
Received: September 23, 2018 174

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.18

Hybrid Model for Load Balancing and Server Consolidation in Cloud

Geetha Megharaj1* Mohan Kabadi2

1Department of Computer Science and Engineering,

Sri Krishna Institute of Technology, Bangalore, Karnataka, India
2Department of Computer Science and Engineering,

Presidency University, Bangalore, Karnataka, India
* Corresponding author’s Email: geethagvit@yahoo.com

Abstract: One of the most pressing and critical issues in cloud is Power Optimization. Due to the popularity of

cloud, many computing applications are being hosted in the cloud. Naturally, many Cloud Centers (CCs) are

experiencing huge power consumption problem, which leads to higher operational cost and environmental hazards

due to carbon emissions. The two important concepts used to achieve power optimization are: load balancing and

server consolidation. The first concept aims to achieve fair distribution of computing load on different Physical

Machine (PM); whereas, the second concept aims to shutdown PMs, which are having limited computational load.

One of the most popular techniques to achieve load balancing and server consolidation is Virtual Machine (VM)

migration technique; where, the VMs are packed inside limited PMs; such that, load is fairly balanced among PMs,

and limited usage PMs are relieved of their computational load and can be shutdown. However, VM migration

requires excessive cost, and results in excessive computed task wastage. Hence, in this work, a new hybrid scheme

which does not migrate VMs, and migrates only suitable tasks from overloaded VMs and lightly loaded PMs is

presented. The proposed hybrid model is compared against contemporary VM migration technique to assess resource

usage merits. The proposed hybrid model significantly outperforms the contemporary VM migration techniques in

resource usage efficiency.

Keywords: Cloud computing, Load balancing, Virtual machine, Task migration, Server consolidation.

1. Introduction

The usage and impact of Cloud Computing is

exploding contemporarily. The most significant

advantage of Cloud Computing is on-demand

service availability; wherein, enterprises can

demand computing resources--when-needed, where-

needed and duration-needed. Due to this advantage,

enterprises are relieved from procuring and

maintaining expensive computational resources. In-

fact, Cloud Computing has provided extensive

business opportunities in establishing CCs. However,

due to the wide and ever-growing popularity of

Cloud Computing, CCs are catering to extremely

large computational load, which has resulted in

abnormal power utilization leading to excessive

costs borne by the CCs.

In the CC nomenclature, the computational

devices are called as Physical Machines (PM). Each

PM, usually has the capability to cater multiple

users. Hence, to provide resource division, and

creating the necessary abstraction to the multiple

users of each PM, the concept of Virtual Machine

(VM) is utilized. Each user is typically allocated a

single or group of dedicated VMs. The resource

division among different VMs hosted in a single PM

might be mutually exclusive. The concept of

overloaded PM/VM indicates that, the overloaded

PM/VM is currently executing computational tasks

which are beyond its capacity to provide efficient

execution. In such scenario, all such computational

tasks have to share meagerly available resources,

which eventually lead to poor task execution

efficiency. Similarly, concept of lightly loaded PM

indicates that, the corresponding PM is hosting

Received: September 23, 2018 175

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.18

computationally light tasks which exhibit way-

below resource usage than the available resources in

the PM.

The overloading issue in CCs can result in

extensive squandering of computational power;

along with, limiting execution efficiency. To address

this issue, CCs utilize load sharing mechanism;

wherein, computational load is distributed to relieve

overloaded entities. Similarly, the issue of lightly

loaded PMs can also lead to resource and power

squandering in CCs. To address this issue, CCs

identify such lightly loaded PMs, and redistribute

their computational load to other PMs; so that, such

PMs can be shutdown, and this mechanism is

denoted as Server Consolidation (SC).

1.1 Research issues

One of the most popular and extensively used

load balancing and SC technique in CCs is VM

Migration (VMM). Here, all the available VMs in

the CC are redistributed into limited number of

PMs; such that, both load balancing and SC can be

achieved. Myriad of VMM techniques have been

proposed in the literature; wherein: approximate

algorithms, heuristical and meta-heuristic solutions

have been proposed. However, VMM can result in

significant performance issues: VMM requires

significant memory consumption, and can result in

extensive task execution downtime because of

stopping the VM for migration; due to VM

migration, it is possible that, customer activity

information might be lost; VMM might result in

significant increase of dirty memory.

In-order to overcome performance issues seen in

VMM, VM Task Migration (VMTM) technique was

presented in [1]. VMTM involves identifying

overloaded VMs, and migrating the extra tasks--

which are newly submitted and not yet addressed by

the corresponding VM--from the overloaded VMs to

other VMs which can host these tasks without

getting overloaded. However, VMTM has still not

completely addressed power optimization issue in

CCs, and many open issues are still prevalent such

as: the overloaded VM is not subjected to existing

load reduction by identifying and migrating suitable

running tasks, and if the running tasks execute for a

prolonged period, it can result in significant power

squandering; VMTM has still remained elusive w.r.t.

SC; VMTM can be extended to address holistic

power optimization by combining solutions for:

extra task migration, running task migration and SC.

The main goal of this work is to present hybrid

model for holistic power optimization using VMTM

framework. Compared to the contemporary VMTM

technique [1], the proposed hybrid model achieves

multiple merits. Firstly, the proposed hybrid model

performs runtime task migration along with extra

task migration to achieve existing load reduction in

overloaded VMs. The identified runtime tasks are

selected such that, the tasks are substantially

consuming computational resources, and have only

completed limited part of their entire execution

cycle to ensure that, substantial computational effort

is not wasted. Secondly, lightly loaded PMs are

identified, and extra tasks submitted to the

corresponding VMs are migrated; so that, after the

execution completion of all the running tasks, the

PMs can be shutdown. Thirdly, the hybrid model,

searches for suitable VMTM solutions for both SC

and VM overloading issue in a single search

procedure. Thereby, reducing the required

computational effort when compared to executing

separate VMTM procedures to resolve SC and VM

overloading issue.

1.2 Contributions

 The following contributions are made in this

work:

1. Initially, in the hybrid model, the overloaded

VMs and lightly loaded PMs are identified through

respective discriminant functions. Scoring functions

are designed to indicate the value of a specific task

migration solution; so that, the most optimal

solution can be searched. Separate scoring functions

are designed for: overloaded VM extra task

migration, overloaded VM existing task migration

and migrating extra tasks from VMs belonging to

lightly loaded PMs. However, the optimal task

migration solution for all the three scoring functions

is searched through the aid of single hybrid model,

and by using Particle Swarm Optimization (PSO)

search solution technique, because the search

problem is shown to have non-polynomial

complexity. Hence, the proposed PSO based

solution executes approximate optimal solution

search through meta-heuristic fashion and in

polynomial complexity; also, it provides scope for

parallelism in-order to accelerate search efficiency.

2. The proposed hybrid model is simulated in

MATLAB, and compared against contemporary

VMM techniques. The proposed solution

outperforms contemporary solutions in multiple

metrics such as: power consumption and task

execution efficiency.

Received: September 23, 2018 176

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.18

1.3 Organization of the paper

This paper is organized as follows: Section 2

presents the related work in the addressed area; the

hybrid model is outlined in Section 3; Simulation

results are presented in Section 4; finally, the work

is concluded in Section 5.

2. Related work

VM migration has been one of the popular load

balancing techniques in cloud computing. In [2],

VM migration technique focused on load balancing

in data centers having multi-rooted tree format. In

[3], VM migration technique addressed load

balancing in distributed cloud centers; wherein,

cloud resources are distributed in different

geographical location. In [4], rapid migration

scheme for VM migration was proposed. As

explained above, even though VM migration

techniques have demonstrated load balancing

efficiency, they suffer from expensive cost of

migration and possible task execution latency delays.

