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Abstract: This paper presents a new model of the Neural Network PID-Like controller using an Actor-Critic 

reinforcement algorithm, called the Neural Network PID-Like controller using an Actor-Critic reinforcement 

algorithm (NNPID-AC). The proposed NNPID-AC controller is designed to develop the performances and the speed 

of calculation under the iterative learning algorithm. In the learning algorithm, the critic algorithm receives the reward 

value and control input to criticize the current state using the action-state value function approximation. Furthermore, 

instead of applying every available action to predict the local successor state, the algorithm only uses one-step 

estimation using the fifth degree spherical-radial cubature rule algorithm. To evaluate the proposed NNPID-AC 

controller, the robot arm MATLAB simulations have been implemented and provide the control system with the load 

and noise to prove the robustness and fault tolerance, respectively. From the results, the robot arm control system 

simulation under the control of the proposed NNPID-AC controller can potentially track the error and gives the best 

responses compared with the other conventional controller either with or without the load and the noise disturbance. 

Keywords: Nonlinear dynamic control system, Actor-critic reinforcement learning algorithm, Neural network 

controller, Intelligent system. 

 

 

1. Introduction 

Generally, control system performances along 

with accuracy, precision, and responses of the 

dynamic control system, can be strongly affected by 

factors such as uncertain variables of models, noises 

of the measurements, an online control system, 

loading conditions and a non-linearity. In the past, the 

well-known controller such a PID controller is widely 

used on improving the control system applications to 

deal with these factors. Many studies of the controller 

that has been carried out need some algorithms to 

acquire the best performances. For example, an 

analytical tuning method requires an accurate plant 

model and an objective model to obtain the PID gain 

[1, 2]. Ziegler–Nichols’ (Z-N) straightforward tuning 

technique is necessary to use an empirical test [3]. A 

frequency response method is suitable for the off-line 

tuning technique [4]. An optimization method 

requires the off-line numerical optimization method 

for the multi-objective [5]. Especially, an adaptive 

tuning method utilizes the computational intelligent 

technique has some limitations, including data 

preparation, over fitting values, time-consuming, etc 

[6-9]. 

Recently, the controller algorithms have been 

published to increase the performances such as a 

fuzzy controller [10], a Lyapunov gain PID (LGPID) 

algorithm [11], a neural network controller [12, 13], 

and a fractional order PID (FOPID) algorithm [14]. 

One of the successful controllers is the neural 

network controller based on PID architecture. This 

controller uses a combination of the computational 

intelligent algorithm and the PID controller, known 

as the neural network PID-Like controller (also called 

the NNPID controller). The performance of the 

NNPID controller depends on the weight updating 

rule. Due to the advantages of the learning algorithm 

such as robustness, an adaptation, and a multi-input 

multi-output system of the NNPID controller, they 

have been extensively applied to the weight updating 

rule for the dynamic control system. For examples, 
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Kalman learning algorithm is used in the learning 

algorithm [15-17]. However, they still have the 

problem in the linearization of the highly nonlinear 

system. To solve this problem, the Cubature Kalman 

Filter (CKF) algorithm has been published [18] to 

deal with the linearization problem. Consequently, 

the results of the control system under the algorithm 

give good performances. Since the CKF algorithm is 

designed for the nonlinear system, it has been widely 

used in control applications [19-21].  

More recent learning approaches have been 

published in control system applications, known as 

the actor-critic reinforcement algorithm [22-24].  In 

these papers, they use the neural network to construct 

the system model. However, the model is based on 

constant weight values. Then the main problem is left 

for the real-time nonlinear control system in terms of 

divergence of some initial values, and system 

performances. Therefore, in this paper, we construct 

the neural network controller using the new design of 

the iterative learning algorithm, namely a hybrid of 

online actor-critic reinforcement learning algorithm 

with the square root cubature Kalman filter, called the 

NNPID-AC controller. The proposed NNPID-AC 

controller uses the neural network to create the neural 

network actor controller algorithm and the critic 

algorithm. We use the action-state value 

approximation that is generated by the critic 

algorithm to reinforce the control input. The control 

input is developed by the weights of the neural 

network actor controller. The contributions of this 

paper are the guided target of the amplitude of control 

inputs using the action-state value function, which 

uses the fifth degree of the square root spherical-

radial cubature rule algorithm without using the 

system parameters, and without applying for every 

available action to evaluate the local optimal state.  

