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Abstract: In this paper, a probabilistic optimal power dispatch (POPD) using linear programming (LP) is proposed 

for solving the power generation dispatch with price-based real-time demand response (PRDR). The expected short-

term load forecast is represented by a probabilistic distribution function. The simulation result has prosperously 

shown that the proposed method could handle the POPD solutions for real power dispatch considering PRDR by 

using probabilistic Truncated normal distribution function (PTNF). The PTNF is used in a vigorous part of the 

framework to eject the infeasible results during the computation. This would lead the results to the high degree of 

accuracy comparing to the normal sampling methods. The simulation results showed that the proposed method can 

efficiently and effectively minimize the total power generation cost while trading off the PRDR cost in the POPD 

problem with load uncertainty. 

Keywords: Probabilistic optimal power dispatch, Probability density function, Linear programming, Demand 

response. 

 

 

1. Introduction 

In the power grid, the electric utilities need to 

balance the power generation and load considering 

economic operation considering grid reliability and 

quality of supply. Therefore, optimal power dispatch 

(OPD) techniques for possible future power system 

operation are steadily proposed with various 

optimization techniques. 

Recently, the innovation of computer processor 

units has produced as a matter of engineering 

required to solve their problems as fast as possible 

in real time and online. OPD has become one of the 

most extensive optimization tools adopted in the 

power system planning and electricity market. With 

the above issues, many researchers have endlessly 

studied optimization techniques to investigate an 

optimum operation of the power system. Many 

optimization algorithms have always been 

mentioned both artificial intelligence and 

conventional methods to obtain an OPD solution. 

The linear programming (LP) is one of the most 

conventional methods which becomes a widely 

practical method in optimal power system operation. 

For example, a demand response (DR) strategy 

based on energy consumption scheduling was 

modelled by LP to prove the demand minimizing in 

peak period in [1]. The marker prices are exposed by 

LP proposed framework equivalent to the marginal 

cost for the utility in [2]. Similarly, it was used to 

minimalize the expensive fuel operating cost in 

extra high voltage in [3]. Another LP proposed 

algorithm is to minimize the supply cost in power 

pool auction. In the power pool auction, the hourly 

bus spot price incorporating the marginal 

transmission loss and network quality of supply can 

be regulated [4-5]. LP has the potential to capture 

optimal adaptive operating costs and provide the 

optimal dispatch module in both short and long 

terms optimization problems, such as numerous 

economic, social, military and real-time problems. 

In practice, the short-term load forecast for hour-

ahead dispatch is usually uncertain in nature. 

Therefore, the probabilistic model representation for 

the system loading can be used to deal with 

uncertainty. 
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In trendy power grid, DR programs have been 

developed and studied in many researches in 

modern power systems. The purpose of developing 

DR models is to provide accurate dispatch balance 

and stability analysis of future grid. DR is a specific 

program to motivate the end users’ response to 

reduce or rearrange the electricity usage patterns 

during critical peak time. In developing an approach 

of the modern power grid, some models of DR have 

implemented to manage the higher prices during the 

peak demand in the system to avoid increasing 

power generation. Meanwhile, consumers have 

always billed their energy consumption through a 

tariff depending on the users’ demands and had no 

any economic instructions or reports on how to plan 

to use or shift the consumption during peak periods. 

The aims of the evaluation methodology are to 

prove the peak demand and power consumption in 

economizing the total operating cost efficiency 

associated with DR program are extracted in [6]. 

Real-time Pricing (RTP) is a well-known prospect 

of DR scheme proposed by the system operator (SO) 

[7–8]. Aggregated consumers are encouraged to 

draw attention to reduce their demands accordingly 

to the required power balance in the system 

reliability. The DR programs in which price 

variations of energy over time produce changes at 

consumers’ demand profile. It is necessary to 

improve the above problems to balance between 

supply and power demand side. To sum up, there are 

more details on DR programming and optimization 

algorithms [9], practical indication and key-elements 

for global experience [10], demand-side elasticity 

and DR budding [11], bearing investigation with its 

solution [12], and uncertainties in power systems 

[13]. 

