
Received: September 26, 2018 84

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.09

Web Architecture for Monitoring Field using Representational State Transfer

Methods

Krishna Kumar Palavalli Radharamana1* Chandra Mouli2 Udaya Kumar1

1 Department of Computer Science & Engineering, Cambridge Institute of Technology, India
2 Department of Computer Science & Engineering, East point College of Engineering, India

* Corresponding author’s Email: Rana.krishnakumar@gmail.com

Abstract: Internet of Things (IoT) provides information services based on daily usage that depend on the sensors of

devices and network platform. An increase in the number of connected devices through internet, increases the

demand for the number of low-latency services. In this research, Open Cloud Computing Interface (OCCI) technique

is used in IoT architecture that helps to encompass application level interface. The OCCI-based architecture is

proposed to manage and store the data, by introducing the resource analyzer, edge devices and monitoring manager

that helps to transfer the data effectively. The monitoring manager, edge devices and broker schedule the data to

minimize the traffic in the IoT. Representational State Transfer (REST) methods using Hyper Text Transfer Protocol

(HTTP) for communication are presented in this technique. Simulation result showed the effectiveness of the

proposed OCCI architecture. Arduino and Raspberry Pi 3 are the two major hardware used in this technique. The

result of the OCCI-based architecture uploaded to the ThingSpeak server, which is the external server. Several

parameters such as Temperature, Round Trip Time (RTT), latency, Clock difference and frequency are evaluated in

this work. Round Trip Time reduced to 0.96 seconds by reducing the delay in the system.

Keywords: Arduino, IoT architecture, Open cloud computing Interface, Raspberry Pi 3, ThingSpeak.

1. Introduction

Internet of Things (IoT) has been growing in a

wide range of domains, those are, health appliances,

entertainment electronics, wearable gadgets and

industrial sensors, those are connected over the

Internet. Most of the devices are embedded devices

that are portable and powered by batteries. These

devices communicate are required to be wirelessly

communicated with each other or through some

remote IoT gateways [1, 2]. IoT refers to an

ecosystem in which devices such as smart phones,

sensors, and household appliances are connected to

the global network, which helps to monitor and

manage the devices. These types of devices are

available in a wide range of devices and are mainly

supported by hardware micro controllers [3, 4]. New

technologies have enhanced the effect of

information, communication, control and

computation. This ensures that an IoT lends itself as

an “ideal” tool to manage agriculture practices [5].

Remote monitoring of factors that affects artworks

helps to preserve in the long-term and also promote

their value. IoT is one of the main technique in

current technology helps in monitoring the artworks

[6]. IoT has become an important technique and can

be used in object, small embedded system that

include computing, networking capabilities and

sensing.

The sensed information is collected from the

object and uploaded in the network cloud and this

can be analyzed to provide new intelligent services

[7]. Many industrial communication protocols are

available to support Facility Smart Grid Information

Model (FSGIM) for energy management in

industries and by applying different private

protocols will result in poor interoperability. IoT is

an alternative tool for operating the devices and it is

expected to make the industrial production more

intelligent and efficient [8, 9]. Energy efficiency is

Received: September 26, 2018 85

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.09

becoming a huge research area and it is expected to

achieve 20% savings in energy consumption by the

year of 2020. The challenge is generally present on

multiple levels, namely energy consumption in the

physical performance, improved energy data

management and automation, and the introduction

of better energy consumption practice with human

users [10]. In this research, an OCCI is used to

encompass the application level interface of the IoT

infrastructure, which provides the interface of the

single component. This helps to optimize the usage

of resources in the IoT environment. The

greenhouse field is used as the case study in this

method for the evaluation purpose. The sensor

device is plotted across various part of the study

area and temperature is monitored across the field.

The new architecture is OCCI-based architecture in

this method that has monitoring manager and

Analyzer. These two devices handle the data flow

and the data is stored in the cloud. This technique

improves the performance of the data flow and

provide effective monitoring technique. Monitoring

manager handles the resources allocation in the

various devices and doesn’t violate Service Level

Agreement (SLA). Analyzer investigate the data

flow and improves the reconfiguration process in the

system. This technique is compared with existing

method of different method to improve the

monitoring system. Experimental result shows that

the OCCI-based architecture has better performance

compared to existing technique in IoT monitoring

technique.

