
Received: July 17, 2018 220

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.22

New Efficient and Fast Method to Compute the Weights Enumerators of Some

Large Doubly Even Self Dual Quadratic Residue Codes

Saïd Nouh1* Moulay Seddiq El Kasmi Alaoui1 Mostafa Belkasmi2 Abdelaziz Marzak1

1Information Technology and Modeling Laboratory, Faculty of Sciences Ben M'sik,

Hassan II University, Casablanca, Morocco
2National School of Computer Science and Systems Analysis,

Mohammed V University, Rabat, Morocco

* Corresponding author’s Email: said.nouh@univh2c.ma

Abstract: Quadratic Residue codes are among the best codes. They have high capacity of error correction but they

are very difficult to enumerate and therefore to analyse. Despite all developed methods in this domain, the weights

enumerators of Quadratic Residue codes are known only for lengths less than or equal to 167. For the lengths 191

and 199 only estimations are available. In this paper, we present a new method based on the Multiple Impulse

Method (MIM) and hash techniques to find the weights enumerators of Quadratic Residue codes having lengths in

the form 8m-1, for an integer m. The proposed method Hash_MIM_Weights_Enumerators is validated on all

Quadratic Residue codes of known weights enumerators; its reduced spatial and temporal complexities yields to new

important results. So, the weights enumerators for the lengths 191, 199 and 223 are determined. These three codes

are the best binary linear block codes in terms of minimum distance known until today and their analytical

performances are remained unknowns in more than 60 years ago and they are available now.

Keywords: Quadratic residue codes, Error-correcting codes, Weights enumerators, MIM method, Hash techniques.

1. Introduction

The weights enumerator of a binary linear code

C(n, k) is the polynomial 𝐴(𝑥) = ∑ 𝐴𝑖𝑥
𝑖𝑛

𝑖=0 , where

𝐴𝑖 represents the number of codewords having the

weight i, n is the code length and k is its dimension.

Finding the polynomial 𝐴(𝑥) is a very interesting

problem in coding theory [1-3]. The minimum

distance d of C is the less non zero weight i for

which the coefficient 𝐴𝑖 is not null. The problem of

finding d is NP-hard [4] and therefore finding

𝐴(𝑥) is a more difficult problem, because it requires

finding the number of all codewords of each weight.

In [5] we have presented the method PWEH(Partial

Weights Enumerator with Hash techniques) for

finding an approximation of Partial Weights

Enumerator by integration of Hash techniques in the

PWE(Partial Weights Enumerator) [6] in order to

reduce its temporal complexity. In [7], authors have

proposed a method to find only an approximation of

the weights enumerators of quadratic residue codes

especially for the lengths 191 and 199. In [8], the

authors proposed the use of the complete weights

enumerator in order to deduce the weights

enumerator for linear code. In [9-10], the authors

establish the matroid structures corresponding to

data-local and local maximally recoverable codes

(MRC). In [11] the authors have determined the

weights enumerator for the duals of a class of cyclic

codes with three zeros, few months later, in [12]

they have generalized their method for the codes

whose duals have 2i zeros, where (2 ≤ 𝑖 ≤
𝑗+1

2
)𝑓𝑜𝑟 𝑖, 𝑗 ∈ 𝐼𝑁2 .

In [13] authors have determined the weights

enumerators for every irreducible cyclic code of

length n over a finite field Fq , in the case which

each prime divisor of n is also a divisor of q−1.

In [14] the authors have used Gauss periods to

determine weight distribution of some cyclic codes.

Received: July 17, 2018 221

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.22

In [15], the authors obtained the weight distribution

and constructed some classes of cyclic codes whose

duals have two Niho type zeroes; the advantage of

the class thus constructed is that it contains optimal

cyclic codes with two or three non-zeros weights.

For a linear block code over a Binary Symmetric

Channel (BSC) with a transition probability p, the

upper bound of decoding error probability [16] is

given by the Eq. (1).

𝑃𝑒(𝐶) ≤ ∑ (
𝑛
𝑖
)𝑝𝑖

𝑛

𝑖=𝑡+1

(1 − 𝑝)𝑛−𝑖 (1)

Where t is the code correcting capacity

Proakis [17] exposes that the transition probability p

can be formulated as in Eq. (2):

𝑝 = 𝑄(√2𝑅
𝐸𝑏
𝑁0
)𝑎𝑛𝑑 𝑄(𝑥)

=
1

√2𝜋
∫ 𝑒−𝑧

2 2⁄
∞

𝑥

𝑑𝑧 (2)

Where R represent the code rate (𝑅 =
𝑘

𝑛
) and

𝐸𝑏

𝑁0

represents the ratio signal/noise.

On a Gaussian channel AWGN (Additive white

Gaussian noise) an upper bound about decoding

error probability [16] is given by Eq. (3).

𝑃𝑒(𝐶) ≤ ∑ 𝐴𝑤

𝑛

𝑤=𝑑

𝑄(√2𝑤𝑅
𝐸𝑏
𝑁0
) (3)

The authors of [18] have demonstrated that for a

systematic linear block code over a decoded AWGN

channel by the maximum likelihood decoder (MLD)

algorithm, the binary error probability Pe(C) has the

following upper bound Eq. (4):

𝑃𝑒(𝐶) ≤ 𝑃𝑎 = ∑
𝑤𝐴𝑤
𝑛

𝑛

𝑤=0

𝑄(√2𝑤𝑅
𝐸𝑏
𝑁0
) (4)

The bound Pa represents the analytical performances

over the AWGN channel for the code C. Despite the

various works proposed in this field, the weights

enumerators of several codes are still unknown, for

example the largest Quadratic Residue code QR(n)

of which the weights enumerator is known is that of

length 167 [19-22]. The best linear codes known

today are given in [23]; This web site regularly

Table 1. Comparison between lower bounds and the

minimum distances of some QR codes

n k
Minimum weight of

QR(n)

Lower

Bound

191 96 27 27

199 100 31 31

223 112 31 31

updated contains for each length n less than 256 and

each dimension k the best known code of highest

minimum distance called the lower bound LB.

Before presenting QR codes, we give in table 1 a

comparison between the values of LB and those of

the minimum distances of some quadratic residue

codes of lengths up to 223.

The minimum distances of quadratic residue

code of lengths 191, 193, 199 and 223 are

respectively 27, 27, 31 and 31 [24-25]. Those of

higher lengths are given in [26-29]; they are found

by using the Multiple Impulse Method (MIM) and

its improvements.