In order to investigate the output target of the 

power system, there are three broadly used methods 

to solve the POPD problems such as analytical, 

approximation, and simulation methods. One of the 

most powerful techniques for POPD is Monte Carlo 

simulation (MCS) which is extensively used method 

to deal with uncertainties in the power system; it is 

relied on repeated random sampling to get the 

numerical results and reliability analysis statistically. 

In the proposed framework, the normal probability 

density function (PDF) was transformed to be the 

Truncated normal PDF, and it was shown that small 

errors occurred in the computed expected values 

which could be compensated for by shifting the 

computed probability-density curve so that its 

expected value coincided with the value deduced 

from a conventional deterministic analysis. It was 

formerly used to examine how probabilistic load 

flow (PLF) can be evaluated and found out the 

greater accuracy throughout the computational 

optimum speed [14]. Another point of view, MCS is 

used to perform the probabilistic short-term load 

forecast scheduling in a power system by assuming 

the PDF as the system loading, the total operating 

cost is effectually optimized [15]. Furthermore, 

many similar researches have studied the effect of 

correlation of uncertain variables such as 

probabilistic appraisal of accessible load supply 

capability [16], POPF behavior and relationship of 

the wind power, load uncertainties and line 

parameters [17, 18], PLF for solar power using 

percentile estimation of Weibull PDF [19], 

probabilistic investigation when wind and 

photovoltaic generation connected to system [20] 

PLF based on correlated series of generation, 

loading, and wind farm [21], probabilistic 

comparison and evaluation with energy management 

application [22], economic dispatch relied on Quasi-

MCS is used to models the stochastic behaviors of 

wind speed and distributed loads [23], uncertainty of 

loads and wind speed is characterized by MCS to 

represent the total number of hours with overvoltage 

a year [24], hybrid MCS is performed to evaluate 

PLF when a large-scale wind power integrated to 

power system [25]. All these probabilistic problems 

and some other relevance are modelled in different 

purposes to balance the system loading by adjusting 

the add-on power generation in the power system. 

In this paper, the linear programming optimal 

power dispatch (LPOPD) considering price-based 

real-time demand response (PRDR) is implemented 

in the modified IEEE 30-bus test system. Based on 

the problem formulation, the piecewise linear cost 

function is used to represent the generator’s 

operating cost. At the same time, the PRDRs 

participate in dispatching aggregator loads 

connected to the system. The purpose is to 

accomplish the supply-demand balancing without 

upward power supply. Many works were developed 

in the smart grid, distributed generation, and other 

energy sources to serve the growing demands. Those 

additional generations will add the extra production 

cost and many complexities along. The simulation 

output of LPOPD with and without PRDR are 

addressed and compared in the results. 

The proposed method accentuates the 

probabilistic inquiries in POPD solutions. The 

empirical rule will perform as a vital role in the 

computational procedure to avoid the infeasible load 

flow (LF) results during the computation to warrant 

the real-time simulation over the existing works is 

used the normal PDF to represent the uncertainty of 

variables in the system. The results will release 

preciously from simulation method time frame. 
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Besides the introduction, the paper is consisted 

of: Section 2 introduces the model of uncertainties 

including DR schemes, expresses load modelling 

and probabilistic loading pattern. Section 3 

represents the problem formulation of the POPD 

using LP with DR programs, while the real power 

demand at load bus is represented by normal PDF. 

Section 4 explains the probabilistic technique and 

conditions for sampling the input variables to 

represent the real power demand and rules for 

Truncated normal PDF to state a specific range for 

the random variable to obtain a better accuracy. 

Also, the proposed framework of Monte Carlo 

technique and performance of the simulation are 

denoted in this section. Section 5 indicates the 

simulation results from the modified 30-bus test 

system. Lastly, Section 6 provides the conclusion. 