The organization of the paper in the manner of

Literature review of IoT monitoring techniques in

the section 2, section 3 contains the brief

explanation of OCCI-based architecture and

experimental result in the section 4.

2. Literature review

Yingfeng Zhang and Shudong Sun, [11]

designed the manufacturing system with IoT to

provide a new technique of manufacturing with the

IoT system. This method monitors the conditions

related to the production system such as operators,

pallets, materials, machines etc., are connected with

the sensor. These were monitored using this

technique and optimization were carried out with the

real time data to improve the productivity of the

shop-floor. This method also helps in reducing the

wastage of the manufacturing resources, which

decreases the production cost, risk and improve the

efficiency in cross-border custom logistics. This

senses the changes and parameters in the

productions optimized which depends on the

monitored real time manufacturing information and

also to eliminate the disturbance of the production

process.

S. Muralidharan, A. Roy, and N. Saxena [12]

aims to reduce the delay and also classify and

prioritize the IoT traffic with low latency, that

effectively retrieves the data. A Markov Decision

Process (MDP) based Interest scheduling proposed

in this paper for IoT by priorities and also calculate

the performance of the proposed method in various

traffic probabilities. The experimental result showed

that the operations of prioritizing and scheduling

these requests based on their network type helped to

reduce the network traffic by 30%, which increased

QoS in IoT environment. The scheduling of the

request using the Markov Decision Process (MDP)-

based IoT reduced the Round Trip Time (RTT)

values up to 20%-30% than the state-of-art method

in forwarding requests and the incurred delay

decreased up to 30%. The flow was not controlled

on the path and also in the data with data scheduling

of Pending Interest Table.

S. Liu, G. Zhang, and L. Wang [13] established

the technique for real time information driven

dynamic optimization distribution for logistics tasks

by adapting a bottom-up logistics strategy. This

method is focused on the objective to design the

innovative system for providing sustainable logistics

in logistics distribution model. In order to evaluate

this technique a real-time IoT-enabled information

sensor is developed, which sense and capture the

real-time data of logistics resources. These observed

values are shared among companies after the value-

added processes. The new paradigm was proposed

for dynamic optimization of Real-time data of

logistics resources to achieve the optimized

configuration of logistics cost, logistics resource,

distribution distance and energy consumption, and

also alleviate the environmental pollution. This

method needs to be evaluated for different real-time

process to understand the efficiency of the system.

Soobin Jeon and Inbum Jung, [14] presented the

method namely Improved MinT (MinT-I) in order to

improve the performance of MinT middleware by

the real-time adjustment of threads. This method

majorly focused on the connection part of the

system responsible for processing, analyzing and

retransmitting the received packets. The simulation

results showed that the MinT-I method increased the

average throughput of approximately 25% to 30%

compared to the existing methods. This proposed

technique not only optimize the resources and

memory, this also reduced the latency and power

consumption of IoT devices. Sensing devices

produced the periodic aggregation, which doesn’t

Received: September 26, 2018 86

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.09

update the information frequently that causes

transmission delay and excess energy consumption.

H.R. Arkian, A. Diyanat, and A. Pourkhalili [15]

studied existing trends in the optimization of IoT

resources and proposed the method based on a fog

computing scheme namely, MIST that supports

crowd sensing applications in the context of IoT.

The investigation performed on the data consumer

association, task distribution, and virtual machine

placement towards MIST to provide cost-efficient

and limited resource in IoT. In this technique,

initially the problem was formulated into a mixed-

integer non-linear program (MINLP) and this was

linearized into a mixed integer linear program

(MILP). This technique was evaluated using the data

of real world parameters of the Tehran province,

which is the capital of Iran. Simulation results

showed that the performance of the proposed

method MIST increased with the number of

applications demanding real-time service increases

while compared to the conventional cloud

computing. The investigation was not conducted for

the mobility of data generators and data consumers

and its impact on the performance.