Task scheduling for load balancing in distributed

systems--including cloud servers--deal with the

problem of distributing the submitted task load on

available computational units; so that, maximum

utilization of these computational units, and

substantial reduction in task execution time can be

achieved. It must be noted that, task scheduling does

not involve evicting already running tasks, and only

distributes the newly submitted tasks for efficient

computation. Also, overloaded VM problem is

usually not addressed in task scheduling, because

the task distribution scheme hypothesizes that,

overloading will usually not occur.

A novel programming platform for task

scheduling in cloud was presented in [5]. Genetic

algorithm based task scheduling techniques for

cloud was presented in both [6, 7]. Task scheduling

technique for geographically distributed cloud

centers was presented in [8]. Survey on different

load balancing techniques for cloud was presented

in [9]. Similarly, survey on meta-heuristic

techniques for load balancing in cloud was

presented in [10]. In [11], future problems for task

scheduling in cloud were comprehensively

presented. Dynamic Collaboration in cloud involves

collaborative framework through different

participating cloud service providers, and in [12],

task scheduling in this new framework was

presented. In [13] task scheduling technique for IaaS

based cloud centers was presented.

Task scheduling technique through user

requirement modeling for computational grids—

which can also be relevant to cloud--was presented

in [14]. Similarly, PSO based task scheduling

technique for computational grids and cloud was

presented in [15]. Security based task scheduling

technique for cloud using Swarm scheduling

approach was presented in [16]. Multi objective task

scheduling involves achieving multiple goals such

as: minimizing task latency, reducing power

consumption etc., and this problem for cloud was

addressed in [17]. In [18], another multi objective

task scheduling technique for cloud using genetic

algorithm was presented. In [19], Honey Bee

optimization technique for task scheduling in cloud

was presented. In [20], task scheduling in

computational grids--which can also be extended to

cloud--was also achieved through Honey Bee

optimization technique. Task scheduling technique

for cloud using Ant Colony optimization framework

was presented in [21]. In [22], task scheduling for

cloud using probabilistic modeling was presented. In

[23], task scheduling technique for cloud using

specialized bio-inspired algorithm called: Symbiotic

Organism Search, was presented. Multi objective

task scheduling technique for cloud using Ant

Colony optimization framework was presented in

[24]. Hybrid task scheduling algorithm for cloud

through merging of two techniques namely: Cuckoo

search algorithm and Oppositional based learning

was presented in [25]. In [26], evolutionary genetic

algorithm framework was utilized to achieve task

scheduling in cloud. Similarly, fruit fly optimization

framework was utilized in [27] to design task

scheduling technique in cloud.

Even though, task scheduling is effective in load

balancing for cloud, in some scenarios, the

estimated resource consumption for a certain task,

which is used as critical parameter in task

scheduling techniques, can deviate substantially

compared to actual resource utilization--which can

burgeon rapidly. In such scenarios, VMs can easily

become overloaded, and has to be relived from this

computational burden. The VM extra task migration

techniques presented in [1, 28] achieves load

reduction from overloaded VMs through migrating

extra tasks. As outlined above, to achieve even

better load reduction as achieved in [1, 28], some of

the suitable running tasks in the overloaded VMs

need to be identified and migrated--along with extra

tasks.

Extensive contributions have been made to

achieve SC through VM migration technique.

Various techniques for SC in virtualized data center

has been discussed in [29]. In [30], two VM

migration techniques namely--Hybrid and Dynamic

Round Robin(DRR) was presented. Two states were

Received: September 23, 2018 177

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.18

defined in the solution framework called--retiring

and non-retiring. If a PM contains limited number of

active VMs which are about to finish their task, then,

the PM is in retiring state, else, it is in non-retiring

state. The retiring PMs will not accept new tasks,

and the active VMs are migrated to suitable PMs.

Both, Hybrid and DRR exhibit excellent

performance w.r.t. reducing power consumption in

CCs.

Most of the VM migration techniques for SC are

modeled through Bin Packing Problem (BPP),

which is NP-complete. An approximation scheme

based on First Fit Decreasing algorithm was

proposed [31] to effectively migrate VMs. Each bin

is considered as a PM, and the highest priority PMs

are subjected to VM migration.

The Magnet scheme proposed in [32], performs

selection of suitable subsets of available PMs which

can guarantee the expected performance levels. The

PMs outside the selected subset are shutdown.

A CC management tool was presented in [33].

This tool not only provides continuous monitoring

facility, it also provides facility to perform live

migration of VMs.

In [34], it was emphasized that, VMs can be

broadly classified as data intensive or CPU intensive

based on their respective workloads. For this new

framework, the BPP was modified, and suitable

approximation schemes were presented.

The placement of migrated VMs for SC was

performed through assigning priority levels to the

candidate PMs in [35]. The PMs which consume

low power were given higher priority.

Non-migratory technique for reduction of power

consumption in CCs was presented in [36]. Energy

efficiency model and corresponding heuristics were

proposed to reduce power consumption in CCs.

Similar techniques were presented in [37] which

utilized green computing framework.

Resource scheduling techniques for SC were

presented in [38]. Here, a new architectural model

was presented to calculate energy expenditure for

different resource scheduling strategies.

All the described VM migration techniques,

even though they achieve noticeable performance in

reducing power consumption, they all suffer from

excessive down times in completing VM migration,

and increase in dirty memory as explained before.

3. Hybrid model for load balancing and SC

3.1 Data Overloaded VM identification scheme

Let, VMy indicate the yth VM, cy indicates the
number of computing node in VMy, my indicates

the memory capacity of VMy, tiy indicates the ith task

present inside VMy, ciy is the CPU utilization ratio of

tiy, if tiy is running on multiple CPUs, then, ciy is the

sum of CPU utilization ratio for every CPU on

which tiy is being executed, miy represents the

memory utilization ratio of tiy and piy represents the

power consumption of tiy, which is represented in Eq.

(1)

𝑝𝑖𝑦 = 𝑐𝑖𝑦 × 𝑚𝑖𝑦 (1)

The total power consumed

by all the tasks present in VMy is indicated by the

variable py and it is represented in Eq. (2) Here, ny

represents the total number of tasks that are being

executed in VMy.

 𝒑 𝑦 =
∑ 𝑝𝑗𝑦
𝑛𝑦
𝑗=1

𝑐𝑦
 (2)

Two thresholds are defined to detect overloaded

VMs. The first threshold is defined over CPU

utilization ratio, which is indicated by Tc. The

second threshold is defined over power consumption,

which is indicated by Tp. The VMy is decided as

overloaded if the value of the function overloaded

(VMy)=1, otherwise if, overloaded(VMy) = 0, then,

VMy is decided as not-overloaded. This case is

represented in Eq. (3)

𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑(𝑉𝑀𝑦) =

{

1, 𝑖𝑓 𝑇𝑐 ≤
∑ 𝑐𝑗𝑦
𝑛𝑦
𝑗=1

𝑐𝑦

𝑜𝑟
𝑇𝑝 ≤ 𝑝𝑦

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

3.2 Extra task migration framework

In this framework, the extra tasks of the

identified overloaded VMs are subjected to

migration to other VMs, in-order to relieve the

overloaded VMs from processing these tasks.

Consider the scenario where the ith extra task of VMy

indicated by tiy is considered for migrating to VMz.