To evaluate the proposed NNPID-AC controller 

capabilities, the robot arm control system simulation 

using the MATLAB program is implemented. In the 

experiments, the NNPID-AC controller and other 

controllers, including the classical PID controller, the 

NNPID gradient-based controller [15] and the 

Hybrid-CKF controller [19] have been created. 

Furthermore, load and noise disturbance are added 

MATLAB simulations to test the robustness and fault 

tolerance of the system. The results of the proposed 

NNPID-AC controller from the robot arm 

simulations exhibit the best responses with various 

situations.  

In the rest of this paper, the problem formulation 

is described in section 2. Next, the proposed 

controller design, including the model and the 

reinforcement learning algorithm, is presented in 

section 3. After that, experiment setup and their 

results using the MATLAB program are 

demonstrated in section 4 and section 5, respectively. 

These sections also provide the performance 

comparison between the proposed controller, and the 

other designs. Finally, the conclusion is given in 

section 6. 

2. The problem formulation 

Let us consider the plant moving by the controller 

under the closed-loop control system as shown in Fig. 

1. In this study, the iterative learning algorithm is 

used to update the parameters. To create the iterative 

learning algorithm, the dynamic system model is first 

discussed. Since the proposed controller is based on 

the neural network, the weight update is significant to 

the system output performances. Then, the weight 

and the control input of the controller are defined as 

the state and the output of the dynamic system. And 

the relation between the weights and the output, also 

called the action, is a stochastic nonlinear system 

because of the activation function. Therefore, the 

dynamic system model is defined as 

1 1( | )k k kp w w w                     (1) 

 k ku h w                               (2) 
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Figure. 1 The nonlinear dynamic control system diagram using the proposed NNPID-AC controller algorithm 
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where wk is the state at the iteration kth, uk is the 

control input of the system, p(wk+1|wk) is the 

transition weight conditional function, and h(wk) is 

the control input function that is the neural network 

PID-Like controller function. It will be described 

later in the topic of the neural network actor 

controller. 

Regarding the state, the relation between the 

weights and the actions is nonlinear because of the 

activation function. Then, the next state and final 

state or desired target state are unknown. To find the 

next state applying to the system, the total cost must 

be minimized. According to the Bellman optimality 

principle [26], let V(w,u) be a total cost function of 

the control system problem, also known as the value 

function approximation, given by 

   
2

1

1
ˆ( )

2
k d k kV ,u y y E V      w w     (3) 

where yd and yk denote the desired target value and 

the actual value of the control system at the iteration 

kth, respectively. E[Vk(ŵ)] is the expected function of 

the value function of the optimal next state, ŵ, called 

the local successor state. Considering the second term 

of the value function approximation, the large space 

of the control input is used to search for the local 

successor state. To reduce the high searching space, 

optimal action of the second term of the value 

function approximation is estimated. Therefore, the 

goal of this work is to search for the local successor 

state and the final successor state using a hybrid of 

online actor-critic reinforcement learning algorithm 

with the square root cubature Kalman filter until 

reaching the total cost function condition. 

3. The proposed controller design  

From Fig. 1, the control system diagram using the 

proposed NNPID-AC controller algorithm is divided 

into two operations; the neural network actor 

controller operation and the critic algorithm 

operation, called the neural actor and the critic 

algorithm, respectively. The control system 

architecture is designed by the neural network under 

the iterative learning algorithm, which begins 

generating control input using the neural actor to 

supply the plant. At each iteration, the actions will be 

evaluated by the critic algorithm using the action-

state value function approximation that grades the 

state estimation for the best performances. In other 

words, the critic algorithm is designed to predict the 

unknown local successor state instead of searching 

the optimal action from all actions. The neural actor 

and the critic algorithm operation will be discussed in 

sequels.  

e1
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Figure. 2 The neural actor controller 

3.1 The neural actor 

To search for the optimal state, the neural actor 

will recursively calculate the weight to compensate 

the dynamic control system. The neural actor has 

been extended from the PID-Like controller 

according to [19], which consists of three-layer, 

namely the input layer, hidden layer, and output layer 

as shown in Fig. 2. The output of the network is given 

by  

 1
,

2
1, 1 3, 1,

1
,

1 exp

0, ,
a k k k

k a k k
e

k kq qu 





 
       

 


w b

w b (4) 

where ek is the system error, which is the different 

value between the current value and the desired target 

at iteration kth. qi,k is the ith neuron at time k, called the 

bias value. wa
1 and wa

2 are the weights of the hidden 

layer and output layer, respectively. This network 

will update the optimal weights according to the 

value function approximation using the critic 

algorithm.  