3. OCCI-based architecture method

The overview of the OCCI-based architecture

method’s architecture in terms of the greenhouse

study presented in the Fig. 1. The temperature of the

greenhouse recorded by the sensor and the raw data

transferred to the environments data collectors.

These data, then uploaded to the ThinkSpeak and

the Raspberry pi act as a Message Queuing

Telemetry Transport (MQTT) Broker. The analyzer

analysis the data and temperature is monitored, and

provide the optimized value in the monitoring. The

aggregator is connected to the several sensors placed

across the greenhouse. An OCCI technique used as

an interface that interconnect with the different

layers in the system. The definitions of Monitor

Manager and Analyzer are given below.

 Monitoring Manager: This denotes the

resources handling SLA and this has the

permission to activate the necessary

resources for monitoring and

reconfiguration functionalities.

 Analyzer resource: This process

monitors the information and increases

reconfiguration action

3.1 An OCCI method in IoT architecture

The OCCI specification depends on the core

schema that supports an extension mechanism. The

core OCCI method describes two types of core

techniques: the resource and the link. A link

connects with the two resources: source resource

and the target resource. Uniform Resource Identifier

(URI) connects with each entity and REST-full

interface is presented to the user that helps to

interact with the entities on behalf of the

management system. A given entity has a defined

attribute; whose values represents a specific instance.

Ability to perform an activity is the action that is

defined by a category, which is often supported by

the abstraction of an internal state of the entity. Fig.

1 shows the architecture of the monitoring method.

Figure.1 Architecture of the OCCI-based architecture method

Received: September 26, 2018 87

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.09

Figure.2 The unified modelling Language (UML) class diagram of the IOT extension (core model light-gray)

OCCI introduces the mixin in order to customize

instance of a given entity. While these are associated

with one of an entity, instance added a new attribute

and action. That complement those entities which

were already present in the entity instance. In the

commercial point of view, the mixins have the

major role of differentiating the offers of distinct

providers: entity types are the common denominator

that allows basic portability, while mixins are

provider-specific. OCCI is simple that can be

adapted to a number of distinct environments:

historically the first application of OCCI gives the

description of IaaS cloud resources, Service Level

Agreement, PaaS resources, Cloud Monitoring

infrastructures and more. The steps to use the core

model for a specific method consists of document

writing that gives new sub-types of core entities

with related features. In OCCI terminology, the

document is an extension of the core schema.

3.2 An OCCI extension for IoT

From the informal model, sensor monitor the

real world object on the alternate of an aggregator.

In OCCI manners, both the aggregator and real

world entity are OCCI resources, and the sensor is

an OCCI link. The aggregator is the subcategory of

the core resource type and a sensor connect between

the resources.

The Fig. 2 shows the class diagram. Specific

attributes not introduced for the new OCCI entities,

but it expects that suitable mixins are defined by the

provider to change an entity for a user’s needs. The

description of the available mixins provided to the

user in response to GET request, which is sent to the

OCCI server: available mixins are discoverable.

Selected mixins connect with the sensor instance,

the user implemented a sensor with the needed

functionality.

The link attribute is an array of unique element

of Negative Temperature Coefficient (NTC) sensor

and the sensor rendering inside an aggregator. NTC

mixin is acquired from two attributes: period and

OUTlevel, an entity port.

The existing communication maintain in the

National Institute of Standards and Technology

(NIST) document and these represent by an entity

port in these methods. Bi-directional communication

channel is a port with matching identifiers shares the

same channel. Bi-directional communication is

identified by a port, which has a string of attribute.

The sensor has the ability to connect with another

layer of the communication represented by the null

mixin, which connect one of the lower level layer to

another port of the upper level layer aggregator.

3.3 Temperature monitoring

On one side, it shows that the formal schema is

enough to describe by an expression and guide the

deployment of the simple use case. The performance

of a Representational state transfer (REST)-based

deployment is compared with the other technique.

The prototype is required to focus on the important

aspects of this proposal.

 OCCI-IOT data structure guides the

deployment

 Websockets use in the infrastructure for data

transport

The other aspects are deliberate especially, in

order to neglect the introduction of spurious

variables in the networking. This prototype is a

typical smart agriculture use case stated as follows.