The benefit of this migration scenario is modeled

through a score function represented in Eq. (4). Here,

scoreET(tiy,VMz) indicates the benefit score of the

considered migration; lower the score, better will be

the migration scenario; exeETiz indicates the

predicted execution time of tiy-- when tiy is migrated

to VMz, and this metric is represented in Eq. (5);

transfer(tiy,VMz) indicates the cost of transferring tiy

to VMz, and this metric is represented in Eq. (6); the

size of execution data used by tiy is indicated by diy;

Received: September 23, 2018 178

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.18

the available bandwidth for transferring data

between VMy and VMz is indicated by bwyz.

𝑠𝑐𝑜𝑟𝑒𝐸𝑇(𝑡𝑖𝑦 , 𝑉𝑀𝑧) = 𝑒𝑥𝑒𝐸𝑇𝑖𝑧 + 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑡𝑖𝑦 , 𝑉𝑀𝑧)

 (4)

𝑒𝑥𝑒𝐸𝑇𝑖𝑧 =
𝑑𝑖𝑦

𝑐𝑧 + 𝑚𝑧
 (5)

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑡𝑖𝑦 , 𝑉𝑀𝑧) =
𝑑𝑖𝑦

𝑏𝑤𝑦𝑧
 (6)

After identifying the overloaded VMs, the

set of extra tasks from these VMs indicated by [ti1y1,

ti2y2, … tisys] has to be migrated to suitable VM set.

Consider a candidate solution indicated by S1,

having the VM set indicated by [VMz1 ,

VMz2 ,….VMzs], which can provide feasible migration

to these extra tasks. Here, tijyj((1 ≤ j ≤ s)) is

considered for migrating to VMzj, and there is no

restriction that, the VMs in the set [VMz1 ,

VMz2 ,….VMzs], have to be distinct. The benefit of

this migration scenario is modeled through scoring

function represented in Eq. (7). Here,

migration_scoreET(S1) represents the migration score.

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒𝐸𝑇(𝑆1) =
∑ 𝑠𝑐𝑜𝑟𝑒𝐸𝑇(𝑡𝑖𝑗 , 𝑉𝑀𝑧𝑗
𝑠
𝑗=1)

𝑠

 (7)

Theorem 1. Minimizing the migration score function

represented in Eq. (7) provides the optimal

candidate solution for overloaded VMs extra task

migration problem.

 Proof. Suppose So is the candidate solution obtained

by minimizing the migration scoring function, and

Sr is the optimal candidate solution. Let’s assume: So

≠ Sr and So > Sr. Since, the migration scoring

function belongs to the class of monotonically non-

decreasing functions, So cannot be lesser than Sr due

to the property of such class of functions

Theorem 2. The searching problem to find the best

candidate solution for the migration scenario

represented in Eq. (7) has non-polynomial time

complexity.

Proof. Consider the number of candidate solutions

possible for a particular migration scenario; wherein,

r (r<s) tasks have to be migrated to VMy1, and s-r

tasks have to be migrated to VMy2. Clearly, the

number of feasible candidate solutions is given by

(𝑠
𝑟
). Now, the considered migration scenario is one

among many possible such scenarios. Hence, the

complexity of this search problem is > (𝑠
𝑟
), which

immediately proves the Theorem.

Theorem 1 indicates that, performing optimal

migration of extra tasks of overloaded VMs can be

achieved through the minimization of migration

score function represented in Eq. (7). Theorem 2.

proves that, searching for the optimal candidate

solution to migrate extra tasks of overloaded VMs

requires non-polynomial time complexity. Hence, in

the scenario where very large number of candidate

solutions is available, usage of approximate

algorithms which provide near-optimal solutions in

polynomial time complexity is justified.

3.3 Running task migration framework

To select the suitable running tasks for migration,

it is important to select those tasks which have

completed executing only small portion of their data.

The task completion ratio of tiy is represented in Eq.

(4). Here, task_completion (tiy) indicates the task

completion ratio of tiy, diy is the size of data used by

tiy and d̂iy indicates the size of data already

consumed by tiy.

𝑡𝑎𝑠𝑘_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛(𝑡𝑖𝑦) =
�̂̂�𝑖𝑦

 𝑑𝑖𝑦
 (8)

The suitable tasks for migration are identified

through their task completion ratio, CPU utilization

and consumed power. The selected task should have

the task completion ratio within the specified

threshold indicated by To. This case is represented in

Eq. (5). Since, stopping already executing tasks and

migrating them into different VMs along with their

data, reduces the task execution efficiency, so, only

a single task which provides the maximum benefit in

load reduction is selected for migration.

task_completion(tiy) ≤ To (9)

The task which has the maximum combined

value of both CPU utilization ratio and consumed

power is selected for migration, and this case is

represented in Eq. (6)

task selected for migration = 𝑚𝑎𝑥𝑡𝑖𝑦 (ciy + piy) (10)

Suppose that, tiy has to be migrated from VMy

and VMz is one of the possible VM to which tiy has

to be migrated. The score of the migration task is

represented in Eq. (11). The value of the parameters

exeiz, transfer(tiy, VMz), pz, g(Tcz, tiy) and g(Tpz , tiy)

are represented in Eqs. (12), (13), (14), and (15)

Received: September 23, 2018 179

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.18

respectively. Here, score(tiy, VMz) indicates the

migration score, exeiz indicates the cost of executing

tiy in VMz, transfer(tiy, VMz) indicates the transfer

cost of transferring tiy from VMy to VMz, bwyz

indicates the bandwidth between VMy and VMz and

p̂z is the power consumed by VMz when task tiy is

migrated to VMz. The functions g(Tc, tiy) and g(Tp,

tiy) ensure that, the migration of tiy from VMy to VMz

does not cause CPU utilization threshold and power

consumption threshold violations.

Consider the situation where the set of tasks [ti1y1,

ti2y2, … tisys] which need to be migrated. One of the

candidate solution indicated by S2 is the VM set

[VMz1 , VMz2 ,….VMzs], such that, ti1y1 will be

migrated to VMz1 , ti2y2 will be migrated to VMz2 and

so on tisys will be migrated to VMzs . There is no

restriction that, the VMs in the candidate solution set

should be distinct. The migration score for this

candidate solution is indicated by

migration_scoreRT(𝑆2) is represented in Eq. (16).

Here, tijyj → VMzj (1≤ j ≤ s) indicates that the task

tijyj has already been assigned to VMzj and is being

executed inside it. The CPU and memory utilization

ratio of tijyj in VMzj is assumed to be same as

observed when tijyj was executing inside VMzj. The

operator ∣ is interpreted as such that.

𝑠𝑐𝑜𝑟𝑒𝑅𝑇(𝑡𝑖𝑦 , 𝑉𝑀𝑧) = 𝑒𝑥𝑒𝑅𝑇𝑖𝑧 +

 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑡𝑖𝑦 , 𝑉𝑀𝑧) + �̂�𝑧 − (𝑔(𝑇𝑐 , 𝑡𝑖𝑦) + 𝑔(𝑇𝑝, 𝑡𝑖𝑦))

 (11)

𝑒𝑥𝑒𝑅𝑇𝑖𝑧 =
𝑑𝑦

𝑐𝑧 ×𝑐𝑖𝑦 + 𝑚𝑧× 𝑚𝑖𝑦
 (12)

 �̂�𝑧 = 𝑝𝑧 +
𝑝𝑖𝑦

𝑐𝑧
 (13)

𝑔(𝑇𝑐 , 𝑡𝑖𝑦) =

{
 𝑇𝑐 −

∑ 𝑐𝑗𝑧+𝑐𝑖𝑦
𝑛𝑧
𝑗=1

𝑐𝑧
 , 𝑖𝑓 𝑇𝑐 −

∑ 𝑐𝑗𝑧+𝑐𝑖𝑦
𝑛𝑧
𝑗=1

𝑐𝑧
 > 0

−∞, 𝑖𝑓 𝑇𝑐 −
∑ 𝑐𝑗𝑧+𝑐𝑖𝑦
𝑛𝑧
𝑗=1

𝑐𝑧
 ≤ 0

(14)