It is well known that in the binary case all

Extended Quadratic Residue codes (EQR) of lengths

in the form 8.m are doubly even self-dual and all

EQR codes with lengths in the form 8m+1 are

formally self-dual [30]. Let E(n) the weights

enumerator of EQR(n), we have the following

equalitie Eq. (5) obtained from the MacWilliams-

identity [3]:

 ∀𝑗 ≤ 𝑛: 𝐸𝑗 =

2−𝑘 ∑ 𝐸𝑖
𝑛
𝑖=0 ∑ (−1)𝑙 (

𝑖
𝑙
) (
𝑛 − 𝑖
𝑗 − 𝑙

)
𝑗
𝑙=0 (5)

Let B(n) the binary weights enumerator of EQR(n),

𝐵(𝑥) = ∑ 𝐵𝑖𝑥
𝑖𝑛

𝑖=0 where 𝐵𝑖 is equal to 1 if there are

some codewords of weight i in EQR(n) and it is

equal to 0 otherwise. For n in the form 8m-1 where

𝑚 𝜖 𝐼𝑁∗ , EQR(n) are doubly even self dual code,

therfore if 4 doesn't divide j then 𝐵𝑗 = 𝐸𝑗 = 0.

From 𝐵(𝑛) and Eq. (5) we obtain a linear system

S(n) of integer variables 𝐸𝑗. The resolution of S(n)

permits to considerably reduce the number of

unknown values in E.

Let A(n) be, the weights enumerator of the

QR(n). by the Pless identity [31] we have:

𝑓𝑜𝑟 𝑗 ≤
𝑛 − 1

2
∶

2𝑗𝐴2𝑗 = (𝑛 − (2𝑗 − 1))𝐴2𝑗−1 (6)

By definition of EQR codes and (6) we have:

Received: July 17, 2018 222

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.22

𝑓𝑜𝑟 𝑗 ≤
𝑛 − 1

2
∶

𝐸2𝑗 =
𝑛 + 1

𝑛 + 1 − 2𝑗
𝐴2𝑗 =

𝑛 + 1

2𝑗
𝐴2𝑗−1 (7)

The formula (7) permits to deduce A form E and E

from A.

Let 𝑐 = (𝑐0, 𝑐1, … . . , 𝑐𝑛−3, 𝑐𝑛−2, 𝑐𝑛−1) a

codeword from QR(n) which is cyclic, then 𝜋(𝑐) =
(𝑐𝑛−1, 𝑐0, 𝑐1, … . . , 𝑐𝑛−3, 𝑐𝑛−2) and all words 𝜋𝑗(𝑐)
obtained by shifting c at j time are codewords in

QR(n).

∀ 𝑗𝜖{1,2,3,… , 𝑛 − 1}: 𝜋𝑗(𝑐) = 𝜋 (𝜋 (…(𝜋(𝑐))))
⏟

𝑗 𝑡𝑖𝑚𝑒

The codeword c is called of full order if the set

𝑇 = 𝜋𝑗(𝑐): 𝑗𝜖{1,2,3,… , 𝑛} is of cardinal n and all n

codewords obtained by j cyclic shift

(𝑗𝜖{1,2,3,… , 𝑛}) are distincts, otherwise c is called

of incomplete order.

The remainder of this paper is organised as

follows. In the next section, we describe briefly the

method Hash_MIM_Weights_Enumerators

proposed in this work. In section 3 we explain how

to validate and check the results of

Hash_MIM_Weights_Enumerators. In section 4, we

give the main new results. In section 5, we present

the advantages and strengths of the proposed

method, finally, a conclusion and a possible future

direction of this research are outlined in section 6.

2. Description of the proposed method

Hash_MIM_Weights_Enumerators

Let N be a positive integer that represents the

size of the Hash table and a list L of many

codewords (only information part) of weight w. All

elements of L belong to QR(n). In order to

accelerate the search of an element in L, this latest is

divided on N sub-sets L[0], L[1],...,L[N-1]; each one

contains the words of the same hash value given by

the Hash function presented in the algorithm A1

below.

Algorithm A1: The used hash function

1 Function hash (word, N)

2 Pos0

3 For i=1 to the dimension k of the code

4 If word [i] =1 then

5 PosPos + i;

6 End If

7 End For

8 Return (Pos modulo N)

9 EndFunction

To check if a codeword(only the information part)

exist in the list L or not, we define the

Fast_Search_By_Hash function presented in A2

algorithm. We also define, in A3 algorithm, a

function that we called

NumberOfCodeWordsWithoutCyclicCopie, this

function is used to compute the number of

codewords of a given weight in QR(n) code by

saving a sample for each codewords class.

Algorithm A2: Fast Search of a vector in a list

1 Function Fast_Search_By_Hash (L,e)

2 L : a set of binary vectors of length k,

divided on N sub-sets numbered from 0 to

N-1.

3 e : a binary vector of length k

4 Outputs:

5 True if e in L and False otherwise.

6 Begin Function

7 hhash(e,N)

8 If e in L[h] then

9 Return True

10 Else

11 Return False

12 End If

13 End Function

Algorithm A3: Find the number of codewords of a given weight in a given QR(n) code

1 Function NumberOfCodeWordsWithoutCyclicCopies (w, GEN, Half_Aut)

2 Inputs:

3 - The weight w

4 - The generator matrix G of QR(n)

5 - The half of the sub group Half_Aut of Automorphisms without inverses

6 Begin Function

7 - Initially the list L is empty : L[]

8 - Aw0

9 - Number_of_iterations  0

10 Repeat

11 - Find a codeword c of weight w by the MIM method

Received: July 17, 2018 223

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.22

 - For each element  from Half_Aut do:

12 - If (c) is of full order then

13 If there not exists any integer p in [0,1,2,....,n-1]:

14 Fast_Search_By_Hash(information_part(p((c))),L)=True then

15 o Add (c) in the list L.

16 o Aw Aw+1

17 End

18 Else display("Element of incomplete order is found")

19 End

20 - Number_of_iterations  Number_of_iterations +1

21 Until there not exists any element to add in L

22 Outputs: The number N of elements in L

23 End Function

In A4 algorithm we present the method

Hash_MIM_Weights_Enumerators:

Algorithm A4: hash_MIM_Weights_Enumerators

steps

 Inputs:

- The length n of the quadratic residue code

QR(n).

- The generator matrix GE(n) of EQR(n).

Outputs:

- The weights enumerator E(n) and A(n) of

the EQR(n) and QR(n) codes.

1. Find the binary weights enumerators B(n) of

EQR(n) using GE(n) and the MIM method

2. Create the system S(n) by using B(n) and the

MacWilliams identity

3. Solve S(n) to obtain the form of E(n) and

that of A(n) and find the list R(n) of the

residual unknowns of the form R4j which are

sufficient to determine A(n) and E(n)

4. Find A(n) as follows:

For each element R4j in R(n) do

 4.1) find the number 4j-1 of codewords of

weight 4j-1 in the QR(n) code without

cyclic copies:

4j-1NumberOfCodeWordsWithout-

 CyclicCopies(4j-1, GEN, Half_Aut)

4.2) A4j-1n* 4j-1

End For

5. Determine the weights enumerator E(n) by

using the Pless identity and A(n).

In order to reduce the temporal (run time) and

spatial (memory) complexities of the proposed

method, the codewords of QR(n) are divided in

many classes as it is illustrated in the Fig. 1. Two

codewords c and c' are in the same class if it exist an

integer u such that c'=πu(c). The idea behind this

reduction is to store only one representative element

of each class to construct the set L4j-1 whose the size

is 4j-1, then we deduce A4j-1 by multiplying 4j-1 by

n.