IoT is deployed in the field that collects the

ambient measures, which controls air condition and

watering in the greenhouses. These devices are fixed

across the field to possible distance of the plants.

IoT devices organize as three layers, greenhouses

Received: September 26, 2018 88

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.09

present in the real world objects layer and this

connects to the upper layer by sensors, which sends

raw data to the devices on the intermediate layer.

This layer consists of aggregators that convert the

raw data into temperature and filter is applied to the

sensor data. The experimental result of this method

is uploaded to a ThingSpeak server, which is the

external server meeting RQ5 and this collects and

displays the data from all aggregators and may

activate alarms and also schedules the events. It is

an aggregator in the OCCI-IOT paradigm.

To develop the above system, six types of mixin

require.

 In order to describe the temperature meter,

three sensor mixins and NTC are required,

null connect the intermediate aggregator to

the centralized server. Dummy is not

connected to a real measurement device and

used for stress the aggregator;

 The two aggregator mixins are

NTC2Degrees and ThingSpeak.

NTC2Degrees for the intermediate

aggregator and ThingSpeak are connected to

the ThingServer;

 A real world object mixin for the greenhouse.

This method focused on the temperature meter

and the intermediate aggregator. The Table 1

presents the temperature meter mixin. NTC

thermistor is an inexpensive temperature sensor,

which is used as an input devices and reveals by the

term attribute. The provider defines the mixin

definition of the sensor scheme, which is based on

the sensor mixins subtype denoted in an OCCI

extension for IoT. It can be related only with a

sensor link defined in the same IoT document. The

mixin attributes are prefixed with the provider

domain: com.example.

 The time interval to configured between

successive evaluation is in milliseconds.

 level_out indicates the id of the output

channel related with the OUTlevel port: the

value comes from the output of a A/D

converter connected to the NTC device.

 Uri is the URI of the remote measurement

device hosting a WebScoket server.

Table 1. The json rendering of the temperature sensor

{” term ” : ”NTC” ,

” scheme ” : ” h t t p : / / example . com / s e n s o r # ” ,

” depends ” : ” h t t p : / / schemas . ogf . org / o c c i / i o t # s e n s o r m i x i n s ” ,

” a p p l i e s ” : ” h t t p : / / schemas . ogf . org / o c c i / i o t # s e n s o r ” ,

” a t t r i b u t e s ” :{

”com . example .NTC . p e r i o d ” :{ ” t y p e ” : ” number ” } ,

”com . example .NTC . l e v e l o u t ” :{ ” t y p e ” : ” s t r i n g ” } ,

”com . example .NTC . u r i ” :{ ” t y p e ” : ” s t r i n g ” }

} ,

” t i t l e ” : ”NTC” ,

” l o c a t i o n ” : ” / s e n s o r /NTC”}

Table 2. The json rendering of the aggregator mixin

{” term ” : ” NTCtoDegrees ” ,

” scheme ” : ” h t t p : / / example . com / a g g r e g a t o r # ” ,

” depends ” : ” h t t p : / / schemas . ogf . org / o c c i / i o t #

a g g r e g a t o r m i x i n s ” ,

” a p p l i e s ” : ” h t t p : / / schemas . ogf . org / o c c i / i o t # a g g r e g a t o r ” ,

” a t t r i b u t e s ” :{

”com . example . NTCtoDegrees . n t c i n ” :{ ” t y p e ” : ” s t r i n g ” } ,

”com . example . NTCtoDegrees . d e g r e e s o u t ” :{ ” t y p e ” : ” s t r i n g ” } ,

”com . example . NTCtoDegrees . g a i n ” :{ ” t y p e ” : ” number ” } ,

”com . example . NTCtoDegrees . p e r i o d ” :{ ” t y p e ” : ” number ”}

} ,

” t i t l e ” : ” NTCtoDegrees ” ,

” l o c a t i o n ” : ” / a g g r e g a t o r /NTC”}

Received: September 26, 2018 89

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.09

The aggregator mixin processes the temperature

data and creates the collaborate successive value

which is shown in the Table 2. The raw data

collected from the input channel NTC-in and

convert into degrees using a logarithmic

interpolation of the characteristic function of the

NTC. Data in the history combined using an

exponentially weighted moving average and, at

regular intervals of seconds, the current value is

transferred across the degrees_out channel.