2. DR schemes and probabilistic load 

models 

2.1 DR schemes 

DR programs have essentially empowered 

because the evolution in the up-to-date technology 

required to tool them to regulate the target. An 

implication of DR is to consider the possibility of 

the power generation cost reduction, customers’ 

electricity bill saving, and reliability of the power 

grid. PRDR is a program in which customers are 

paid for the load reduction in accordance to SO 

request. The PRDR price can be assigned by 

agreements for the real-time curtailable load. The 

demand of each load bus in the system has adjusted 

to maintain with the feasible power generation, 

principally, every customer would manage their 

power consumption to be a part of improving the 

efficiency and reliability of the system during peak 

periods. The system operator sometimes has to run 

costly power plant to adjust the total needs power 

generation to meet the peak demand while the 

promise pollution can be exceeded their authority, 

however, whether DR scheme has contributed to the 

system. Hence, there are persuasively two DR 

programs in vogue [9, 10] which are price-based 

programs (PBPs) and incentive-based programs 

(IBPs). PBPs are commonly cased study for 

researchers which provoke the consumers 

voluntarily provide load reductions by reacting to 

economic gestures. In spite of IBPs the customers 

have bided the payments in order to report an exact 

amount of load reduction over a specified time 

interval. Many economists are convinced that they 

are the most direct and efficient DR programs 

suitable for competitive electricity markets and 

should be the focus of policymakers. 

2.2 Load modelling 

In probability and statistics manner, random 

variables or stochastic variables are variables which 

represent possible numbers by using probability 

theories. Practically, the normal PDF is a common 

continuous probability distribution to produce real-

valued random variables as load uncertainty. In this 

paper, the normal distributed random variable is 

used to model the real power demand on every bus. 

For this purpose, the equivalent PDF can be 

formulated as, 
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Where, 

iDP   is the probabilistic real power demand at 

  bus i, 

D   is the mean value, and 

D   is the standard deviation of the demand  

  profile. 

2.3 Probabilistic and practical loading pattern 

For this simulation, a practical loading pattern 

of Thai power system [15] was selected to use as 

power demand data pattern by transforming into the 

normal PDF. The annual system loading at 14:00 

was formed into normalized data and used in this 

paper. 

Consistently, the normalized annual data has 

plotted a histogram of 365-day data while the 

normal PDF fit is explored in coordination with 

normal PDF curve as shown in Fig. 1. After that, the 

 

 
Figure. 1 PDF fitness for daily system loading at 14:00 
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parameters µD and σD will be obtained for using in 

the sampling conditions in section 4. 

3. Problem formulation 

The objective of this paper is to minimize the 

total system investment cost in considering PRDR. 

The linear programming optimal power dispatch 

(LPOPD) is adapted to coordinate with Newton-

Raphson power flow (NRPF). The power flow is 

used to obtain the losses and to test the feasibility of 

the dispatch solution. 

3.1 OPD modelling 

In this case study, the LPOPD adapted the 

NRPF with the operating cost for each generator 

which is given by piecewise linear cost functions. It 

can be used instead of the quadratic cost functions. 

Hence, the objective function can be expressed by a 

piecewise linear optimization model [4–5,15]. It is 

to minimize the total power generating cost 

including cost of PRDR, and can be expressed as, 

Minimize 
1 1 1

ij i

NG NSi NB

ij G i DR

i j i

TC S P D P
  

   , (2) 

 

subjected to the power balance constraint, 
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and the generator operating limit constraint, 
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lm lmf f , (11) 

min max
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Where, 

TC   is the total system cost, 

iGP   is the real power generation at bus i, 

ijS    is the linearized incremental cost curve for 

each segment of PGi at bus i, 

iD    is the linearized incremental cost curve for 

each demand response at bus i, 

iNS    is the number of segments of the linearized 

cost of the generator at bus i, 

NG   is the number of generators in the system, 

NB   is the number of buses in the system, 

iDRP   is the real power demand response at bus i, 

iDP   is the probabilistic real power demand at 

  bus i, 

iGQ  is the reactive power generation at bus i, 

iDQ  is the reactive power demand at bus i, 

lossP  is the total transmission loss in the system, 
min

iGP  is the minimum real power generation at 

 bus i, 
max

iGP  is the maximum real power generation at 

bus i, 

lmf  is the apparent power flow on the branch

 between bus l and m, 
max

lmf  is the maximum limit at apparent power 

flow on the branch between bus l and m, 

iV   is the voltage magnitude at bus i, 

max

iV  is the maximum voltage magnitude at bus i, 

min

iV  is the minimum voltage magnitude at bus i, 

iky   is the magnitude of the yik element of Ybus, 

ik   is the angle of the yik element of Ybus, and 

ik    is the voltage angle between bus i and k. 