3.2 The critic algorithm  

To update the weight of the neural actor, the critic 

algorithm has been used in the action-state value 

function approximation. The control input from the 

neural actor and the reward from the plant are the 

input of the critic algorithm for the action-state value 

function evaluation. The local successor state, also 

known as the weights of the controller, is first 

evaluated using the square root cubature Kalman 

filter instead of the considering every action available 

to reduce a searching space and a time consumption.  

According to the linear optimal estimation [25], we 

first assume that the relation of the state and the actor 

is Gaussian given by 
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Σ Σw w
w

Σ Σ
 (5) 

where N(·) is the Gaussian distribution function with 

the local successor state (ŵk) and error covariances 

(k|k). Then, the conditional density of the Gaussian 

distribution can be estimated by 

|
ˆ( | ) ( ; , )k k k k k kp u Nw w w Σ            (6) 

where the local successor state is provided by 

 | 1
ˆ ˆ

k k k kK cost w w                (7) 

where costk is the total cost function of the control 

system problem that will be replaced with the action-

state value function approximation as described in the 

previous section. K is the Kalman gain given by 

1
, | 1 , | 1wu k k uu k kK 

  Σ Σ                         (8) 

In case of the error joint covariance, it can be 

expressed as 

1 1
| , | 1 , | 1 , | 1 , | 1k k ww k k wu k k uu k k uw k k

 
    Σ Σ Σ Σ Σ      (9) 

where ww,k|k-1, and uu,k|k-1 are the predicted  joint 

covariance and the innovation covariance matrix, 

respectively, which can be expressed as 

, | 1 1 1 1 1 1| 1 1

| 1 | 1 1

ˆ( ; , )T
ww k k k k k k k k k

T
k k k k k

N d       


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

 

Σ w w w w Σ w

w w Q

 (10) 

, | 1 | 1 | 1

| 1 | 1

ˆ( ) ( ) ( ; , )T
uu k k k k k k k k k k

T
k k k k k

h h N d

u u

  



 



 

Σ w w w w Σ w

R

(11) 

Both of wu,k|k-1 and uw,k|k-1  are the cross-covariance 

of the state and measurement given by  

, | 1 | 1 | 1 | 1 | 1
ˆ( ) ( ; , ) T

wu k k k k k k k k k k k k k kh N d u    



 Σ w w w w Σ w w   (12) 

where uk|k-1 and ŵk|k-1 are the predicted likely-hood 

function and the predicted state function, respectively, 

given by  

| 1 1 1 1 , 1| 1 1
ˆ ˆ( ; , )k k k k k ww k k kN d      



 w w w w Σ w   (13) 

     | 1 | 1 , | 1
ˆ( ; , )k k k k k k ww k k ku h N d  



  w w w Σ w    (14) 

where h(wk), Qk-1 and Rk are the control law model 

that is the neural actor, the last error covariance and 

error output covariance, respectively. wk-1 is the last 

updated state. Finally, the term of Qk-1 is set to zero 

and Rk is given by 

  1 1

1 T

k k k k kcost cost
k

   R R R     (15) 

where Rk-1 is the last error covariance. Eq. (7) is the 

posterior distribution of the state updating function. 

It will be used in the closed-loop control system. 

Regarding to the Gaussian integral function with 

the nonlinear function of ∫h(w)N(w;ŵ,∑)dw, it can be 

approximated by using the spherical-radial algorithm  

[18] that can be expressed as 

   | 1 1 | 1

1 1 1

1
ˆ2

exp( ) ,

N k k k k k
n

T
k k k

I h h

d


  



  

 

 

 Σ w w

w w w

   (16) 

where exp(-wkwT
k) is the weighting function. To 

solve the above Gaussian weighting integral 

functions, the spherical-radial algorithm has been 

applied to transform them into the spherical-radial 

integral functions. Let r and s be r = wkwT
k and s = 

wk/r. Then, Eq. (16) can be approximated by  

     1 2

0

, ,

1 1

exp( )

sr

n
k k

nn

r i s j i j

i j

I h h r r r d dr

h r



 








 

 

   

 



s s

s

    (17) 

Because the accuracy of the approximation using 

spherical-radial cubature rule depends on the degree 

of the cubature rule by giving the nr and ns, the fifth 

degree of the approximation of the spherical-radial 

cubature integral function is implemented. To 

achieve the requirements, the spherical-radial 

cubature rule has been separately calculated by using 

the radial rule, S(r) = ∫h(rs)dσ(s), and the spherical 

rule, ∫S(r)rn-1e-rdr, to represent ωr, ωs, r, and h[rs] as 

follows.  