Using the above mixins, it is possible to define

an architecture with an arbitrary number of sensors:

the system smoothly scales, when the number of

aggregators in the intermediate layer increases the

capacity of the ThingSpeak aggregator and further

layer can also be added.

4. Experimental study

The prototypes that implemented in the devices

are the eUtilities, according with NIST terminology,

which are an Arduino Duemilanove for the

measurement device and Rashberry Pi for the

aggregator. These are two low cost devices that help

to implement the study and the Arduino contains an

Ethernet shield. The switched Ethernet network used

in this study because it provides minimal

interference on measurements that requires to

function. The wireless devices are most commonly

used devices in this green field, but it barely

introduces uncertainty into experiments, without

technical added value.

WebSocket server executed by the Arduino that

offers the measurements of the temperature at a

constant rate. The low level interrupts used in these

experiments to initiate data production due to timing

issues. The temperature sensor is the voltage divider

consists of one fixed resistor and a negative

temperature coefficient (NTC) resistor. Raspberry Pi

3 used for hosting aggregator device, which is in

credit card-sized single-board computer depend on a

powerful processor of ARM that is quad core at 1.2

GHz. The operating system used in this

implementation powered by the Linux. This

connects through the public Internet across a NAT

router in order to access the public ThingSpeak

server.

According to Center for Applied Internet Data

Analysis (CAIDA) the dashboard ThingSpeak

server hosted on the Amazon Web Services (AWS)

autonomous system. The numerical data can be

uploaded in the ThingSpeak that allowed by a REST

Application Programming Information (API), these

can be used to monitor and initiate the actions. The

PC connected to the intranet sends the data to the

aggregator, from the request of spawn’s dummy

measurement device. The prototype of the device is

a pipe consists of sensor link (ntc), an aggregator (to

measure the temperature), another sensor link (s1),

and another aggregator (TS). In Fig. (3), every

component indicates the instance identifier, its

OCCI-IOT type, and the associated mixins: the

syntax is outlined in the caption. Every component

consists of OCCI-IOT represents in JSON. The

temperature aggregator representation is shown in

the Table 3. The outgoing NTC sensor link

connection depends on the OCCI technique.

Figure.3 Graphical representation of the system deployed in the prototype. Syntax: < id >:< type > [+ < mixin >]∗

Table 3. OCCI-json rendering of the temp aggregator with the outgoing ntc sensor

{

” k in d ” : ” h t t p : / / schemas . ogf . org / o c c i / i o t # a g g r e g a t o r ” ,

” m i x in s ” : [

” h t t p : / / example . com / a g g r e g a t o r # NTCtoDegrees ”] ,

” a t t r i b u t e s ” : {

”com . example . s e n s o r . NTCtoDegrees ” : {

” n t c i n ” : ” c h a n n e l 1 ” ,

” d e g r e e s o u t ” : ” c h a n n e l 2 ” ,

” g a i n ” : 16 ,

” p e r i o d ” : 30 g g ,

Received: September 26, 2018 90

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.09

” i d ” : ” temp ” ,

” l i n k s ” : [

f ” k in d ” : ” h t t p : / / schemas . ogf . org / o c c i / i o t # s e n s o r ” ,

” m i x in s ” : [” h t t p : / / example . com / s e n s o r #NTC”] ,

” a t t r i b u t e s ” :{

” i d ” : ” n t c ” ,

” t a r g e t ” : {

” l o c a t i o n ” : ” / room / MyRoom” ,

” k in d ” : ” h t t p : / / schemas . ogf . org / o c c i / i o t #rwo ” } ,

” s o u r c e ” : {

” l o c a t i o n ” : ” / a g g r e g a t o r / temp1 ” ,

” k in d ” : ” h t t p : / / schemas . ogf . org / o c c i / i o t # a g g r e g a t o r ”