3.2 LPOPD algorithm 

The algorithm approach is based on an iterative 

computation between Newton-Raphson power flow 

(NRPF) and LP. The computational procedure is 

shown in Fig. 2. 

4. Probabilistic technique and sampling 

conditions 

4.1 Conditional random variable 

Regarding section 2, the normal PDF is chosen 

to model the load uncertainty with the specified 

parameters µD and σD obtained from the practical 
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Figure. 2 Computational procedure of LPOPD 

 

data as shown in Fig. 2. One of the most important 

aspects in this simulation is to execute a truncation 

range x(a,b). 

Suppose that x ~ N(µD,σD
2), -∞ ≤ a<b ≤ ∞. Then, 

the normal distribution has become the Truncated 

normal PDF lying on the interval a<x<b. In general, 

the Truncated normal PDF will be symbolized by 

() [26]. And it is classified by the formula, 

 

   0 if x ≤ a 

(µD,σD,a,b;x)= (µD,σD
2,a,b;x) if a < x < b 

   1 if b ≤ x 

  (13) 

Where,  

(µD,σD
2,a,b;x)= 

(µD,σD
2;x) - (µD,σD

2;a) 
(14) 

(µD,σD
2;b) - (µD,σD

2;a) 

 

From the above summary, it is clearly shown 

that () is 0 at x ≤ a, 1 at b ≤ x, and it is in-between 

the shifted version of the behaviour of () at a < x < 

b. 

4.2 Rules for truncated normal PDF data 

 In statistics, there is a rule called the 68–95–

99.7 rule to deal around the mean value in the 

normal distribution, sometimes known as the 

empirical rule [13, 27–29], in order to get more 

accurately, 68.27%, 95.45% and 99.73% of the 

random variables within one standard deviation, two 

standard deviations, and three standard deviations of 

the mean, respectively. 

 To formulate the data in this study, the 

approximated normal PDF data set aimed at 

empirical data derivation. In this case, vector x 

generated randomly on a specific range, represented 

by x(a,b)=[x1,x2,…,xmcs] which samples depending on 

how many times MCS will simulate in the 68–95–

99.7 rule framework. The standard deviation σD of 

 

 
Figure. 3 Framework procedure 

 

the power demand profile is a foremost part of 

modelling the significance of the random 

measurement error. When σD becomes wide-ranging, 

the measurement is moderately imprecise. As the 

result, a small value of σD will represent a minor 

error to prove a highly efficient output of random 

variation. 

4.3 Monte Carlo simulation 

In probabilistic concern, the MCS is commonly 

used to evaluate the computational model in order to 

randomize input variations and investigate 

probabilities outputs. And the framework is 

illustrated in Fig. 3. 

In this paper, the MCS is used for probabilistic 

power demand simulation and the OPD is run until 

the average total real power generation of the 

iteration k+1 (TPgavg
k+1) is close to that of the 

iteration k (TPgavg
k). More specifically, the MCS 

base OPD is run until |TPgavg
k − TPgavg

k+1| < , 

where  is a very small real number. In this paper, 

the   is set to 0.0001. 

MCS is widely used to investigate the power 

system operation and PDF to forecast the load and 

uncertainty variables in the system. However, to 

directly sampling the PDF can lead to infeasible 

solutions that need further variation process. 

Therefore, the PTNF could participate in this 

proposed framework to improve the technique over 

the existing POPD and lead to better precise results 

as addressed in Section 5. Without implementing 
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PTNF in this study, the simulation will be included a 

number of infeasible LF solutions during the 

computational procedure. Therefore, it is noticeably 

shown that the proposed technique can handle the 

dispatch solutions considering PRDR effectively 

and accurately. 