In order to clarify the proposed method

Hash_MIM_Weights_Enumerators steps we give

some examples.

Example 1:

The QR(7) code which can be generated by the

polynomial g in binary form g={1,0,1,1}.

Firstly, g is used to construct the generator

matrices GEN(7) and GE(7) of the QR(7) and

EQR(7) codes respectively.

1000101 10001011

0100111 01001110

0010110 00101101

0001011 00010111

G GE

   
   
    
   
      
   

Figure. 1 Representation of cyclic class

Received: July 17, 2018 224

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.22

Table 2. The system S(7)

E[0]=1, E[1]=0,

E[2]=0, E[3]=0,

E[5]=0, E[6]=0,

E[7]=0,E[8]=1,

-4E[6]+2E[3]+8E[0]+6E[1]+4E[2]-6E[7]-8E[8]-

2E[5]=0,

4E[6]+14E[7]-2E[3]+4E[2]+14E[1]-

2E[5]+28E[0]+28E[8]-4E[4]=0,

-14E[7]-56E[8]-6E[3]+4E[6]+6E[5]-

4E[2]+56E[0]+14E[1]=0,

14E[7]+56E[0]-4E[2]-14E[1]+6E[3]-56E[8]-

6E[5]+4E[6]=0,

28E[8]-14E[1]+2E[3]-14E[7]-

4E[4]+28E[0]+2E[5]+4E[2]+4E[6]=0,

8E[0]+4E[2]+6E[7]-4E[6]-8E[8]-2E[3]+2E[5]-6E[1]=0,

The binary weights enumerator of the EQR(7) code

is below:

B={1,0,0,0,1,0,0,0,1}

From B and the MacWilliams identity (5), the

system S(7) for the EQR(7) code is presented as

Table 2. Solving the system (S) above gives the

following solution

{E[0]=1, E[1]=0, E[2]=0, E[3]=0, E[4]=14, E[5]=0,

E[6]=0, E[7]=0, E[8]=1}

Which doesn’t contains any unknown, therefore the

weights enumerators E of EQR(7) is obtained

without executing the fourth step of the method

Hash_MIM_Weights_Enumerators.

By the formula (7) the weights enumerator A(7)

is obtained and it is as follows:

{A[0]=1,A[1]=0, A[2]=0, A[3]=7, A[4]=7, A[5]=0,

A[6]=0, A[7]=1}

Example 2:

The QR(71) code can be generated by the

polynomial g in binary form

g={1,0,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,

0,1,1,0,1,1,0,0,1,1}.

Like in the first example, the generator matrices

GEN(71) and GE(71) are constructed, the binary

weights enumerator B(71) is found and the system

S(71) is made.

By solving S(71), the form of E(71) is obtained

and it is given in Table 3. By the Pless identity, the

form of A(71) is also obtained and it is given in

Table 4.

From Tables 3 and 4, the list R(71) contains only

the unknown variable R={R12}={X}. By the step

(4.1), the value of 11 is 7 and that of A11 is 497.

The value of R12 is 2982 and the corresponding

enumerators A(71) and E(71) are given respectively

in Tables 5 and 6.

Table 3. The form of E(71)

E[12]=6*x

E[16]=249849-72*x

E[20]=18106704+396*x

E[24]=462962955-1320*x

E[28]=4397342400+2970*x

E[32]=16602715899-4752*x

E[36]=25756721120+5544*x

Table 4. The form of A(71)

A[11]=x

A[12]=5*x

A[15]=55522-16*x

A[16]=194327-56*x

A[19]=5029640+110*x

A[20]=13077064+286*x

A[23]=154320985-440*x

A[24]=308641970-880*x

A[27]=1710077600+1155*x

A[28]=2687264800+1815*x

A[31]=7378984844-2112*x

A[32]=9223731055-2640*x

A[35]=12878360560+2772*x

Table 5. The weights enumerator A(71)

A[0]=1

A[11]=497

A[12]=2485

A[15]=47570

A[16]=166495

A[19]=5084310

A[20]=13219206

A[23]=154102305

A[24]=308204610

A[27]=1710651635

A[28]=2688166855

A[31]=7377935180

A[32]=9222418975

A[35]=12879738244

Table 6. The weights enumerator E(71)

E[0]=1

E[12]=2982

E[16]=214065

E[20]=18303516

E[24]=462306915

E[28]=4398818490

E[32]=16600354155

E[36]=25759476488

Received: July 17, 2018 225

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.22

3. Check of the results of the method

Hash_MIM_Weights_Enumerators

method (Mykkeltveit congruence check)

3.1 Check by congruence of the number of

codewords of a given weight

Let G the projective special linear group

G=PSL2(n). In [22],the authors have demonstrated

that it is possible to compute the weights enumerator

E of EQR(n) modulo |𝐺| =
𝑛(𝑛2−1)

2
 as follows:

i. Factor |𝐺| in prime numbers |𝐺| = ∏ 𝑞𝑖
𝑚𝑖𝑙

𝑖=1 ,

where qi are prime numbers and mi is the

highest power of qi that divides G .

ii. For each divisor 𝑞𝑖 ≠ 2 :

a) Find a permutation gi of order qi from G, gi

is a generator of a group Si called a Sylow

qi-subgroup of G.

b) Find 𝐸𝑞𝑖 the weights enumerator of the

subcode Ci of EQR(n) fixed by gi.

iii. For the divisor 𝑞𝑖 = 2 :

a) Find the highest integer m such that 2m

divide
𝑛+1

2
 𝑜𝑟

𝑛−1

2
.

b) Find two permutations a and b verifying :

aG and bG, 𝑎2
𝑚
= 1, 𝑏2 = 1, 𝑏𝑎𝑏 =

𝑎−1.

c) Find F2 the weights enumerator of the

subcode C2 fixed by: 𝐻2 = {1, 𝑎
2𝑚−1}.

d) Find F0 the weights enumerator of the

subcode C0 fixed by: 𝐺4
0 = {1, 𝑎2

𝑚−1
, 𝑏,

𝑎2
𝑚−1
𝑏 }.

e) Find F1 the weights enumerator of the

subcode C1 fixed by: 𝐺4
1 = {1, 𝑎2

𝑚−1
, 𝑎𝑏,

𝑎1+2
𝑚−1
𝑏 }.

f) Find E2 the weights enumerator of the

subcode fixed by S2, a Sylow 2-subgroup of

G by :

∀𝑗 ≤ 𝑛: 𝐸𝑗
2 = (2𝑚 + 1)𝐹𝑗

2 − 2𝑚−1(𝐹𝑗
0

+ 𝐹𝑗
1)

iv. For each divisor qi of |𝐺| and for each integer

j less than or equal to n, compute Ej modulo

𝑞𝑖
𝑚𝑖 according to the following

equality:𝐸𝑗 𝑚𝑜𝑑 𝑞𝑖
𝑚𝑖 = 𝐸𝑗

𝑞𝑖 𝑚𝑜𝑑 𝑞𝑖
𝑚𝑖.

v. For each integer j ≤n, compute Ej modulo
|𝐺| by using the Chinese remainder theorem.