} ,

”com . example . s e n s o r .NTC” : {

” OUTlevel ” : ” c h a n n e l 1 ” ,

” p e r i o d ” : 1 ,

” u r i ” : ”ws : / / 1 9 2 . 1 6 8 . 1 1 3 . 1 7 7 ”}

gg]}

5. Experimental result

Different input parameter is given to the system

and the output is uploaded to the ThingSpeak, that

helps to monitor the field. The output has been

calculated in the form the various parameters and

these parameters are represented in the graphical

terms. A brief explanation about the simulated result

of this method presented in this section with the

different types of output. The greenhouse is taken as

the case study, in order to evaluate the performance

of the OCCI-based architecture. OCCI technique is

applied and REST-ful interface is provided to help

the user to interact with the system. The Arduino

and Raspberry Pi 3 are the two important devices

used in this method. The aggregator connects with

the sensor, which sends the raw data to the device

and the temperature is monitored using this

technique. The experiment result of this method

uploaded in the ThingSpeak server. There are

various parameters such as temperature, RTT,

latency, clock difference, and frequency evaluated in

this technique. The formula for measuring RTT and

latency can be measured from the following Eqs. (1)

and (2).

𝑅𝑇𝑇 = (𝛼. 𝑂𝑙𝑑_𝑅𝑇𝑇) + ((1 −
𝛼). 𝑁𝑒𝑤_𝑅𝑜𝑢𝑛𝑑_𝑇𝑟𝑖𝑝_𝑆𝑎𝑚𝑝𝑙𝑒) (1)

Where 𝛼 is constant weighting factor (0 ≤ 𝛼 <
1).

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 ×
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 (2)

The temperature is measured by the sensor and

uploaded to the ThingSpeak server, which can be

accessed to monitor the field area parameter. The

graphical representation of the greenhouse is shown

in the Fig. 4. This shows that the temperature varies

across the time and these are recorded by the sensor.

The greenhouse temperature can be constantly

monitored by this method with less delay in the

signal transfer. The jitter shows the delay in the

server and the latency gives the delay by the

Raspberry Pi 3. The temperature is monitored for

100 seconds and these plotted in the graph with time

as X-axis and Temperature as Y-axis.

The RTT is measured to analyze the efficiency

of the system and this gives the time taken for

sending the signal and acknowledge for receiving

signals. The time required to send the signal and

acknowledge is within one second. The RTT is

shown in the Fig. 5. The maximum time taken by

the system to send and acknowledge is 0.96 seconds.

This gives the performance of the method in the

cloud and edge devices. Various numbers of correct

operation rounds are sending across the WebScoket

and receiving the acknowledgement and the

measurement device stops sending the data.

Figure.4 Temperature recorded in the Greenhouse

Received: September 26, 2018 91

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.09

Figure.5 Round trip time for the system

Figure.6 Jitter of event on ThingSpeak server

Figure.7 Clock drift of the method

Figure.8 Latency parameter observed in the technique

The graphical representation of jitter is shown in

the Fig. 6, which gives the delay in the ThinkSpeak

server. Evaluating the packet, it is observed that the

Arduino breaks the connection. The problem caused

due to packet loss and WebScoket hang, which are

difficult to compensate and also causes different

result in the different Ethernet shields.

Conventional Named Data Networking (NDN)

with heterogeneous traffic technique transfers the

data in IoT system and involves in delay. In the

research [12], prioritize the IoT traffic data by using

MDP technique and data has been retrieved. This

allow the data to transfer to the system with lower

latency. Traffic class and the Timestamp are added

in the data and interest packet helps to prioritize the

traffic. The data scheduling technique helps to

achieve the higher performance in this function. The

research has been compared with the OCCI-based

architecture to analysis the performance.