5. Simulation results 

The proposed method is tested with the IEEE 

30-bus system [30]. Moreover, the piecewise linear 

cost function for every generator is provided in 

Table 1. The generators’ operating costs for each 

generator are provided to represent its linearized 

incremental cost curve for each segment of PGi as 

shown in Section 3.1. Some crucial data for the 

simulation is provided in Table 2 including PDRi 

assuming the costs and quantities. 

 With the piecewise linear staircase cost function, 

the real power generation of individual segment is 

dispatched in merit order till reaching the PGi
max 

maximum real power generation. 

 

 

In this research paper, the reactive power 

generating cost is not included in the result. In the 

meantime, the single loading condition is used to 

test the proposed algorithm. 

 Based on the LP linear cost function, the limit 

constraint as mentioned in Eq. (9) is applied to 

guarantee the well-balanced power generation 

equivalent to the power demand. Another thing to be 

taken into this approach is to assign the number of 

segments, which affects the dispatch solutions from 

LPOPD. As shown in Table 1, the generators’ 

operating costs for each generator is provided with 8 

segments for each cost function to observe very 

close solutions to the target outputs in verifying with 

 

Table 2. The power demand for the modified 30-bus 

test system 

Bus Power Demand PRDR 

No. (MW) (MVAR) (MW) ($/MW) 

2 
2 2D DRP P  12.70 2.604 1.422 

5 
5 5D DRP P  19.00 11.30 1.062 

7 
7 7D DRP P  10.90 2.736 1.062 

8 
8 8D DRP P  30.00 3.600 1.122 

12 
12 12D DRP P  7.500 1.344 1.260 

21 
21 21D DRP P  11.20 2.100 1.122 

30 
30 30D DRP P  1.900 1.272 1.122 

 

Table 1.  The generators’ operating costs for each generator 

Bus 

No. 

Incremental Piecew. Linear 

Increm. Cost 
PG

min PG
max Bus 

No. 

Incremental Piecew. Linear 

Increm. Cost 
PG

min PG
max 

From To From To 

(MW) (MW) ($/MWHr) (MW) (MW) (MW) (MW) ($/MWHr) (MW) (MW) 

1 

50 

71 

92 

110 

128 

146 

164 

182 

71 

92 

110 

128 

146 

164 

182 

200 

4.540 

5.150 

5.600 

6.150 

6.860 

7.150 

8.120 

8.850 

50 200 8 

10 

25.6 

41.2 

56.85 

72.5 

88.15 

103.8 

119.4 

25.6 

41.2 

56.85 

72.5 

88.15 

103.8 

119.4 

135 

4.750 

5.650 

5.870 

6.650 

7.410 

8.150 

8.970 

9.350 

10 135 

2 

20 

40 

60 

80 

100 

120 

140 

160 

40 

60 

80 

100 

120 

140 

160 

180 

5.050 

5.550 

6.100 

8.150 

9.000 

10.15 

11.00 

11.85 

20 180 11 

10 

25 

40 

55 

70 

85 

100 

115 

25 

40 

55 

70 

85 

100 

115 

130 

3.670 

4.350 

5.670 

6.050 

6.670 

7.170 

7.970 

8.950 

10 130 

5 

15 

31.9 

48.8 

65.65 

82.5 

99.4 

116.3 

133.15 

31.9 

48.8 

65.65 

82.5 

99.4 

116.3 

133.15 

150 

4.050 

4.240 

4.490 

5.150 

5.850 

6.500 

7.200 

8.850 

15 150 13 

12 

28 

44 

60 

76 

92 

108 

124 

28 

44 

60 

76 

92 

108 

124 

140 

3.100 

5.350 

5.450 

6.000 

7.600 

8.150 

9.200 

10.50 

12 140 
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Figure. 4 Normal PDF output 

 

 
Figure. 5 PTNF output within one standard deviation 

 

 
Figure. 6 PTNF output within two standard deviations 

 

 
Figure. 7 PTNF output within three standard deviations 

 

the lambda iteration method [21] and the Dommel-

Tinney method [30]. 