 𝑔(𝑇𝑝, 𝑡𝑖𝑦) =

{
 𝑇𝑝 − (𝑝𝑧 +

𝑝𝑖𝑦

𝑐𝑧
) , 𝑖𝑓 𝑇𝑝 − (𝑝𝑧 +

𝑝𝑖𝑦

𝑐𝑧
) > 0

−∞, 𝑖𝑓 𝑇𝑝 − (𝑝𝑧 +
𝑝𝑖𝑦

𝑐𝑧
) ≤ 0

 (15)

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒(𝑆2) = 𝑠𝑐𝑜𝑟𝑒𝑅𝑇(𝑡𝑖1𝑦1, 𝑉𝑀𝑧1|𝑡𝑖2𝑦2 →

𝑉𝑀𝑧2, 𝑡𝑖3𝑦3 → 𝑉𝑀𝑧3, … . 𝑡𝑖𝑠𝑦𝑠 → 𝑉𝑀𝑧𝑠) +

𝑠𝑐𝑜𝑟𝑒𝑅𝑇(𝑡𝑖2𝑦2, 𝑉𝑀𝑧2|𝑡𝑖1𝑦1 → 𝑉𝑀𝑧1, 𝑡𝑖3𝑦3
→ 𝑉𝑀𝑧3, … . 𝑡𝑖𝑠𝑦𝑠 → 𝑉𝑀𝑧𝑠) +

… . . 𝑠𝑐𝑜𝑟𝑒𝑅𝑇(𝑡𝑖𝑠𝑦𝑠, 𝑉𝑀𝑧𝑠|𝑡𝑖1𝑦1 → 𝑉𝑀𝑧1, 𝑡𝑖2𝑦2 →

𝑉𝑀𝑧2, … . 𝑡𝑖(𝑠−1)𝑦(𝑠−1) → 𝑉𝑀𝑧(𝑠−1)) (16)

Theorem 3. Minimizing the migration score

function represented in Eq. (16) provides the

optimal candidate solution for overloaded VMs

running task migration problem.

Proof. The proof is on the same lines as outlined for

Theorem 1.

Theorem 4. The searching problem to find the best

candidate solution for the migration scenario

represented in Eq. (16) has non-polynomial time

complexity.

Proof. The proof is on the same lines as outlined for

Theorem 2.

Theorems 3. and 4. prove that, searching for the

optimal candidate solution to solve overloaded VMs

running task problem, requires approximate and

polynomial time complexity algorithms.

3.4 Task migration framework for SC

The first step in SC is to identify suitable PMs

which can be considered for shutting down. Let,

PMk indicate the kth PM in the CC, num(PMk)

indicate the number of active VMs in PMk. Each

PM is defined with a corresponding threshold

indicated by SD(PMk), which indicates the required

minimum number of VMs running in the PM to

prevent it from shutting down. This case is

represented in Eq. (17). Here, shutdown(PMk) = 1

indicates that, PMk should be shutdown, and

shutdown(PMk) = 0 indicates that, PMk should be

kept active.

𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛(𝑃𝑀𝑘) =

 {
 1, 𝑖𝑓 num(PMk) < SD(PMk)
 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (17)

Let, 𝑆�̂� indicate the set of PMs which are eligible to

be shutdown, and 𝑉�̂� indicate the set of active VMs

hosted inside those PMs ∈ 𝑆�̂� . The extra or new

tasks which are submitted to 𝑉�̂� will be migrated to

other suitable PMs. Once, the running tasks 𝑉�̂�

finish their execution, all the PMs 𝑆�̂� can be

shutdown.

Let, tiy indicate the ith extra task submitted to

VMy ϵ 𝑉�̂� , and suppose it can be migrated to VMz

which is hosted in that PM ∉ 𝑆�̂�. The migration of

tiy also requires the migration of data associated with

tiy. The merit of this migration is analyzed through a

scoring function represented in Eq. (18). Here,

scoreSC(tiy, VMz) indicates the score of migration

strategy which migrates tiy from VMy to VMz,

exeSCiz indicates the estimated execution time of tiy

inside VMz, which is represented in Eq. (19).

Received: September 23, 2018 180

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.18

𝑠𝑐𝑜𝑟𝑒𝑆𝐶(𝑡𝑖𝑦 , 𝑉𝑀𝑧) = 𝑒𝑥𝑒𝑆𝐶𝑖𝑧 + 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑡𝑖𝑦 , 𝑉𝑀𝑧)

 (18)

𝑒𝑥𝑒𝑆𝐶𝑖𝑧 =
𝑑𝑖𝑦

𝑐𝑧 + 𝑚𝑧
 (19)

The extra task migration is performed batch-

wise, rather than on a single task in-order to reduce

computational overheads. All the extra tasks

submitted to 𝑉�̂� are batched together for migration.

Consider the scenario, where the batch of extra tasks

[ti1y1…..ti2y2, … tisys] submitted to 𝑉�̂� need to be

migrated. Suppose, [VMz1,VMz2,…….VMzs] is a

candidate solution for the required migration of

tasks, wherein, tijyj (1 ≤ j ≤ s) is considered to be

migrated from VMyj to VMzj, and this candidate

solution is denoted as S3. Also, there is no restriction

that, the VMs in the candidate solution should be

distinct. The score of this migration scheme

indicated by migration_scoreSC(S3) is represented

in Eq. (20).

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒𝑆𝐶(𝑆3) =
∑ 𝑠𝑐𝑜𝑟𝑒𝑆𝐶(𝑡𝑖𝑗 , 𝑉𝑀𝑧𝑗
𝑠
𝑗=1)

𝑠

(20)

Theorem 5. Minimizing the migration score function

represented in Eq.(20) provides the optimal

candidate solution for SC problem involving VM

task migration.

Proof. The proof is on the same lines as outlined for

Theorem 1.

Theorem 6. The searching problem to find the best

candidate solution for the migration scenario

represented in Eq. (20) has non-polynomial time

complexity.

Proof. The proof is on the same lines as outlined for

Theorem 2.

Theorems 5 and 6 prove that, searching for the

optimal candidate solution to solve SC problem

through VM task migration, requires approximate

and polynomial time complexity algorithms.

3.5 Hybrid model

The main goal of the hybrid model is to achieve

holistic power optimization through combining all

the three frameworks namely: extra task migration

framework, running task migration framework and

task migration framework for SC. The problem

instance of the hybrid model is to migrate all the

tasks selected for each of the three frameworks.

Each candidate solution for the hybrid model is

represented through the Candidate Solution Vector

(CSV) represented in Eq. (21). Here, S represents a

specific CSV; S1, S2 and S3 represent a specific

candidate solutions for extra task migration

framework, running task migration framework and

task migration framework for SC respectively.

𝑆 = [𝑆1, 𝑆2, 𝑆3]
𝑇 (21)

The merit of the CSV S is analyzed through the

scoring function indicated by

hybrid_migration_score(S) represented in Eq. (22).

 ℎ𝑦𝑏𝑟𝑖𝑑_𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒(𝑆) =
 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒𝐸𝑇(𝑆1) + 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒𝑅𝑇(𝑆2) +

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒𝑆𝐶(𝑆3)
 (22)

Theorem 7. Minimizing the migration score function

represented in Eq.(22) provides the optimal

candidate solution for hybrid model problem.