3.2 Validation of the Hash_MIM_Weights_

Enumerators method

In order to validate the proposed method, we

present here its application on all quadratic residue

codes of the form 8m-1 for which these metrics are

available.

3.2.1. The QR codes of lengths 7 and 71

For QR codes of lengths 7 and 71, their weights

enumerators found by the proposed method as

explained in the examples above, coincide with

those already known.

3.2.2. The QR codes of lengths n in {23,31,47,79,103}

For these codes, only the three fist steps are

required. Solving the system S(n) for these codes

yield to find the weights enumerators without any

residual unknown variables in the list R(n). The

obtained results coincide with the true available

values.

3.2.3. The QR code of length 127

The QR(127) code can be generated by the

polynomial g in binary form

g={ 1,1,1,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,1,1,0,0,0,0,0,1

,0,1,0,0,1,0,0,1,0,1,0,1,1,0,1,0,0,0,1,1,1,1,1,1,1,1,0,0

,1,1,1,0,1,0,1,0,0,1}.

The generator matrices GEN(127) and GE(127)

are constructed and the system S(127) is made.

By solving S(127), the form of E(127) is obtained

and it is given in Table 7. By the Pless identity, the

form of A(127) is also obtained and it is given in

Table 8.

From Tables 7 and 8, the list R(127) contains

only the unknown variable R={R20}={X}. By the

step (4.1), the value of 19 is 70 and that of A19 is

8890. The value of R20 is 56896 and the

corresponding enumerators A(127) and E(127) are

given respectively in Tables 9 and 10.

Table 7. The form of E(127)

E[20]=32*x

E[24]=13228320-192*x

E[28]=2940970496-2848*x

E[32]=320411086380+48000*x

E[36]=18072021808640-349600*x

E[40]=552523816524960+1637952*x

E[44]=9491115264030720-5550432*x

E[48]=94116072808107840+14387712*x

E[52]=549827773219608576-29457600*x

E[56]=1920594735166941760+48579200*x

E[60]=4051982995220321280-65302848*x

E[64]=5193576851944293670+72021248*x

Received: July 17, 2018 226

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.22

In order to validate the implementation of the

proposed check, we give in Tables 11 and 12 the

Mykkeltveit method results for EQR(127) code and

the congruence of the number of codewords of

weight 20 for this code. The weights enumerators

given in Tables 9 and 10 are then successfully

checked.

Table 8. The form of A(127)

A[19]=5*x

A[20]=27*x

A[23]=2480310-36*x

A[24]=10748010-156*x

A[27]=643337296-623*x

A[28]=2297633200-2225*x

A[31]=80102771595+12000*x

A[32]=240308314785+36000*x

A[35]=5082756133680-98325*x

A[36]=12989265674960-251275*x

A[39]=172663692664050+511860*x

A[40]=379860123860910+1126092*x

A[43]=3262570872010560-1907961*x

A[44]=6228544392020160-3642471*x

A[47]=35293527303040440+5395392*x

A[48]=58822545505067400+8992320*x

A[51]=223367532870465984-11967150*x

A[52]=326460240349142592-17490450*x

A[55]=840260196635537020+21253400*x

A[56]=1080334538531404740+27325800*x

A[59]=1899367029009525600-30610710*x

A[60]=2152615966210795680-34692138*x

A[63]=2596788425972146835+36010624*x

Table 9. The weights enumerator A(127)

A[0]=1

A[19]=8890

A[20]=48006

A[23]=2416302

A[24]=10470642

A[27]=642229602

A[28]=2293677150

A[31]=80124107595

A[32]=240372322785

A[35]=5082581311830

A[36]=12988818908010

A[39]=172664602751130

A[40]=379862126052486

A[43]=3262567479655902

A[44]=6228537915706722

A[47]=35293536896047416

A[48]=58822561493412360

A[51]=223367511592873280

A[52]=326460209251122496

A[55]=840260234424082176

A[56]=1080334587116677120

A[59]=1899366974583683328

A[60]=2152615904528174336

A[63]=2596788489999036416

Table 10. The weights enumerator E(127)

E[0]=1

E[20]=56896

E[24]=12886944

E[28]=2935906752

E[32]=320496430380

E[36]=18071400219840

E[40]=552526728803616

E[44]=9491105395362624

E[48]=94116098389459776

E[52]=549827720843995776

E[56]=1920594821540759296

E[60]=4051982879111857664

E[64]=5193576979998072832

Table 11. The Mykkeltveit method results for EQR(127)

code.

127 H2
0

4G
1

4G S3 S7 S127

k 17 16 22 10 1

20 64 0 0 7 0 0

Table 12. Congruence of the number of codewords of

weight 20 in EQR(127)

n |G| w Ew mod |G| Check

127 1024128 20 56896 Ok

Table 13. The form of E(167)

E[24]=7*y

E[28]=6*x

E[32]=5776211364-168*x+2541*y

E[36]=1251098739072+2268*x-60144*y

E[40]=166068570988089-19656*x+562947*y

E[44]=13047071967014400+122850*x-2761920*y

E[48]=629049676288183920-589680*x+5856697*y

E[52]=19087122102289097472+2260440*x+15900192*

y

E[56]=372099732633702386736-7104240*x-

188636133*y

E[60]=4739291366078578079232+18648630*x+875355

712*y

E[64]=39973673769401063697390-41441400*x-

2764837383*y

E[68]=225696676750383595333248+78738660*x+6663

305712*y

E[72]=860241110734660092710580-128845080*x-

12836992553*y

E[76]=2227390680768729820388352+182530530*x+20

247545472*y

E[80]=3935099590080354173030112-224652960*x-

26494540443*y

E[84]=4755747408657232763578880+240699600*x+28

958598592*y

E[88]=3935099590080354173030112-224652960*x-

26494540443*y

E[92]=2227390680768729820388352+182530530*x+20

247545472*y

E[96]=860241110734660092710580-128845080*x-

12836992553*y

Received: July 17, 2018 227

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.22

E[100]=225696676750383595333248+78738660*x+666

3305712*y

E[104]=39973673769401063697390-41441400*x-

2764837383*y

Table 14. The form of A(167)