Generally, in the third degree, let nr and ns be 1 

and 2n, respectively. Then, the third-degree 

spherical-radial cubature rule integral function can be 

approximated by 

 

  

,3 , ,

1 1

2

| 1 | 1

1

1
ˆ

2

sr nn

N r i s j i j

i j

n

k k k ki
i

I h h r

h n
n

 
 

 



   

 





s

Σ I w

    (18) 

where [I]i is the identity matrix that picks only ith 

column, n is the size of the space of weight vector. In 

case of the fifth degree, we define nr and ns as 2 and 
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Figure. 3 The block diagram of the robot arm control system 

 

2n2, respectively. Then, the fifth-degree spherical-

radial cubature rule integral function can be 

approximated by 
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where [I+
N5] and [I-

N5] are given by  

 5 0.5 ;N ni nj
j

ni < nj    I I I              (20) 

    5 0.5 ;N ni nj
j

ni < nj    I I I              (21) 

respectively, where ni, nj = 1,2,3 …  

The state approximation from the spherical-

radial cubature rule using the fifth degree is applied 

to the Gaussian integral equations from Eq. (10) to 

Eq. (14). All parameters will be used in the neural 

critic algorithm to calculate the local successor state 

of the control system. 

 

4. Experimental setup 

This section will give the explanation of how to 

set the robot arm control system demonstration by 

using the MATLAB/SIMULINK program as shown 

in Fig. 3, which divides into two-part; the controller 

block function simulation part and the robot arm 

block simulation part. We first create the robot arm 

block simulation from the MATLAB’s library with 

some modifications of the physical and electrical 

parameters, including the no-load speed, the supply 

voltage, the armature inductance, the torque and the 

no-load current, which are set to 316 rad/s, 6v, 0.12 

µH, 0.402 Nm, and 8 mA, respectively. Each joint of 

the robot arm simulations is set with movement 

sensors to detect coordination. The signals from the 

sensors will be sent back to the controller.  

In case of the controller block simulation, we use 

the MATLAB block function to code the proposed 

algorithm. Besides, several types of controllers are 

also created using the MATLAB/SIMULINK block 

function for performance competitions, including the 

hybrid CKF-NNPID controller [19], the NNPID 

gradient-based controller [15], and the classical PID 

controller. At the beginning of the operation, all 

parameters such as the predicted plant output, error 

covariances, system error, are set to zero except the 

initial weights of those controllers. They must be 

initiated. The initial weights for each type of 

controllers are acquired by different methods as 

follows. First, the initial values of the hybrid CKF-

NNPID controller can be obtained by a random 

method. The appropriated initial values will be 

generated after the end of the inner loop operation 

[19]. Next, the classical PID controller is obtained 

from the previous our work [15] that is tuned by 

MATLAB’s library program. These values include 
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(a)                                                                           (b) 

 
(c)                                                                                  (d) 

Figure. 4 The error responses of the step input signals of the system without load comparing with other controllers: (a) 1st 

joint, (b) 2nd joint, (c) 3rd joint, and (d) 4th joint 

 

proportional gain (KP), integral gain (KI) and 

derivative gain (KD), which are 25.0, 1.5 and -1.0, 

respectively. Finally, the NNPID gradient-based 

controller, the initial weights are taken from the 

tuning method similar to the classical PID controller. 

In case of the proposed NNPID-AC controller 

algorithm, the initial weights of the neural actor 

controller are initiated by random. Finally, all 

controllers must generate the control input signal 

driving the DC motor with range of 0 – 5 volts. 

Furthermore, the simulations are set for various 

cases, including the control system without the 

load, the control system with the instantaneous 

noise, and the control system with the maximum 

load. 

5. Results and discussion 

From the results, the tests of the proposed 

NNPID-AC controller using the MATLAB 

simulations have been demonstrated. First, results of 

the robot arm control system without the load under 

the proposed NNPID-AC controller can potentially 

force the error back to zero, especially in the second 

joint and third joint that carry the torque more than 

other joints. In this case, the control input must 

generate the higher value of the voltage than the other 

joints to support the torque. On the contrary, it is a 

slightly different in the results of the first joint and 

fourth joint among the proposed controller, the 

Hybrid CKF-NNPID controller, and the PID-like 

controller because of the movements without the high 

torque. In case of the classical PID controller, the 

robot arm control system gives low performances in 

terms of transient response, percent overshoot and 

system stability.  