Proof. Since, the migration score function is a linear

combination of individual migration score functions

of three different frameworks represented in Eq. (7),

(16) and (20), and it is also monotonically non-

decreasing function, it will reach its minimum value

when the individual score functions reach their

minimal value. Since, the minimum value of

individual migration score functions correspond to

optimal candidate solutions for their respective

frameworks--according to Theorems 1,2 and 3, the

Theorem immediately follows.

Theorem 8. The searching problem to find the best

candidate solution for the migration scenario

represented in Eq. (22) has non-polynomial time

complexity.

Proof. According to Theorems 2,4 and 6, the

searching problem corresponding to Eq. (7), (16)

and (20) have non-polynomial time complexity.

Since, the migration score function represented in

Eq. (22) is a linear combination of individual

migration score functions of three different

frameworks represented in Eq. (7), (16) and (20),

the Theorem immediately follows.

The Theorem 7 indicates that, the problem of

finding the optimal CSV for the hybrid model

problem represented in Eq. (22) corresponds to

minimizing the migration score function represented

in Eq. (22). The Theorem 8 indicates that, finding

the optimal solution to the hybrid model problem

requires non-polynomial time complexity. Hence,

approximate algorithms running in polynomial time

complexity need to be designed.

Received: September 23, 2018 181

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.18

3.6 Solution search

The PSO technique is utilized for finding

optimal/sub-optimal solution to the hybrid model

problem represented in Eq. (22). PSO technique is a

meta-heuristic technique [1] which provides an

approximate solution -- in polynomial time

complexity -- to optimization problems, and it is

inspired by the social behavior of birds. The search

for optimal solution is carried out by group of

particles; wherein, each particle has an exclusive

zone in the candidate solution space, and union of

all particle zones is equal to the candidate solution

space. Each point in the candidate solution space

represents a candidate solution vector. The particles

are continuously moving in their corresponding

candidate solution space to identify the optimal

solution, and are involved in continuous

communication for exchanging their locally

discovered best solution, which in-turn decides the

corresponding velocity of the particle for navigation.

The particles continue their search until acceptable

solution is obtained.

The PSO utilizes multiple search particles,

which are collectively involved in discovering near

optimal candidate solution for optimization problem.

Here r search particles are assumed. The current

position of the ith particle at iteration t be �⃗�𝑖(t). The

position for the next iteration is indicated by �⃗�𝑖(t+1),

which is calculated as represented in Eq. (23)

Here, �⃗⃗⃗�𝑖(t+1) indicates the velocity of the ith particle

for t + 1 iteration, and it is calculated as represented

in Eq. (24). Here, 𝐷1 and 𝐷2 indicate the degree of

particle attraction towards individual and group

success respectively, �⃗�gbest and �⃗�pbesti indicate the

global best solution obtained by all the particles

until the current iteration respectively, W indicates a

control variable, and r1,r2 ∈ [0, 1] are the random

factors.

 �⃗�𝑖(t+1)= �⃗�𝑖(t) + �⃗⃗�𝑖(t+1) (23)

�⃗⃗�𝑖(𝑡 + 1) = 𝑊�⃗⃗�𝑖(𝑡) + 𝐷1𝑟1 (�⃗� pbesti - �⃗� i(t))+𝐷2𝑟2 (�⃗� gbest -

�⃗�𝑖(t)) (24)

The proposed PSO based VM task migration

technique for load balancing is outlined in

Algorithm 1. Here, initialize_PSO(P) divides the

candidate solution space among the r search

particles indicated by 𝑃 = [𝑝1, 𝑝2, ……𝑝𝑟] and

assigns each particle to some arbitrary positions in

their corresponding candidate solution space. Each

particle calculates its candidate solution for the

corresponding current position through

compute_score(�⃗� i(t)), which utilizes Eq. (23) and

Eq. (24). The values for �⃗� gbest and �⃗� pbesti are

calculated through local_best(scorei) and

global_best(P, �⃗� pbesti) respectively. The particles

continue to search until the acceptable solution is

found, and which is calculated through

acceptable(�⃗�gbest).

Algorithm 1 PSO Algorithm for VM task

migration

𝑃 = [𝑝1, 𝑝2, ……𝑝𝑟]
initialize_PSO (P)

flag = 0

t = 0

While flag = = 0 do

t = t + 1

For i=1 to r do

scorei= compute_score (�⃗⃗⃗� i(t))

 �⃗�pbesti = local_best(scorei)

 �⃗�gbest = global_best(P, �⃗�pbesti)

If acceptable(�⃗�gbest) then

flag = 1

end if

end for

t = t + 1

end while

3.7 Architectural model

The architectural model for implementing the

hybrid model is illustrated in Fig. 1. Here, VM

Meta-data component provides all the VM specific

meta-data required for the hybrid model in the entire

CC; Overloaded VM Selection component is

responsible for identifying the overloaded VMs;

similarly, Lightly Loaded PM Selection component

is responsible for identifying the lightly loaded PMs;

VM Extra Task Selection component is responsible

for identifying the extra tasks from overloaded

VMs; VM Running Task Selection component is

responsible for identifying the running tasks from

overloaded VMs for migration; PM Extra Task

Selection is responsible for identifying extra tasks

from the VMs running inside lightly loaded PMs;

Hybrid Scoring component is responsible for

implementing the proposed hybrid scoring function

by using the selected tasks from its lower

components; Solution Search component is

responsible for searching the optimal/sub-optimal

solution for the hybrid model through the utilized

Received: September 23, 2018 182

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.18

Figure. 1 Architectural model

PSO technique; Task Migration component is

responsible for migrating the tasks to the intended

VMs.

4. Results and discussions

4.1 Simulation setup

The proposed hybrid model is simulated in

MATLAB. The simulation parameter settings are

presented in Table 1. In-order to exploit parallelism,

each PSO particle is assumed to be running on an

exclusive computing node. For the ease of reference,

the proposed hybrid model is denoted as HM.

HM is compared against contemporary VMM

techniques presented in [2] and [3], which are -- for

the ease of reference -- denoted as VM_M_1 and

VM_M_2 respectively. Both VM_M_1 and

VM_M_2, utilize the Bin Packing Framework

(BPF) for migrating VMs. Here, BPF considers each

Bin as a PM with certain resource capacity; each

item is considered as a VM. The task is to pack the

available items in minimum Bins possible. Naturally,

BPF provides load distribution and SC by allotting

the available VMs in limited number of PMs. In this

simulation study, VMM was initiated as soon as any

VM crossed the two thresholds: Tc and Tp. It must

be noted that, obtaining optimal solution for BPF is

NP-hard. Hence, VM_M_1 and VM_M_2 utilize

their customized approximation algorithms.

Totally five performance metrics are defined and

utilized for analyzing simulation results. The first

metric is denoted as APUR, and which is

represented in Eq. (25). Here, APUR indicates the

average power utilization ratio inside the CC after

execution of either: HM, VM_M_1 or VM_M_2.

This metric is calculated by considering all the VMs

in the CC.

𝐴𝑃𝑈𝑅 =
∑ 𝑃𝑦𝑉𝑀𝑦 ∈𝐶𝐶 ,

|𝐶𝐶|
 (25)

The second metric is indicated as AVEXE, and

which is represented in Eq. (26). Here, AVEXE

indicates the average task execution time by

considering all the running and extra tasks

corresponding to every VM in the CC. This metric is

calculated after the execution of either: HM,

VM_M_1 or VM_M_2.