A[23]=y

A[24]=6*y

A[27]=x

A[28]=5*x

A[31]=1100230736-32*x+484*y

A[32]=4675980628-136*x+2057*y

A[35]=268092586944+486*x-12888*y

A[36]=983006152128+1782*x-47256*y

A[39]=39540135949545-4680*x+134035*y

A[40]=126528435038544-14976*x+428912*y

A[43]=3417090277075200+32175*x-723360*y

A[44]=9629981689939200+90675*x-2038560*y

A[47]=179728478939481120-68480*x+1673342*y

A[48]=449321197348702800-21200*x+4183355*y

A[51]=5907918745946625408+699660*x+4921488*y

A[52]=13179203356342472064+1560780*x+10978704*

y

A[55]=124033244211234128912-2368080*x-

62878711*y

A[56]=248066488422468257824-4736160*x-

125757422*y

A[59]=1692604059313777885440+6660225*x+3126270

40*y

A[60]=3046687306764800193792+11988405*x+562728

672*y

A[63]=15228066197867071884720-15787200*x-

1053271384*y

A[64]=24745607571533991812670-25654200*x-

1711565999*y

A[67]=91353416779917169539648+31870410*x+26970

52312*y

A[68]=134343259970466425793600+46868250*x+3966

253400*y

A[71]=368674761743425754018820-55219320*x-

5501568237*y

A[72]=491566348991234338691760-73625760*x-

7335424316*y

A[75]=1007629117490615871128064+82573335*x+915

9603904*y

A[76]=1219761563278113949260288+99957195*x+110

87941568*y

A[79]=1873856947657311510966720-106977600*x-

12616447830*y

A[80]=2061242642423042662063392-117675360*x-

13878092613*y

A[83]=2377873704328616381789440+120349800*x+14

479299296*y

A[84]=2377873704328616381789440+120349800*x+14

479299296*y

A[87]=2061242642423042662063392-117675360*x-

13878092613*y

A[88]=1873856947657311510966720-106977600*x-

12616447830*y

A[91]=1219761563278113949260288+99957195*x+110

87941568*y

A[92]=1007629117490615871128064+82573335*x+915

9603904*y

A[95]=491566348991234338691760-73625760*x-

7335424316*y

A[96]=368674761743425754018820-55219320*x-

5501568237*y

A[99]=134343259970466425793600+46868250*x+3966

253400*y

A[100]=91353416779917169539648+31870410*x+2697

052312*y

A[103]=24745607571533991812670-25654200*x-

1711565999*y

3.2.4. The QR code of length 167

From Tables 13 and 14, the list R(167) contains

two unknown variables R={R24, R28}={X, Y}. By

the step (4.1), the value of 23 is 664 and that of

A23 is 110888 and that of 27 is 18094 and that of

A27 is 3021698. The value of R24 is 776216 and

that of R28 is 18130188. Therefore the

corresponding enumerators A(167) and E(167) are

obtained and they coincide with those already found

in [21].

Tables 15 and 16 give the Mykkeltveit method

results for the EQR(167) code and the congruence of

the number of codewords of weights 24 and 28 for

this code. The weights enumerators A(167) and

E(167) are then successfully checked.

Table 15. The Mykkeltveit method results for EQR(167)

code

167 H2
0

4G
1

4G S3 S7 S83 S167

k 22 21 28 12 2 1

E[24]

E[28]

252

1812

6

36

4

0

140

0

0

6

0

0

0

0

Table 16. Congruence of the number of codewords of

weights 24 and 28 in EQR(167)

n |G| w Ew Ew mod

|G|

Check

167 2328648 24 776216 776216 Ok

167 2328648 28 18130188 1829652 Ok

Table 17. The form of E(191)

E[28]=48*x

E[32]=6*y

E[36]=69065734464+11568*x-192*y

E[40]=16681003659936-387072*x+2976*y

E[44]=2638181865286080+4662144*x-29760*y

E[48]=260118707412159120-30019584*x+215760*y

E[52]=16506204128755716672+102079872*x-

1208256*y

E[56]=688919563458768198624-7108608*x

+5437152*y

E[60]=19261567021963529559744-2055291840*x-

Received: July 17, 2018 228

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.22

20195136*y

E[64]=366292346792783194741815+13670572032*x+

63109800*y

E[68]=4798230291291549388046400-56511000000*x-

168292800*y

E[72]=43753732703694320252103840+175210813440*

x+ 387073440*y

E[76]=280144274178089715889150656-

434619319680*x-774146880*y

E[80]=1268289709189717721455882224+89027831808

0*x+1354757040*y

E[84]=4082464373929527973794806080-

1533608219520*x-2084241600*y

E[88]=9382224038665793129097020640+22466297548

80*x+2828613600*y

E[92]=15439604564036779974450436032-

2818036032480*x-3394336320*y

E[96]=18224832149069836877698945680+3037942333

440*x+3606482340*y

Table 18. The form of A(191)

A[27]=7*x

A[28]=41*x

A[31]=y

A[32]=5*y

A[35]=12949825212+2169*x-36*y

A[36]=56115909252+9399*x-156*y

A[39]=3475209095820-80640*x+620*y

A[40]=13205794564116-306432*x+2356*y

A[43]=604583344128060+1068408*x-6820*y

A[44]=2033598521158020+3593736*x-22940*y

A[47]=65029676853039780-7504896*x+53940*y

A[48]=195089030559119340-22514688*x+161820*y

A[51]=4470430284871339932+27646632*x-327236*y

A[52]=12035773843884376740+74433240*x-881020*y

A[55]=200934872675474057932-

2073344*x+1585836*y

A[56]=487984690783294140692-

5035264*x+3851316*y

A[59]=6019239694363602987420-642278700*x-

6310980*y

A[60]=13242327327599926572324-1413013140*x-

13884156*y

A[63]=122097448930927731580605+4556857344*x+21

036600*y

A[64]=244194897861855463161210+9113714688*x+42

073200*y

A[67]=1699373228165757074933100-20014312500*x-

59603700*y

A[68]=3098857063125792313113300-36496687500*x-

108689100*y

A[71]=16407649763885370094538940+65704055040*x

+145152540*y

A[72]=27346082939808950157564900+109506758400*

x+241920900*y

A[75]=110890441862160512539455468-

172036814040*x-306433140*y

A[76]=169253832315929203349695188-

262582505640*x-467713740*y

A[79]=528454045495715717273284260+370949299200

*x+564482100*y

A[80]=739835663694002004182597964+519329018880

*x+790274940*y

A[83]=1786078163594168488535227660-

670953596040*x-911855700*y

A[84]=2296386210335359485259578420-

862654623480*x-1172385900*y

A[87]=4300186017721821850836134460+10297053043

20*x+1296447900*y

A[88]=5082038020943971278260886180+12169244505

60*x+1532165700*y

A[91]=7398143853600957071090833932-

1350308932230*x-1626452820*y

A[92]=8041460710435822903359602100-

1467727100250*x-1767883500*y

A[95]=9112416074534918438849472840+15189711667

20*x+1803241170*y

Table 19. Results of Hash_MIM_Weights_ Enumerators

method for EQR(191) Q
R

(1
9

1
)

Weigh

t w

Sizeof

(Half_A

ut)
w-1 Aw-1 Ew

28 9073 665 127015 870960

32 9073
14004

9

267493

59

1604961

54

Table 20. The Mykkeltveit method results for EQR(191)

191 H2
0

4G
1

4G S3 S5 S19 S191

k 25 24 32 20 6 1

E[28]

E[32]

144

5274

6

30

0

42

0

0

0

19

0

0

0

0

Table 21. Congruence of the number of codewords of

weights 28 and 32 in EQR(191)

N |G| w Ew Ew mod

|G|

Check

191 3483840 28 870960 870960 Ok

191 3483840 32 160496154 239514 Ok

4. New results obtained by the proposed

Hash_MIM_Weights_Enumerators

method

4.1 For the QR(191) code

The forms of E(191) and A(191) are given in

Tables 17 and 18. From Tables 17 and 18, the list

R(191) contains two unknown variables R={R28,

R32}={X, Y}. By the step (4.1), the value of 27 is

665 and that of A27 is 127015 and that of 31 is

140049 and that of A31 is 26749359. The value of

R28 is 870960 and that of R32 is 160496154.