The one-way delay can be measured by using a

significant clock drift and clock drift occurred

between the time period of 40 to 70 seconds. The

clock drift occurred in 0.6 Sec and this shows the

effectiveness of the system. The clock drift with

respect to time is plotted in the graph which is

shown in the Fig. 7. The latency gives the delay

occurs in the Raspberry Pi 3 while updating the

parameters in the cloud (ThingSpeak). The latency

in related to time (sec) of the given system presented

in the graphical representation of Fig. 8. This shows

the effectiveness of the system using the REST

method in the OCCI. In Table 4, RTT of this method

is compared with an existing methods and this

technique achieved less RTT than existing methods.

The OCCI-based architecture manages the resources

using the devices to schedule the data, while

existing method schedule the data based on the

MDP technique in same environment. The existing

methods and proposed method are simulated in the

same data and compared with each other. The

monitoring manager allocate the resource to the

devices and data are passed from sensor devices to

ThingSpeak.

The OCCI-based architecture is compared with

existing method [16] and [17] in terms of response

time. The optimization technique has been applied

in the cloud services to improve the performance of

the cloud management [16]. The two types of

optimization techniques are used in the research [16]

for identifying optimal number and optimal

placement in service management application and in

cloud respectively. The optimization technique has

been applied to Automatic managers (AMs).

AMsOPTIMIZATION is proposed for finding

optimal number in service based application, which

Received: September 26, 2018 92

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.09

has the capacity to run in parallel and the set of

waiting service will run after receiving data

transmission. AMsASSIGNMENT algorithm is

proposed for assigning the services in the cloud and

this algorithm also runs in parallel. In order to avoid

the bottleneck problem, this technique will assign

the task in the cloud while two service running in

parallel. The extension has been proposed to the

OCCI to support the different aspect of autonomic

computing [17]. Automatic Manager has been

introduced to allocate the resource to enable

automatic management in cloud. Initiate of the

method involves in monitoring the data and applies

the analysis rules. The ActionLink has been used the

manager to reconfigure the actions and applies them

on Resources. The OCCI-based architecture method

has the different architecture compare to the

research [16] and [17] in same environment, to

increase the performance by proper assignment.

Table 4. RTT with existing system

5.1 Comparative analysis

The OCCI-based architecture tends to reduce the

data traffic in the IoT environment and effectively

transmit the data between the devices. Comparison

between the OCCI-based architecture and existing

helps to understand the effectiveness of the OCCI-

based architecture. The important aspect to consider

in the resource management method is response

time and other parameters are compared with

existing system which is shown in Table 5. The

different parameters are simulated and calculated for

the 500 client request.

The parameters that are measured showed that

the OCCI-based architecture is effective compared

to the other existing methods in monitoring

greenhouse. Different measures are made and

evaluated in this method, which gives the efficiency

of this method.

Table 5. Different parameters compared with existing

system

6. Conclusion

The aim of this research is to provide the

optimized method for the monitoring technique

through IoT. OCCI is applied in this technique and

this can be easily extendable and it provides an

interface between the various layers of the system.

The two major hardware used in this method is

Arduino and Raspberry Pi 3. In order to evaluate the

performance of the proposed OCCI technique, the

greenhouse is used as the case study. The sensor is

connected to the various part of the study area and

this provides the raw data to the system. Using these

data, temperature is monitored through the Internet

and the optimization made by this technique.

Simulation result of the OCCI-based architecture

system uploaded to the ThingSpeak server and this

is an external server. The RTT achieved up to 0.96

seconds and delay has been reduced. The purpose is

to contribute standard production for IoT

infrastructures and components, to foster an open

competition in a fast growing market.

References

[1] H. Qin, W. Chen, B. Cao, M. Zeng, and Y. Peng,

“A cross-interface design for energy-efficient

and delay-bounded multi-hop communications

in IoT”, Ad Hoc Networks, Vol.70, pp.103-120,

2018.

[2] F. Karim and F. Karim, “Monitoring system

using web of things in precision agriculture”,

Procedia Computer Science, Vol.110, pp.402-

409, 2017.

[3] J.F. Mendoza, H. Ordóñez, A. Ordóñez, and J.L.

Jurado, “Architecture for embedded software in

microcontrollers for Internet of Things (IoT) in

fog water collection”, Procedia Computer

Science, Vol.109, pp.1092-1097, 2017.