𝐴𝑉𝐸𝑋𝐸 =
∑ 𝑒𝑥𝑒𝐸𝑇𝑖𝑧𝑡𝑖 ∈ 𝐶𝐶

|𝐶𝐶|
 (26)

Received: September 23, 2018 183

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.18

Table 1. Simulation parameter settings

Simulation

Parameter

Values

Number of VMs

considered

Varied between 1000- 5000

Number of computing

nodes/CPUs in each

VM

Varied between 5 to 20

Main memory capacity

for each VM

Varied 4GB/ 8GB/16GB

Number of tasks

executing in each VM

Varied between 10 to 50 tasks

Bandwidth between

any 2 VMs

Varied between 100mbps to

500mbps

CPU utilization ratio

for any task

Varied between 0.02 to 0.8

Memory utilization of

each task

Varied between 0.02 to 0.8

Number of PSO search

particles

Varied between 5 – 25

Number of Computing

nodes allotted for each

PSO particle

1

Threshold Tc 0.7

Threshold Tp 0.6

Size of task data Varied between 1GB to 10GB

Threshold To Varied between 0.05 – 0.25

Number of VMs

present in each PM

indicated by tvm(PMk)

Varied between 0 to 200

(randomized)

nvm(PMk) 0.5 × tvm(PMk)
Number of extra tasks

for a VM during Ie

Poisson distributed with λ = 5

min SD(PMk) Varied between [5-25]

Power consumed by

each VM

Varied between 0 to

1(normalized)

𝐴𝑉𝐸𝑋𝐸 =
∑ 𝑒𝑥𝑒𝐸𝑇𝑖𝑧𝑡𝑖 ∈ 𝐶𝐶

|𝐶𝐶|
 (26)

The third metric is indicated as ARUR, and

which is represented in Eq. (27). Here, ARUR

indicates the average resource utilization ratio inside

the CC after execution of either: HM, VM_M_1 or

VM_M_2. This metric is calculated by considering

all the VMs in the CC. The metric 𝐶𝑃𝑈𝑦, which is

represented in Eq. (28), indicates the average CPU

utilization in 𝑉𝑀𝑦 , and it is calculated by

considering the CPU utilization ratio of every task

running inside 𝑉𝑀𝑦 .

𝐴𝑅𝑈𝑅 =
∑ 𝐶𝑃𝑈𝑦𝑉𝑀𝑦 ∈𝐶𝐶 ,

|𝐶𝐶|
 (27)

 𝐶𝑃𝑈𝑦 =
∑ 𝑐𝑗𝑦𝑗

𝑐𝑦
 (28)

The fourth metric is indicated as TCOST, and which

is represented in Eq. (29). Here, TCOST represents

the total data transfer cost incurred after execution

of either: HM, VM_M_1 or VM_M_2. This metric

is calculated by considering every task in the CC

which was subjected to migration. Here, 𝑈(𝑑𝑖𝑦) =

0 if 𝑡𝑖𝑦 is not involved in migration; otherwise,

𝑈(𝑑𝑖𝑦) = 1.

𝑇𝐶𝑂𝑆𝑇 = ∑ ∑ 𝑑𝑖𝑦𝑈(𝑑𝑖𝑦)𝑖𝑦 (29)

The fifth metric is indicated as ATPT, and which is

represented in Eq. (30) and Eq. (31). Here, ATPT

represents the average throughput of the CC, in-

terms of task executions completed per hour, after

execution of either: HM, VM_M_1 or VM_M_2.

Every task in the CC is considered for calculating

this metric. Here, maxz (𝑒𝑥𝑒𝑅𝑇𝑧𝑦) indicates the

execution time of 𝑡𝑧𝑦 , which has the highest

execution latency in 𝑉𝑀𝑦 . Also, 𝑒𝑥𝑒𝑅𝑇𝑧𝑦 is

expressed in-terms of hours.

𝐴𝑇𝑃𝑇 =
∑ 𝑇𝑃𝑇(𝑉𝑀𝑦)𝑦

|𝐶𝐶|
 (30)

𝑇𝑃𝑇(𝑉𝑀𝑦) =
𝑛𝑦

maxz (𝑒𝑥𝑒𝑅𝑇𝑧𝑦)
 (31)

4.2 Simulation Results

The first experiment analyzes the performance

of HM, VM_M_1 and VM_M_2 w.r.t. APUR. The

first experiment has three different cases. In the first

case, the number of VMs in the CC is varied. In the

second and third case, Tc and Tp are varied

respectively. The result of first, second and third

case is illustrated in Fig. 2, 3 and Fig. 4 respectively.

It is clear that, HM outperforms the other two

techniques, because VMM techniques try to pack all

the VMs in limited or minimal PMs, which leads to

higher APUR; whereas, HM relieves the overloaded

VMs and redistributes the tasks to other non-

overloaded VMs, ensuring that, there is no decrease

in the number of PMs. Hence, HM exhibits better

APUR.

In the first experiment, the performance of HM

improves with the increase in number of VMs,

because with increase in number of VMs, tendency

to produce more overloaded VMs also increase.

Hence, some of the overloaded VMs might have

more running tasks that consume more resources,

and their eviction creates more resource release.

However, there is little correlation with performance

of VMM techniques and number of VMs, because

BPF solution is uncorrelated with APUR and

Received: September 23, 2018 184

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.18

number of VMs. The performance of HM improves

with reduction of Tp and Tc, because at lower values

of these parameters more number of overloaded

VMs come into consideration, which further

improves APUR, because of more load

redistribution. However, lower values of these

parameters can trigger frequent load balancing

procedures leading to over-all inefficiency in CC

functioning. The performance of VMM techniques

regarding Tp and Tc again remain uncorrelated for

the same reasons explained above.

The second experiment analyzes the

performance of HM, VM_M_1 and VM_M_2 w.r.t.

AVEXE. The same three cases used in first

experiment are also used here. The result of first,

second and third case is illustrated in Fig. 5, Fig. 6

and Fig. 7 respectively. The VMM techniques

migrate all the existing and extra tasks of every VM.

Due to this scenario, many computationally

intensive tasks have to be re-executed, which

increase AVEXE. However, HM only migrates a

single and resource expensive task, which reduces

substantial re-execution latency compared to VMM

techniques. Hence, HM outperforms other VMM

techniques w.r.t. AVEXE metric. HM exhibits

decreasing performance with the increase of number

of VMs, because with more number of VMs, more

overloaded VMs have to be treated. Thus, more

number of tasks get migrated which adds to the

existing computational burden of VMs to which

tasks have been migrated. Similar reason can be

attributed for the performance of VMM techniques.

Figure. 2 No. of VMs vs APUR

The performance of HM worsens with lower

values of Tp and Tc, because at lower values of these

parameters more number of VMs will be considered

as overloaded. Due to this scenario, more number of

running tasks will be migrated and re-executed.

However, the performance of VMM techniques

remain uncorrelated with Tp and Tc for the same

reasons explained above.

Figure. 3 Tp vs APUR

Figure. 4 Tc vs APUR

Figure. 5 No of VMs vs AVEXE

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

A
P

U
R

No. of VMs

APUR(HM)

APUR(VM_M_1)

APUR(VM_M_2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.5 0.55 0.6 0.65 0.7

A
P

U
R

Tp

APUR(HM)
APUR(VM_M_1)
APUR(VM_M_2)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.4 0.5 0.6 0.7 0.8

A
P

U
R

Tc

APUR(HM)

APUR(VM_M_1)

APUR(VM_M_2)

0
500

1000
1500
2000
2500
3000
3500
4000

A
V

E
X

E
 (

S
)

No. of VMs

AVEXE(HM)

AVEXE(VM_M_1)

AVEXE(VM_M_2)

Received: September 23, 2018 185

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.18

Figure. 6 Tp vs AVEXE

Figure. 7 Tc vs AVEXE

Figure. 8 No. of VMs vs ARUR

The third experiment analyzes the relative

performance of HM, VM_M_1 and VM_M_2 WRT

ARUR, when the number of VMs in the CC is

varied. The analysis result of this experiment is

illustrated in Fig. 8. Clearly, HM relatively

outperforms other techniques. The reasoning for the

observed performance of all the three techniques is

identical to the reasoning presented for the first case

of first experiment.