Tables 20 and 21 give the Mykkeltveit method

results for the EQR(191) code and the congruence of

the number of codewords of weights 28 and 32 for

Received: July 17, 2018 229

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.22

this code. The obtained weights enumerators A(191)

and E(191) are then successfully checked.

4.2 For the QR(199) code

The forms of E(199) and A(199) are given in

Tables 22 and 23. From Tables 22 and 23, the list

R(199) contains one unknown variable

R={R32}={X}. By the step (4.1), the value of 31

is 40260 and that of A31 is 8011740. The value of

R32 is 50073375.

Table 22. The form of E(199)

E[32]=25*x

E[36]=21005534550-450*x

E[40]=6467522952660+1225*x

E[44]=1252975498471200+48800*x

E[48]=152872620852751800-824600*x

E[52]=12069364505468120400+7427600*x

E[56]=630615147670747950200-46927800*x

E[60]=22215915779698502141280+227986400*x

E[64]=535999851662996527356550-892437300*x

E[68]=8973312175360724436541800+2896038600*x

E[72]=105388467829350995361897825-7941316500*x

E[76]=876310274663366548170765600+18652452000*

x

E[80]=5197894915757311013178267720-

37900941000*x

E[84]=22129281942550350836000132400+6711754200

0*x

E[88]=67949637583204730713462120200-

104150049000*x

E[92]=151037779970268049961942408800+142175052

000*x

E[96]=243659108313146247784654076100-

171190052250*x

E[100]=285720732951827690430040227204+18209200

0500*x

Table 23. The form of A(199)

A[31]=4*x

A[32]=21*x

A[35]=3780996219-81*x

A[36]=17224538331-369*x

A[39]=1293504590532+245*x

A[40]=5174018362128+980*x

A[43]=275654609663664+10736*x

A[44]=977320888807536+38064*x

A[47]=36689429004660432-197904*x

A[48]=116183191848091368-626696*x

A[51]=3138034771421711304+1931176*x

A[52]=8931329734046409096+5496424*x

A[55]=176572241347809426056-13139784*x

A[56]=454042906322938524144-33788016*x

A[59]=6664774733909550642384+68395920*x

A[60]=15551141045788951498896+159590480*x

A[63]=171519952532158888754096-285579936*x

A[64]=364479899130837638602454-606857364*x

A[67]=3050926139622646308424212+984653124*x

A[68]=5922386035738078128117588+1911385476*x

A[71]=37939848418566358330283217-2858873940*x

A[72]=67448619410784637031614608-5082442560*x

A[75]=332997904372079288304890928+7087931760*

x

A[76]=543312370291287259865874672+11564520240

*x

A[79]=2079157966302924405271307088-

15160376400*x

A[80]=3118736949454386607906960632-

22740564600*x

A[83]=9294298415871147351120055608+2818936764

0*x

A[84]=12834983526679203484880076792+389281743

60*x

A[87]=29897840536610081513923332888-

45826021560*x

A[88]=38051797046594649199538787312-

58324027440*x

A[91]=69477378786323302982493508048+654005239

20*x

A[92]=81560401183944746979448900752+767745280

80*x

A[95]=116956371990310198936633956528-

82171225080*x

A[96]=126702736322836048848020119572-

89018827170*x

A[99]=142860366475913845215020113602+91046000

250*x

Table 24. Results of Hash_MIM_Weights_ Enumerators

method for EQR(199) Q
R

(1
9

9
)

Weight

w

Sizeof

(Half_Aut)
w-1 Aw-1 Ew

32 9851 40260 8011740
500733

75

Table 25. The Mykkeltveit method results for EQR(199)

code

199 H2
0

4G
1

4G S3 S5 S11 S199

k 25 26 34 20 10 1

E[32] 2675 33 15 165 0 0 0

Table 26. Congruence of the number of codewords of

weight 32 in EQR(199)

n |G| w Ew
Ew mod

|G|
Check

199 3940200 32 50073375 2790975 Ok

Tables 25 and 26 give the Mykkeltveit method

results for the EQR(199) code and the congruence of

the number of codewords of weight 32 for this code.

The obtained weights enumerators A(199) and

E(199) are then successfully checked.

Received: July 17, 2018 230

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.22

4.3 For the QR(223) code

The forms of E(223) and A(223) are given in

Tables 27 and 28. From Tables 27 and 28, the list

R(223) contains two unknown variables

R={R32,R36}={X, Y}. By the step (4.1), the value

of 31 is 3219 and that of A31 is 717837 and the

value of 35 is 301365 and that of A35 is 67204395.

The value of R32 is 5024859 and the value of R36 is

418160680.

Table 27. The form of E(223)

E[32]=7*x

E[36]=56*y

E[40]=246417930220+2884*x-1232*y

E[44]=80690107161664-47936*x+7112*y

E[48]=17550496534206454-82670*x+92064*y

E[52]=2504471683086108736+8145088*x-2263800*y

E[56]=240078191252776863116-

97417180*x+24670128*y

E[60]=15763939270240573508096+645783040*x-

183186696*y

E[64]=720767184970029831323690-

2704246405*x+1038487296*y

E[68]=23271686084583894860833280+6325921280*x-

4740925728*y

E[72]=536980260826595701652416880+3049738832*x

+17984612800*y

E[76]=8945959934878559088858602240-

104783015680*x-57879288544*y

E[80]=108548656056240810065913755400+561702053

976*x+160365374848*y

E[84]=966438422361296455257637094144-

1999652402944*x-386702936928*y

E[88]=6353270924418855788746208965424+55229306

24400*x+818266002624*y

E[92]=31000218573269999868742423985664-

12508919711232*x-1528972452000*y

E[96]=112755414265555964374737628832469+238756

60564350*x+2535090243840*y

E[100]=306759943483298927727889868797440-

39008931601920*x-3743402125680*y

E[104]=625861933005349483774332446615016+55080

443818680*x+4936109381280*y

E[108]=959338593364805114215735730445696-

67605850032000*x-5822988919440*y

E[112]=1105989123247284833952831214328836+7236

0343810860*x+6151986456000*y

Table 28. The form of A(223)