Furthermore, to evaluate the system robustness, 

the results of the control system with instantaneous 

noise at the time of 2 second as shown in Fig. 5 that 

clearly prove the proposed NNPID-AC controller is 

the best. In other words, error responses of the control 

system under the proposed controller immediately 

converge to zero, while the classical PID controller 

takes a long time to converge back to the reference 

signal, especially in the second joint and third joint of 

the robot arm. In the normal operation, all 

computational intelligent controllers give similar 

results, which are better than the classical PID 

controller. 

The results are significant when the maximum 

load is added to the control system. From Fig. 6, it 

shows that the angle response of the robot arm control 

system with the maximum load under the proposed 

controller is better than the other controllers, 

especially in the second joint and the third joint of the 

robot arm. In case of the third joint, all controllers 

except for the proposed NNPID-AC controller fail to 

maintain stability because of the high torque. 
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(a)                                                                           (b) 

 
(c)                                                                                  (d) 

Figure. 5 The error responses of the step input signals of the system under disturbances at the time of 2 second comparing 

with other controllers: (a) 1st joint, (b) 2nd joint, (c) 3rd joint, and (d) 4th joint 

 

Although the computational intelligent controllers 

use the iterative learning algorithm, the different 

learning algorithm yields different responses as 

shown in Table 1.  It summarizes the angle response 

characteristics of the control system with the 

maximum load under the proposed controller 

comparing with other controllers, which are captured 

from Fig. 6 (b). From Table 1, it has been shown that 

the response characteristics under the proposed 

controller is the best in terms of the stead-state error, 

peak time, settling time and percent overshoot. 

In each iteration, the proposed NNPID-AC 

controller emphasizes the next updated weights 

according to the desired control input from the model 

reference using the hybrid of the actor-critic learning 

algorithm and the square root cubature Kalman filter 

algorithm. In other words, the proposed controller 

uses the model reference and the system error to 

grade the output of the actor controller via the critic 

algorithm. While the Hybrid CKF-NNIPD controller 

uses the prediction algorithm of the next updated 

weights according to only the error of the system. 

Besides, the prediction algorithm of the proposed 

controller uses the fifth degree of the square root 

cubature Kalman filter algorithm for each step of the 

iterations, which is higher resolution than three 

degree. As a result, the learning algorithm of the 

proposed NNPID-AC controller can obtain more 

accuracy.  

Table 1. Step response characteristic of the systems with 

the maximum load under various controllers 

Type of 

controllers 

ess TP TS 
%OS 

(degree) (second) 

NNPID-AC  0.05 0.44 0.63 15.50 

Hybrid CKF-

NNPID 
0.53 0.60 2.6 34.45 

NNPID 3.13 0.51 1.29 22.85 

PID 0.33 1.25 3.02 11.30 

where ess, TP, %OS and TS are the steady-state error 

of the step response characteristics, peak time, 

percent overshoot and settling time, respectively.  

Finally, in Fig. 7, the response error of the control 

system with the maximum load under the proposed 

controllers are compared with the other controllers. 

These results more clearly prove that the proposed 

NNPID-AC controller is the best controller. 

6. Conclusion 

A new controller design for the nonlinear control 

system using the actor-critic reinforcement learning 

algorithm has been proposed. In these studies, the 

weight of the actor controller is the important role in 

driving the robot arm along with the desired position. 

The critic algorithm using the fifth degree of the 

cubature Kalman filter has been selected to update the 

weight of the actor controller.  By using the fifth 

degree of the cubature Kalman filter, the critic 

algorithm does not require searching through every 
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action. Therefore, the proposed algorithm not only 

maintains the system stability, but also increases the 

performances and the speed. Furthermore, the robot 

arm MATLAB simulations also provides the control 

system with the load and noise to prove the 

robustness and fault tolerance. From the result, the 

proposed NNPID-AC controller gives the best 

performances either with or without noise 

disturbance and load.  

In the future work, we will apply this algorithm 

to the real robot arm in real-world applications. 

 

 
(a)                                                           (b) 

 
(c)                                                                (d) 

Figure. 6 The angle responses of the system comparing with other controllers with the maximum load: (a) 1st joint, (b) 2nd 

joint, (c) 3rd joint, and (d) 4th joint 

 

 
(a)                                                                (b) 

 
(c)                                                                                   (d) 

Figure. 7 The error responses of step input signals of the system with the maximum load comparing with other 

controllers: (a) 1st joint, (b) 2nd joint, (c) 3rd joint, and (d) 4th joint 
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