The fourth experiment analyzes the relative

performance of HM, VM_M_1 and VM_M_2 WRT

TCOST, when the number of VMs in the CC is

varied. The analysis result of this experiment is

illustrated in Fig. 9. Again, HM provides the best

results. Since, VM_M_1 and VM_M_2 migrate all

the VMs in CC, to achieve their goals, all the tasks

in CC also get migrated. Hence, TCOST of these

VMM techniques is high. The performance of HM

decreases slightly as the number of VMs in CC is

increased. This performance decrease is due to the

fact that, more number of overloaded VMs can get

created, when the number of VMs in CC gets

increased. Hence, with more number of overloaded

VMs, more number of tasks are migrated, which

leads to slight increase in TCOST. By using this

same reasoning, performance curve exhibited by

other two techniques can be described.

Figure. 9 No. of VMs vs TCOST

Figure. 10 No. of VMs vs ATPT

0
500

1000
1500
2000
2500
3000
3500
4000

o.5 0.55 0.6 0.65 0.7

A
V

E
X

E
 (

S
)

Tp

AVEXE(HM)
AVEXE(VM_M_1)
AVEXE(VM_M_2)

0
500

1000
1500
2000
2500
3000
3500
4000

0.4 0.5 0.6 0.7 0.8

A
V

E
X

E
 (

S
)

Tc

AVEXE(HM)
AVEXE(VM_M_1)
AVEXE(VM_M_2)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1000 2000 3000 4000 5000

A
R

U
R

NO. OF VMs

ARUR(HM)

ARUR(VM_M_1)

ARUR(VM_M_2)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1000 2000 3000 4000 5000

T
C

O
S

T
 (

T
B

)

NO.OF VMs

TCOST(HM)

TCOST(VM_M_1)

TCOST(VM_M_2)

0
5

10
15
20
25
30
35
40

1000 2000 3000 4000 5000A
T

P
T

 (
N

o
.

o
f

T
a

sk
s/

H
r)

NO. OF VMs

ATPT (HM)

ATPT (VM_M_1)

ATPT (VM_M_2)

Received: September 23, 2018 186

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.18

Table 2. Comparative performance data analysis 1
Experimen

t No

Max_PD(HM,VM

_M_1) %

Min_PD(HM,VM_

M_1) %

1 (Case 1) 31 8

1 (Case 2) 38 22

1 (Case 3) 38 16

2 (Case 1) 77 70

2 (Case 2) 78 40

2 (Case 3) 73 34

3 35 23

4 76 70

5 64 58

Table 3. Comparative performance data analysis 2

Experiment

No

Max_PD(HM,VM

_M_2) %

Min_PD(HM,VM

_M_2) %

1 (Case 1) 30 3

1 (Case 2) 37 21

1 (Case 3) 40 14

2 (Case 1) 80 72

2 (Case 2) 82 30

2 (Case 3) 70 37

3 37 21

4 79 65

5 66 56

The fifth experiment analyzes the relative

performance of HM, VM_M_1 and VM_M_2 WRT

ATPT, when the number of VMs in CC is varied.

The analysis result of this experiment is illustrated

in Fig. 10. Again, HM provides the best

performance in-terms of ATPT. As already

described in first experiment, the VMM techniques

tend to pack more number of tasks in each VM,

when compared to HM. Hence, ATPT performance

of VMM techniques is poor due to more resource

contention. The performance of all the three

techniques slightly decreases with the number of

VMs, because, as already explained in first case of

second experiment, more number of VMs leads to

more task migrations, which in-turn leads to higher

resource contention.

The comparative performance data analysis

study between HM and the considered VMM

techniques, is outlined through Tables 2 and 3. Here,

Max_PD(HM,VM_M_1) and

Min_PD(HM,VM_M_1) indicate the maximum and

minimum percentage performance improvement of

HM over VM_M_1 respectively, by considering the

metric corresponding to the specific experiment.

Similarly, Max_PD(HM,VM_M_2) and

Min_PD(HM,VM_M_2) indicate the maximum and

minimum percentage performance improvement of

HM over VM_M_2 respectively, by considering the

metric corresponding to the specific experiment.

From this presented analysis study, it is clear that,

HM provides substantial performance improvement

over considered VMM techniques, in all the

considered performance metrics.

5. Conclusion

In this work, the necessity of utilizing hybrid

model for VMTM technique was described; along

with, the limitations of VMM and VM extra task

migration techniques. The proposed hybrid model

utilized three components: extra task migration

component, runtime task migration component and

SC component; thus, achieving holistic power

optimization. The simulation results of the proposed

hybrid model were compared against contemporary

VMM techniques, and the hybrid model

substantially outperformed the contemporary VMM

techniques in: power optimization, CPU resource

utilization, communication cost, throughput and task

execution time. Specifically, the proposed hybrid

model provides nearly 30% better benefits according

to considered performance metrics against

contemporary VMM techniques.

In future, the merits of applying VM task

migration schemes for Distributed Cloud Center in

which, the CC is distributed in different

geographical locations need to be analyzed. Task

migration in this new setting faces multiple

challenges, because migrating tasks to different

locations in the cloud center can result in

performance limitation due to large geographical

distances.

References

[1] F. Ramezani, J. Lu, and F. K. Hussain, “Task

Based System Load Balancing in Cloud

Computing Using Particle Swarm

Optimization”, International Journal of

Parallel Programming, Vol. 42, No. 5, pp. 739-

754, 2014.

[2] N. Jain, I. Menache, J. Naor, and F. Shepherd,

“Topology Aware VM Migration in Bandwidth

Oversubscribed Datacenter Networks”, In: Proc.

of the 39th International Colloquium, pp. 586-

597, 2012.

[3] S. Kumaraswamy and K. N. Mydhilli, “Virtual

Machine Placement in Distributed Cloud

Centers using Bin Packing Algorithm”,

International Journal of Grid and Utility

Computing, 2018.

[4] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J.

Chow, M. S. Lam, and M. Rosenblum,

“Optimizing the Migration of Virtual

Received: September 23, 2018 187

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.18

Computers”, In: Proc. of ACM SIGOPS Oper.

Syst. Rev. 36(SI), 377390, 2002.

[5] A. Whitaker, R. S. Cox, M. Shaw, and S. D.

Gribble, “Constructing Services with

Interposable Virtual Hardware”, In: Proc. of the

1st Symposium on Networked Systems Design

and Implementation, pp. 169-182, 2004.

[6] Y. A. Zomaya and T. Yee-Hwei, “Observations

on Using Genetic Algorithms for Dynamic

Load Balancing”, IEEE Transactions on

Parallel Distributed Systems, Vol. 12, No. 9, pp.

899-911, 2001.

[7] C. Zhao, S. Zhang, Q. Liu, J. Xie, and J. Hu,

“Independent Tasks Scheduling based on

Genetic Algorithm in Cloud Computing”, In:

Proc. of the 5th International Conference on

Wireless Communications, Networking and

Mobile Computing, pp. 1-4, 2009.

[8] E. Juhnke, T. D. Bock, and D. Freisleben,

“Multi Objective Scheduling of BPEL

Workflows in Geographically Distributed

Clouds”, In: Proc. of the 4th IEEE

International Conference on Cloud Computing,

pp. 412-419, 2011.