A[31]=x

A[32]=6*x

A[35]=9*y

A[36]=47*y

A[39]=44003201825+515*x-220*y

A[40]=202414728395+2369*x-1012*y

A[43]=15849842478184-9416*x+1397*y

A[44]=64840264683480-38520*x+5715*y

A[47]=3760820685901383-17715*x+19728*y

A[48]=13789675848305071-64955*x+72336*y

A[51]=581395212144989528+1890824*x-525525*y

A[52]=1923076470941119208+6254264*x-1738275*y

A[55]=60019547813194215779-

24354295*x+6167532*y

A[56]=180058643439582647337-

73062885*x+18502596*y

A[59]=4222483733100153618240+172977600*x-

49067865*y

A[60]=11541455537140419889856+472805440*x-

134118831*y

A[63]=205933481420008523235340-

772641830*x+296710656*y

A[64]=514833703550021308088350-

1931604575*x+741776640*y

A[67]=7064618989962968082752960+1920368960*x-

1439209596*y

A[68]=16207067094620926778080320+4405552320*x-

3301716132*y

A[71]=172600798122834332673991140+980273196*x+

5780768400*y

A[72]=364379462703761368978425740+2069465636*x

+12203844400*y

A[75]=3035236406476653976577025760-

35551380320*x-19637615756*y

A[76]=5910723528401905112281576480-

69231635360*x-38241672788*y

A[79]=38767377162943146452112055500+2006078764

20*x+57273348160*y

A[80]=69781278893297663613801699900+3610941775

56*x+103092026688*y

A[83]=362414408385486170721613910304-

749869651104*x-145013601348*y

A[84]=604024013975810284536023183840-

1249782751840*x-241689335580*y

A[87]=2495927863164550488436010664988+21697227

45300*x+321461643888*y

A[88]=3857343061254305300310198300436+33532078

79100*x+496804358736*y

A[91]=12732232628307321374662066994112-

5137592024256*x-627970828500*y

A[92]=18267985944962678494080356991552-

7371327686976*x-901001623500*y

A[95]=48323748970952556160601840928201+1023242

5956150*x+1086467247360*y

A[96]=64431665294603408214135787904268+1364323

4608200*x+1448622996480*y

A[99]=136946403340758449878522262856000-

17414701608000*x-1671161663250*y

A[100]=169813540142540477849367605941440-

21594229993920*x-2072240462430*y

A[103]=290578754609626546038082921642686+25573

063201530*x+2291765069880*y

A[104]=335283178395722937736249524972330+29507

380617150*x+2644344311400*y

A[107]=462538250372316751496872584322032-

32595677694000*x-2807512514730*y

A[108]=496800342992488362718863146123664-

35010172338000*x-3015476404710*y

A[111]=552994561623642416976415607164418+36180

Received: July 17, 2018 231

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.22

171905430*x+3075993228000*y

Table 29. Results of Hash_MIM_Weights_Enumerators

method for EQR(223)

Q
R

(2
2

3
)

Weig

ht w

Sizeof

(Half_Au

t)
w-1 Aw-1 Ew

32 12377 3219 717837 5024859

36 12377
30136

5
6720439

5
4181606

80

Table 30. The Mykkeltveit method results for EQR(223)

code

223 H2
0

4G
1

4G S3 S7 S37 S223

k 29 28 38 16 4 1

E[32]

E[36]

539

7448

9

50

9

0

0

481

0

0

0

0

0

0

Table 31. Congruence of the number of codewords of

weights 32 and 36 in EQR(223)

n |G| w Ew
Ew mod

|G|

Chec

k

22

3

554467

2
32 5024859 5024859 Ok

22

3

554467

2
36

41816068

0
2310280 Ok

Figure. 2 Study of the convergence of A3 algorithm for

QR(191), QR(199) and QR(223) for 27 and 31

Tables 30 and 31 give the Mykkeltveit method

results for the EQR(223) code and the congruence of

the number of codewords of weights 32 and 36 for

this code. The obtained weights enumerators A(223)

and E(223) are then successfully checked.

The main advantage of the proposed method is

its very low complexity comparing to known

methods. All results found here are given by a

simple configuration machine instead of the grid

that contains about 1500 machines used in [20] for

only the small length 137.

Figure. 3 Study of the convergence of A3 algorithm for

QR(223) and 35

We note that during the computing of the three

weights enumerators of QR(191), QR(199) and

QR(223) no codeword of incomplete order is found.

The stop criteria of the algorithm A3 isn’t

deterministic but when this algorithm seems

converges to true value, the proposed check method

permits to verify if the convergence is reached or

not yet. For example, as it is explained in [7], for the

QR(191) there exists an integer  such that

31=3040*+209.

When A3 converges to the value 31=140049 it

means that =46. In order to show the convergence

of the algorithm A3 for the QR(191), QR(199) and

QR(223) codes, we plot in Fig. 2 and 3 the value of

Gamma versus number of iterations. These figures

show clearly the convergence of A3 for these three

codes. We note that the compute of 35 in QR(223)

by A3 has required more number of iterations before

its convergence.

5. Advantages and strengths of the

proposed method Hash_MIM_Weights_

Enumerators

The main succes of the proposed method is that

it is succesfully used for enumerating three

Quadratic Residue codes that they aren’t

enumerables despite all developped methods in this

field.

The first main advantage is that without hash

techniques, the latest step in the old method [7] is

very complex and it is very difficult to find the

complete list Lw of codewords of a given weight w

because it was necessary to verify if a new

codeword isn’t in Lw before inserting it in Lw when

the size of this latest increases. For solving this

problem, the authors of [7] have proposed to use a

statistical Monte Carlo method to estimate the value

of the size Aw of Lw. This statistical way allows

finding an estimation of Aw when it is relatively

Received: July 17, 2018 232

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.22

small. When Aw increases, a list Sw of codewords of

weight w, which they found by applying the

automorphism group on an initial list Iw obtained by

a genetic algorithm, is used to estimate the size of

Lw as a set, i.e. without repetition of any codeword.

So, the old method uses an estimation based on

other estimation and the use of the automorphism

group generates a set of samples used in the Monte

Carlo method that aren’t uniformly distributed.

These problems have a direct impact on the quality

of the estimated values of Aw and they justified the

partial differences between the results obtained in

[7] and those obtained in this work. For the QR(191)

code the values of A27 is 127015 both in [7] and in

this work, but the value of A31 is 26749359 here

and it is estimated by 19677165 in [7]. For the

QR(199) code the value of A31 is 8011740 here but

it is estimated by 6755539 in [7].

The second main advantage is that in [7] a

genetic algorithm is used to catch codewords of a

given weight, but here it is replaced by the powerful

faster Multiple Impulse Method.

The third main advantage is that this new

proposed method requires finding only the list 4j-1

of codewords of weight 4j-1 in the QR(n) code

without cyclic copies. This improvement allows

reducing considerably both the used space memory

and the run time.

The spatial and temporal complexity is divided

by the length of the code. The temporal complexity

is much reduced due to the hash technique used to

verify the non existence of a codeword before

adding it and also due to the no use of the cyclic

copies.

The fourth main advantage is that the

congruence of the number of codewords for a given

weight firstly proposed by Mykkeltveit is used here

to check the obtained result and to verify if the new

proposed method completely converges to the exact

values, but it is used in the old method to estimate

the most likelihood values of the weights

enumerators.

6. Conclusion and perspectives

In this paper we have presented a new efficient

method for finding the weights enumerators for

binary quadratic residue codes having lengths of in

the form 8m-1. These codes are very old but they

are very important; they were discovered by Prange

in 1957. For the lengths 191, 199 and 223 the

weights enumerators are remained unknowns in this

long period of 60 years because they present a very

hard and difficult problem. In consequence of the

new results found in this paper, the analytical

performances of these three codes are now available.