Iteration

Number

Optimal

technique

[16]

Automatic

manager

and

Resource

manager

[17]

MDP-

IoT

[12]

OCCI-based

architecture

20 26 26 24 22

40 30 28 27 24

60 35 32 28 25

80 38 37 32 28

100 42 39 34 31

120 64 58 48 42

Parameters Optimal

technique

[16]

Automatic

manager

and

Resource

manager

[17]

MDP-

IoT

[12]

OCCI-

based

architecture

RTT 14104 792 746 621

Latency

(average

delay in ms)

36 32 20 17

Clock drift 1.4 1.2 0.8 0.6

Jitter (ms) 1.68 1.52 1.26 0.97

Received: September 26, 2018 93

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.09

[4] N. Sahraei, S. Watson, S. Sofia, A. Pennes, T.

Buonassisi, and I.M. Peters, “Persistent and

adaptive power system for solar powered

sensors of Internet of Things (IoT)”, Energy

Procedia, Vol.143, pp.739-741, 2017.

[5] G. Severino, G. D’Urso, M. Scarfato, and G.

Toraldo, “The IoT as a tool to combine the

scheduling of the irrigation with the

geostatististics of the soils”, Future Generation

Computer Systems, Vol.82, pp.268-273, 2018.

[6] A. Perles, E. Pérez-Marín, R. Mercado, J.D.

Segrelles, I. Blanquer, M. Zarzo, and F.J.

Garcia-Diego, “An energy-efficient internet of

things (IoT) architecture for preventive

conservation of cultural heritage”, Future

Generation Computer Systems, Vol.81, pp.566-

581, 2018.

[7] D.Y. Kim, S. Kim, H. Hassan, and J.H. Park,

“Adaptive data rate control in low power wide

area networks for long range IoT services”,

Journal of Computational Science, Vol.22,

pp.171-178, 2017.

[8] M. Wei, S.H. Hong, and M. Alam, “An IoT-

based energy-management platform for

industrial facilities”, Applied energy, Vol.164,

pp.607-619, 2016.

[9] F. Al-Turjman, “Information-centric

framework for the Internet of Things (IoT):

Traffic modeling & optimization”, Future

Generation Computer Systems, Vol.80, pp.63-

75, 2018.

[10] A. Fensel, D.K. Tomic, and A. Koller,

“Contributing to appliances’ energy efficiency

with Internet of Things, smart data and user

engagement”, Future Generation Computer

Systems, Vol.76, pp.329-338, 2017.

[11] Y. Zhang and S. Sun, “Real-time data driven

monitoring and optimization method for IoT-

based sensible production process”, In: Proc. of

the 10th International Conf. on Networking,

Sensing and Control, pp.486-490, 2013.

[12] S. Muralidharan, A. Roy, and N. Saxena,

“MDP-IoT: MDP based interest forwarding for

heterogeneous traffic in IoT-NDN

environment”, Future Generation Computer

Systems, Vol.79, pp.892-908, 2018.

[13] S. Liu, G. Zhang, and L. Wang, “IoT-enabled

Dynamic Optimisation for Sustainable Reverse

Logistics”, Procedia CIRP, Vol.69, pp.662-667,

2018.

[14] S. Jeon and I. Jung, “Experimental evaluation

of improved IoT middleware for flexible

performance and efficient connectivity”, Ad

Hoc Networks, Vol.70, pp.61-72, 2018.

[15] H.R. Arkian, A. Diyanat, and A. Pourkhalili,

“MIST: Fog-based data analytics scheme with

cost-efficient resource provisioning for IoT

crowdsensing applications”, Journal of

Network and Computer Applications, Vol.82,

pp.152-165, 2017.

[16] L. Hadded, F.B. Charrada, and S. Tata,

“Optimization and approximate placement of

autonomic resources for the management of

service-based applications in the cloud”, In:

Proc. of International Conf. on the Move to

Meaningful Internet Systems, pp.175-192, 2016.

[17] M. Mohamed, D. Belaïd, and S. Tata,

“Extending OCCI for autonomic management

in the cloud”, Journal of Systems and

Software, Vol.122, pp.416-429, 2016.