[9] M. Geetha and K. G. Mohan, “A Survey on

Load Balancing Techniques for Cloud

Computing”, IOSR Journal of Computer

Engineering, Vol. 18, Issue 2, pp. 55-61, 2017.

[10] S. Poonam, D. Maitreyee, and A. Naveen, “A

Review of Task Scheduling Based on Meta-

heuristics Approach in Cloud Computing”,

Journal Knowledge and Information Systems,

pp. 1-51, 2017.

[11] M. A. Sadeghi and N. N. Jafari, “Load

Balancing Mechanisms and Techniques in the

Cloud Environments”, Journal of Networks

and Computer Applications, Vol. 71, pp. 86-98,

2016

[12] B. Song, M. M. Hassan, and E. Huh, “A Novel

Heuristic-based Task Selection and Allocation

Framework in Dynamic Collaborative Cloud

Service Platform” In: Proc. of the 2nd IEEE

International Conference on Cloud Computing

Technology and Science, pp. 360-367, 2010.

[13] J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin, and Z.

Gu, “Online Optimization for Scheduling

Preemptable Tasks on IaaS Cloud Systems”,

Journal of parallel and Distributed Computing,

Vol. 72, No. 5, pp. 666-677, 2012.

[14] J. Kolodziej and F. Xhafa, “Modern

Approaches to Modeling User Requirements on

Resource and Task Allocation in Hierarchical

Computational Grids”, International Journal of

Applied Mathematics and Computer Science,

Vol. 21, No. 2, pp. 243-257, 2011.

[15] Z. Lei, C. Yuehui, S. Runyuan, J. Shan, and Y.

Bo, “A Task Scheduling Algorithm based on

PSO for Grid Computing”, Int. J. Comput.

Intell. Res., No. 4, No. 1, pp. 37-43, 2008.

[16] H. Liu, A. Abrahan, V. Snasel, and S.

McLoone, “Swarm Scheduling Approaches for

Workflow Applications with Security

Constraints in Distributed Data-intensive

Computing Environments”, Journal

Information Sciences, pp. 228-243, 2012.

[17] F. Ramezani, J. Lu, and F. Hussain, “Task

Based System Load Balancing Approach in

Cloud Environments”, Knowledge Engineering

and Management, pp. 31-42, 2014.

[18] F. Ramezani, L. Jie, T. Javid, and H. Farookh

Khadeer, “Evolutionary Algorithm-based

Multi-objective Task Scheduling Optimization

Model in Cloud Environments”, Journal World

Wide Web, Vol. 2015, pp. 1737-1757, 2015.

[19] D. B. LD and P. V. Krishna, “Honey Bee

Behavior Inspired Load Balancing of Tasks in

Cloud Computing Environments”, Applied Soft

Computing Journal, Vol. 13, No. 5, pp. 2292-

2303, 2013.

[20] J. Taheri, Y. L. Choon, A. Y. Zomaya, and H.

J. Siegel, “A Bee Colony based Optimization

Approach for Simultaneous Job Scheduling and

Data Replication in Grid Environments”,

Comput. Oper. Res., pp. 1564-1578, 2013.

[21] J.-F. Li, J. Peng, X. Cao, and H.-Y. Li, “A Task

Scheduling Algorithm based on Improved Ant

Colony Optimization in Cloud Computing

Environment”, Energy Procedia, pp. 6833-

6840, 2011.

[22] R. Shiva, N. A. Habibizad, R. A. Masoud, and

H. Mehdi, “Probabilistic Modeling to Achieve

Load Balancing in Expert Clouds”, Ad-Hoc

Networks, pp. 12-23, 2017.

[23] M. Abdullahiac, M. A. Ngadi, and S. M.

Abdulhamid, “Symbiotic Organism Search

Optimization Based Task Scheduling in Cloud

Computing Environment”, Future Generation

Computing Systems, Vol. 56, pp. 640-650, 2016.

[24] G. Reddy N. Reddy, and S. Phanikumar, “Multi

Objective Task Scheduling Using Modified Ant

Colony Optimization in Cloud Computing”,

International Journal of Intelligent Engineering

and Systems, Vol. 11, No. 3, pp.242-250, 2018.

[25] P. Krishnadoss and P. Jacob, “OCSA: Task

Scheduling Algorithm in Cloud Computing

Environment”, International Journal of

Intelligent Engineering and Systems, Vol. 11,

No. 3, pp.271-279, 2018.

[26] A. B. A. Muthu and S. Enoch, “Optimized

Scheduling and Resource Allocation Using

Received: September 23, 2018 188

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.18

Evolutionary Algorithms in Cloud

Environment”, International Journal of

Intelligent Engineering and Systems, Vol. 10,

No. 5, pp.125-133, 2017.

[27] M. LawanyaShri, S. Subha, and B. Balusamy,

“Energy-Aware Fruit-fly Optimisation

Algorithm for Load Balancing in Cloud

Computing Environments”, International

Journal of Intelligent Engineering and Systems,

Vol. 10, No. 1, pp.75-85, 2017.

[28] M. Geetha and G. K. Mohan, “Metaheuristic

Based Virtual Machine Task Migration

Technique for Load Balancing in Cloud”, In:

Krishna A., Srikantaiah K., Naveena C. (eds)

Integrated Intelligent Computing,

Communication and Security. Studies in

Computational Intelligence, Vol. 771,

Springer, 2019.

[29] A. Varasteh and M. Goudarzi, “Server

Consolidation Techniques in Virtualized Data

Centers: A Survey”, IEEE Systems Journal,

Vol. 11, No. 2, 2017.

[30] C. Lin, P. Liu, and J. Wu, “Energy-efficient

Virtual Machine Provision Algorithms for

Cloud Systems”, In: Proc. of the Fourth IEEE

International Conference Utility and Cloud

Computing, 2011.

[31] S. Takeda and T. Takemura, “A Rank based

VM Consolidation Method for Power Saving in

Datacenters”, IPSJ Online Transactions, 2010.

[32] L. Hu, H. Jin, X. Xiong, and H. Liu, “Magnet,

A Novel Scheduling Policy for Power

Reduction in Cluster with Virtual Machines”,

In: Proc. of the IEEE International Conference

on Cluster Computing, 2008

[33] L. Liang, W. Hao, L. Xue, J. Xing, H. W. Bo,

W. Q. Bo, and C. Ying, “Green Cloud: A New

Architecture for Green Data Center”, In: Proc.

of the Sixth International Conference Industry

Session on Automatic Computing and

Communication Industry Session, 2009.

[34] J. Yang, P. Liu, and J. Wu, “Workload

Characteristics-Aware Virtual Machine

Consolidation Algorithms”, In: Proc. of the

Fourth International Conference on Cloud

Computing Technology and Science, 2012.

[35] K. Gupta and V. Katiyar, “Energy Aware

Virtual Machine Migration Techniques for

Cloud Environment”, International Journal of

Computer Applications, 2016.

[36] G. Pragya and Manjeey, “A Review on Energy

Efficient Techniques in Green Cloud

Computing”, International Journals of

Advanced Research in Computer Science and

Software Engineering, Vol. 5, 2015.

[37] A. Banerjee, P. Agrawal, and N. S. N. Iyengar,

“Energy Efficient Model for Cloud Computing”,

International Journal of Energy Information

and Communications, Vol. 4, Issue 6 , 2013.

[38] K. Gupta and V. Katiyar, “Energy Aware

Scheduling Framework for Resource Allocation

in a Virtualized Cloud Data Centre”,

International Journal of Engineering and

Technology, 2017.