The very important particular property of these three

codes is that they are the best known linear block

codes until now in terms of the minimum distances

that they offer. In the perspectives we have to apply

our method on QR Codes with higher lengths and

also for other linear block codes like BCH and

LDPC codes.

References

[1] G.C. Clark and J.B. Cain, “Error-Correction

Coding for Digital Communications”, First

edition, Springer, New York, 1981.

[2] E.R. Berlekamp, “Algebraic Coding Theory”,

Second Edition, Aegean Park Press, Laguna

Hills, California, 1984.

[3] F.J. MacWilliams and N.J.A. Sloane, “The

theory of Error-Correcting Codes”, North-

Holland, 1977.

[4] A. Vardy, “The intractability of Computing the

Minimum distance of a Code”, In: Proc. IEEE

Transaction on Information Theory, Vol. 43,

No. 6, pp.1757–1766, 1997.

[5] S. El Kasmi Alaoui, S. Nouh, and A. Marzak,

“A Fast Method to Estimate Partial Weights

Enumerators by Hash Techniques and

Automorphism Group”, International Journal

of Advanced Computer Science and

Applications, Vol. 8, No. 9, 2017.

[6] S. Nouh, B. Aylaj, and M. Belkasmi, “A

method to determine partial weight enumerator

for linear block codes”, Computer Engineering

and Intelligent Systems, Vol. 3, No. 10, 2012.

[7] S. Nouh and M. BelkasmiI, “Genetic

algorithms for finding the weight enumerator of

binary linear block codes”, International

Journal of Applied Research on Information

Technology and Computing, Vol. 2, No. 3,

2011.

[8] X. Wang, J. Gao, and F. Fu, “Complete weight

enumerators of two classes of linear codes”, In:

Proc. Cryptogr. Commun., pp. 599-624, 2017.

[9] V. Lalitha and S.V. Lokam, “Weight

enumerators and higher support weights of

maximally recoverable Codes”, In: Proc. IEEE

Communication, Control and Computing, 53rd

Annual Allerton Conference, 2015.

[10] C. Greene, “Weight enumeration and geometry

of linear codes”, In: Proc. Stud. Appl. Math.,

Vol. 55, pp.119–128, 1976.

[11] S. Yang, Z.A. Yao, and C.A. Zhao, “The

weight enumerator of the duals of a class of

cyclic codes with three zeros”, AAECC, Vol. 26,

pp.347-367, 2015.

Received: July 17, 2018 233

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018 DOI: 10.22266/ijies2018.1231.22

[12] H. Yan and C. Liu, “Two classes of cyclic

codes and their weight enumerator”, Designs,

Codes and Cryptogr., Vol. 81, No. 1, 2016.

[13] F.E. Brochero Martínez and C.R. Giraldo

Vergara, “Weight enumerator of some

irreducible cyclic codes”, Designs, Codes and

Cryptogr., Vol. 78, No. 703, 2016.

[14] C. Li, Q. Yue, and F. Li, “Hamming Weights of

the Duals of Cyclic Codes with Two Zeros”, In:

Proc. IEEE Transactions On Information

Theory, Vol. 60, No. 7, July 2014.

[15] S. Li, T. Feng, and G. Ge, “On the weight

distribution of cyclic codes with Niho

exponents”, In: Proc. IEEE Trans. Inf. Theory,

Vol. 60, No. 7, pp.3903–3912, Jul. 2014.

[16] R.H. Morelos-Zaragoza, “The art of error

correcting coding”, John Wiley & Sons Second

Edition, 2006.

[17] J.G. Proakis, “Digital communications”, 5th

edition, 2001

[18] M. P. C. Fossorier, S. Lin, and D. Rhee, “Bit-

error probability for maximum-likelihood

decoding of linear block codes and related soft

decision decoding methods”, In: Proc. IEEE

Transaction on Information Theory, Vol. 44,

pp.3083-3090, 1998.

[19] P. Gaborit, C. S. Nedeloaia, and A.

Wassermann, “On the weight enumerators of

duadic and quadratic residue codes”, In: Proc.

IEEE Trans. Inf. Theory, Vol. 51, pp.402–407,

2005.

[20] C. Tjhai, M. Tomlinson, M. Ambroze, and M.

Ahmed, “On the weight distribution of the

extended quadratic residue code of prime 137”,

In: Proc. of the 7th International ITG

Conference on Source and Channel Coding,

2008.

[21] W. Su, C. Lee, T. Lin, T. Truong, and Y. Chang,

“On Determination of the Weight Distribution

of Binary (168, 84, 24) Extended Quadratic

Residue Code”, In: Proc. of ISIT 2008, 2008.

[22] J. Mykkeltveit, C. Lam, and R.J. McEliece,

“On the weight enumerators of quadratic

residue codes”, JPL Technical Report 32-1526,

Vol.12, pp.161–166, 1972.

[23] M. Grassl, “Bounds on the minimum distance

of linear codes and quantum codes”, Online

available at http://www.codetables.de,

Accessed June 24, 2017.

[24] W.K. Su, P.Y. Shih, T.C. Lin, and T.K. Truong,

"On the minimum weights of binary extended

quadratic residue codes", In: Proc. of the 11th

International Conference on Advanced

Communication Technology, pp.1912-1913,

2009.

[25] Y. Saouter and G. Le Mestre, “A FPGA

implementation of Chen's algorithm”, In: Proc.

of the 35th International Symposium on

Symbolic and Algebraic Computation, 2010.

[26] S. Nouh, I. A. Joundan, B. Aylaj, M. Belkasmi,

and A. Namir, “New Efficient Scheme Based

on Reduction of the Dimension in the Multiple

Impulse Method to Find the Minimum Distance

of Linear Codes”, International Review on

Computers and Software, Vol. 11, No. 9,

pp.742-751, 2016.

[27] I.A. Joundan, S. Nouh, and A. Namir,

“Comparative Study Of Two Minimum

Distance Computing Methods Based On The

Reduction Of Dimension of Linear Codes”, In:

Proc. of the 3rd International Congress on

Advanced Technologies, 2017.

[28] A. Joundan, S. Nouh, and A. Namir, “New

efficient techniques to catch lowest weights in

large Quadratic Residue codes”, In: Proc. of the

5th International Conference on Advances in

Computing, Electronics and Communication,

2017.

[29] M. Askali, A. Azouaoui, S. Nouh, and M.

Belkasmi, “On the computing of the minimum

distance of linear block codes by heuristic

methods”, International Journal of

Communications, Network and System Sciences,

Vol. 5, No. 11, 2012.

[30] E.M. Rains and N.J.A. Sloane, “Self-Dual

Codes”, Elsevier, North Holland, 1998.

[31] V. Pless, “Handbook of Coding Theory”,

Amsterdam, The Netherlands, North Holland,

1998.

[32] E. Prange, “Cyclic error-correcting codes in

two symbols”, Air Force Cambridge Research

Center-TN-57-103, Cambridge, MA, 1957.