 Along with each generator data, the power 

demand data for the modified 30-bus test system are 

improved to adapt the proposed framework. The 

PRDRs are regulated on the load bus 2, 5, 7, 8, 12, 

21, and 30 which ranged from 10.6 MW to 94.2 

MW assuming to be the dispatchable aggregator 

loads. In comparing to the fixed price, consumers 

have participated in the PRDR program by 

decreasing their energy usage between 11% to 21% 

in the whole year. Evidently, reference [31] is 

represented by the average 12% of participants have 

saved their annual consumption pattern. 

5.1 Investigation of the proposed framework 

The output investigation by the proposed 

framework with the modified IEEE 30-bus test 

system as attached are demonstrated to certify the 

reliability of the results; the simulation 2000 runs 

were performed by POPD computational procedures 

as shown in Fig. 3. Figs. 4-7 represented the outputs 

of total operating cost and total power demand, 

which are obtained from POPD simulation with and 

without PTNF. From the simulation output, there is 

some evidence of how the results have converged.  

From the results, normal PDF with the 

computational framework processed at least 1175 

trials to give the convergent solution. Contribution 

to this study, it was improved after applying the 

empirical rule mentioned in Section 4. They are 

involved in the computational procedure by 

improving to give the convergent solutions at least 

495 trials within one standard deviation and at least 

713 trials within two standard deviations. In addition, 

within three standard deviations, the convergence 

has met at least 975 trials similar to the case of 

normal PDF. Nevertheless, it was cleared that the 

standard deviation value σD became widespread 

when the measurement is moderately inaccurate just 

like the theorist intended the idea [5, 26]. It could be 

converged at least 1175 trials or more with the 

random numbers from the normal PDF in the 

framework as shown in Fig. 3 whereas it has the 

opportunity to get the faster convergent solutions at 

495 trials. Meanwhile, the solutions were obtained 

with slightly errors of mean value between before 

and after applying the probabilistic model to the 

system simulation. It is because of the 

characteristics of simulation methods. 

5.2 Dispatch results 

Concerning the results from Monte Carlo 

simulation with normal PDF and PTNF, the 

probabilistic investigation figures are intended that 

the output from the proposed method is 

0 500 1000 1500 2000

0.7

0.8

0.9

1

Iteration

N
o

rm
a

li
ze

d
 D

en
si

ty

 

 

Total System Cost

Total Load

0 500 1000 1500 2000
0.75

0.8

0.85

0.9

0.95

1

Iteration

N
o

rm
a

li
ze

d
 D

en
si

ty

 

 
Total System Cost

Total Load

0 500 1000 1500 2000
0.7

0.8

0.9

1

Iteration

N
o

rm
a

li
ze

d
 D

en
si

ty

 

 
Total System Cost

Total Load

0 500 1000 1500 2000
0.8

0.85

0.9

0.95

1

Iteration

N
o

rm
a

li
ze

d
 D

en
si

ty

 

 
Total System Cost

Total Load



Received:  September 30, 2018                                                                                                                                         208 

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019           DOI: 10.22266/ijies2019.0228.20 

 

demonstrated the convergence significantly. Even 

though, in the beginning, it seems a little bit worth 

divergence from the spot solution, it came out after 

some iterations. It is noticed that the yield is hereby 

indicated the active power demand, which is 

functioning to the total operating cost. On the one 

hand, PRDR will be instanced dependability in this 

study due to contract in the DR program. In contrast, 

the reactive power generation and the system losses 

are not considered in this framework. Still, it is 

certainly simplified the effectiveness of the 

proposed context. The dispatch results will be 

shown in Table 3 which will compare to some 

relevant methods respectively. 

From the experiment results, it showed that the 

proposed method has satisfied the objective function 

to the dispatch solutions. To confirm the base case 

study of OPF, the computational procedure is shown 

in Fig. 2. It has verified with [30] and it is clarified 

that the proposed LPOPD is successfully dispatched 

with a neglected slop error 1.36% due to the nature 

of the piecewise linear optimization model. In Table 

3, the POPD is run without PRDR and figured out 

the total system operating cost dispatch 739.13 $/Hr. 

