criterion on both databases. Details about the 

evaluation criterion can be found in [29]. 

In the following, we describe the experiments 

performed with our approach, the obtained results, 

and a comparative study with the Spherical 

Harmonics descriptor (SHD) [12], Representative 

Slices (K_RS) [18], Shape Distribution (D2) [8] and 

(D2a) [9], Extended Gaussian Image (EGI) [14], and 

Shape Histogram (SHELL and SECTOR) [13] on 

both databases. 

4.1 First database (DB1)  

In this section, we present and compare the 

experimental results on the first database (DB1). 

Table 1 summarizes the retrieval accuracies and Fig. 

3 plots the corresponding recall and precision curves 

of our approach and the above-mentioned seven 

descriptors. Fig. 4 and Fig. 5 show respectively the 

top six retrieval results of our approach (ASC), and 

the top five retrieval results of the Spherical 

Harmonics descriptor (SHD) [12].  

As we can see, in Table 1 and Fig. 3, our ASC, 

SHD and K_RS showed superior performance 

compared to other descriptors. We notice also that 

our ASC achieves the best scores on all used 

quantitative statistics (NN, FT, ST, EM, DCG, and 

N-DCG), which means that our approach retrieves 

right outcomes near the front of the list more than 

right outcomes later in the ranked list. 

Table 1. Retrieval performances for the first database 

3D object 

descriptor 

NN 

(%) 

FT 

(%) 

ST 

(%) 

EM 

(%) 

DCG 

(%) 

N-

DCG 

(%) 

Our ASC 88.00 61.85 75.60 53.59 85.12 19.35 

SHD 86.67 58.93 75.53 53.49 84.43 18.39 

K_RS 84.00 57.12 71.47 50.33 81.72 14.58 

D2a 57.33 36.27 55.55 37.55 67.12 -5.89 

Sector 49.33 34.99 53.76 35.35 65.68 -7.90 

Shell 50.67 34.46 53.17 35.48 65.32 -8.41 

D2 48.44 33.61 53.61 36.33 63.61 -10.81 

EGI 40.44 24.86 42.83 27.43 57.55 -19.31 

 
Figure. 3 Average precision-recall curves of our ASC, 

SHD, K_RS, D2, D2a, EGI, SHELL, and SECTOR 

using the first database 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

ASC
SHD
K_RS
D2a
SECTOR
SHELL
D2



Received:  July 20, 2018                                                                                                                                                    260 

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019           DOI: 10.22266/ijies2019.0228.25 

 

 

Fig. 4 and Fig. 5 show the top six retrieval 

results using respectively our ASC and SHD [12]. 

The first columns of each figure show six queries 

from different classes, and each row shows the top 

six retrieval results using our method and SHD. As 

can be seen from the Fig. 4 and Fig. 5, our ASC 

approach performs well in almost all queries. The 

SHD gives satisfactory results. 

4.2 Second database (DB2) 

In a second set of experiments, we try to test the 

behavior of the descriptors in a database containing 

complete and incomplete 3D objects. We mainly 

compare our approach to descriptors based on global 

description of 3D object (SHD, D2, D2a, EGI, 

 

 

 

SHELL, and SECTOR); only our approaches (ASC 

and K_RS) use the partial similarity to match 3D 

objects. 

Table 2 and Fig. 6 show respectively retrieval 

statistics and recall-precision curves for each 

descriptor. As can be deduced from Table 2, our 

ASC approach notably outperforms the other 

comparison descriptors in all used quantitative 

statistics (NN, FT, ST, EM, DCG, and N-DCG). 

Most importantly in Fig. 6, the whole curve 

diminishes much slower than the other descriptors 

whenever the recall raises, that is likeable because it 

proves the approach is steadier. As well, our 

approach has an elevated performance gain (up to 

23%) when recall so near 1. Moreover, we find that 

the performance of the SHD, D2, D2a, Sector, Shell, 

and EGI, compared to our approaches (ASC and 

K_RS), is significantly decreased in the second 
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Figure. 4 Top six 3D objects retrieved from the first 

database using our ASC 

 

Query Top six 3D objects retrieved 

 

Figure. 5 Top six 3D objects retrieved from the first 

database using SHD 

 

Table 2. Retrieval performances for the second database 

3D object 

descriptor 

NN 

(%) 

FT 

(%) 

ST 

(%) 

E-M 

(%) 

DCG 

(%) 

N-

DCG 

(%) 

Our ASC 94.36 62.23 75.69 57.20 87.67 19.28 

K_RS 91.39 57.41 71.51 53.17 84.75 15.31 

SHD 91.10 55.30 72.08 51.95 84.44 14.89 

D2a 62.31 34.52 53.72 33.89 69.60 -5.31 

Sector 62.59 32.98 52.83 32.29 68.48 -6.83 

Shell 64.09 32.46 52.50 31.92 67.98 -7.51 

D2 43.92 31.67 52.26 31.93 64.74 -11.92 

EGI 48.37 23.84 40.66 23.29 60.34 -17.90 

Figure. 6 Average precision-recall curves of our ASC, 

SHD, D2, A3, EGI, SHELLS, and SECSHELL using 

the second database 
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database, it is because of the difficulty and 

incapability of these descriptors to retrieve correctly 

the incomplete 3D objects. Fig. 7 and Fig. 8 

represent, respectively, some retrieval examples 

using our ASC and SHD. We can easily deduce, 

from the obtained results, that our ASC performs 

exceptionally well in the second Database (DB2), 

which is not the case of the outcomes given by SHD. 

5. Conclusion 

In the present paper, we investigate the issue of 

partial 3D object retrieval. First, we normalize 3D 

objects to ensure that the similar ones will be 

decomposed alike. Then, we create many 2D slices 

corresponding to the three principal axes of the 3D 

model. Next we select the more representative 2D 

slices using a cluster validity index to automatically 

define the optimal number of representative 2D 

slices. Finally, we use our proposed metric to 

compute the similarity between sets of 

representative slices. 

From the experimental results, especially in the 

case of incomplete 3D objects (DB2), we can 

deduce that our method gives the best results in term 

of retrieval performances (NN (94.36%), FT 

(62.23%), ST(75.69%), E-M (57.20%), DCG 

(87.67%), and N-DCG(19.28%)), outperforming 

some of the well know method in the literature, 

which characterize the 3D object in a global way. 

In the future, we will continue to investigate on 

partial 3D object retrieval approaches, try other 

descriptors to describe the extracted 2D slices. We 

plan also to test our approach on other database.  
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