After that, the PRDR is conducted on the system, at 

the moment, the total system operating cost is 

dispatched to 601.51 $/Hr. Although in probabilistic 

approach and sampling conditions. It continued to 

carry out the total dispatch operating cost at 445.57 

$/Hr by using normal PDF random variation input as 

loading uncertainties at the specified bus as shown 

in Table 2. Moreover, the rules for PTNF has 

applied to the LPOPD procedure then the total 

operating cost becomes much better at 440.45 $/Hr, 

441.24 $/Hr, and 441.83 $/Hr respectively to 

specific percentage range as mentioned in Section 

4.2. To be notified that there must be some 

clearance payments for PRDR customers about 

28.13 $/MWHr due to the PRDR contracts between 

customers and SO in this prospectus. 

In addition to Section 5.1, Table 4 indicates the 

accomplishment of the proposed method comparing 

to other recent proposed methods. The probabilistic 

technique and sampling conditions in Section 4 play 

an important role in the computational procedure by 

producing only feasible solutions during the 

simulation. The results are significantly achieved the 

good performance by applying PTNF in the 

computational framework. Without PTNF, the 

feasible load PDF modelling cannot be established 

efficiently.

 

 

Table 3. The dispatch results of the modified IEEE 30-bus test system 

Variable Base Case 

Load Flow 

OPD 

without DR 

OPD 

with DR 

POPD POPD with PTNF 

N (µ, σ) µ ± σ µ ± 2σ µ ± 3σ 

P
o

w
er

 

G
en

er
at

io
n
 

(M
W

) 

PG1 55.5 79.97 71 70.19 73.64 69.74 69.34 

PG2 46.5 40 48.57 24.47 20.31 23.99 24.44 

PG5 48.3 72.88 65.65 64.55 63.46 64.79 64.68 

PG8 55.7 25.6 25.6 18.54 19.05 18.63 18.5 

PG11 35.2 40 40 39.48 39.98 39.24 39.42 

PG13 45.7 28 28 28.01 28 28 28 

Total Generation 

[MW, MVAR] 

[286.71, 

83.58] 

[286.45, 

83.6] 

[278.82, 

82.66] 

[245.24, 

80.5] 

[244.44, 

80.54] 

[244.39, 

80.38] 

[244.38, 

80.41] 

Total P-Q Load 

[MW, MVAR] 

[283.4, 

126.2] 

[283.16, 

126.2] 

[275.75, 

126.2] 

[242.63, 

126.2] 

[241.84, 

126.2] 

[241.8, 

126.2] 

[241.81, 

126.2] 

Total Syst. Losses 

[MW, MVAR] 

[3.31, 

-17.18] 

[3.29, 

-17.17] 

[3.08, 

-18.11] 

[2.6, 

-20.23] 

[2.61, 

-20.19] 

[2.58, 

-20.35] 

[2.58, 

-20.32] 

Total Gen. Cost 

($/Hr) 
791.48 739.13 573.38 417.44 412.32 413.11 413.7 

Total DR Cost 

($/MWHr) 
– – 28.13 28.13 28.13 28.13 28.13 

Total Syst. Cost 

($/Hr) 
791.48 739.13 601.51 445.57 440.45 441.24 441.83 
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6. Conclusion 

In this paper, the LP based POPD is proposed 

for solving the power generation dispatch associated 

with PRDR to minimize total operating cost. The 

objective function is to diminish the total system 

cost while compensating between the high peaking 

cost power generation and PRDR offered. Moreover, 

the expected short-term load forecast is represented 

by the normal PDF with PTNF sampling technique. 

Hence, the proposed method can effectively and 

efficiently minimize the total power generation cost, 

while trading off the PRDR cost in the POPD 

problem with load uncertainty. Consequently, the 

proposed method enhances the benefits not only the 

SO but also the consumers, those are able to claim 

their paybacks by participating in PRDR contracts. 

The only thing to do is to rearrange the 

consumptions during the peak periods or time-ahead 

from SO’s request or contract. It is substantiated that 

the proposed method can potentially be used to deal 

with the future electricity supply market.  
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