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Abstract: Quadratic Residue codes are among the best codes. They have high capacity of error correction but they 

are very difficult to enumerate and therefore to analyse.  Despite all developed methods in this domain, the weights 

enumerators of Quadratic Residue codes are known only for lengths less than or equal to 167. For the lengths 191 

and 199 only estimations are available. In this paper, we present a new method based on the Multiple Impulse 

Method (MIM) and hash techniques to find the weights enumerators of Quadratic Residue codes having lengths in 

the form 8m-1, for an integer m. The proposed method Hash_MIM_Weights_Enumerators is validated on all 

Quadratic Residue codes of known weights enumerators; its reduced spatial and temporal complexities yields to new 

important results. So, the weights enumerators for the lengths 191, 199 and 223 are determined. These three codes 

are the best binary linear block codes in terms of minimum distance known until today and their analytical 

performances are remained unknowns in more than 60 years ago and they are available now. 

Keywords: Quadratic residue codes, Error-correcting codes, Weights enumerators, MIM method, Hash techniques. 

 

 

1. Introduction 

The weights enumerator of a binary linear code 

C(n, k) is the polynomial 𝐴(𝑥) = ∑ 𝐴𝑖𝑥
𝑖𝑛

𝑖=0 , where 

𝐴𝑖  represents the number of codewords having the 

weight i, n is the code length and k is its dimension. 

Finding the polynomial 𝐴(𝑥)  is a very interesting 

problem in coding theory [1-3]. The minimum 

distance d of C is the less non zero weight i for 

which the coefficient 𝐴𝑖 is not null.  The problem of 

finding d is NP-hard [4] and therefore finding 

𝐴(𝑥) is a more difficult problem, because it requires 

finding the number of all codewords of each weight.  

In [5] we have presented the method PWEH(Partial 

Weights Enumerator with Hash techniques)  for 

finding an approximation of Partial Weights 

Enumerator by integration of Hash techniques in the 

PWE(Partial Weights Enumerator) [6] in order to 

reduce its temporal complexity. In [7], authors have 

proposed a method to find only an approximation of 

the weights enumerators of quadratic residue codes 

especially for the lengths 191 and 199. In [8], the 

authors proposed the use of the complete weights 

enumerator in order to deduce the weights 

enumerator for linear code. In [9-10], the authors 

establish the matroid structures corresponding to 

data-local and local maximally recoverable codes 

(MRC). In [11] the authors have determined the 

weights enumerator for the duals of a class of cyclic 

codes with three zeros, few months later, in [12] 

they have generalized their method for the codes 

whose duals have 2i zeros, where (2 ≤ 𝑖 ≤
𝑗+1

2
)𝑓𝑜𝑟 𝑖, 𝑗 ∈ 𝐼𝑁2  . 

In [13] authors have determined the weights 

enumerators for every irreducible cyclic code of 

length n over a finite field Fq , in the case which 

each prime divisor of n is also a divisor of q−1.  

In [14] the authors have used Gauss periods to 

determine weight distribution of some cyclic codes. 
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In [15], the authors obtained the weight distribution 

and constructed some classes of cyclic codes whose 

duals have two Niho type zeroes; the advantage of 

the class thus constructed is that it contains optimal 

cyclic codes with two or three non-zeros weights. 

For a linear block code over a Binary Symmetric 

Channel (BSC) with a transition probability p, the 

upper bound of decoding error probability [16] is 

given by the Eq. (1). 

 

𝑃𝑒(𝐶) ≤ ∑ (
𝑛
𝑖
)𝑝𝑖

𝑛

𝑖=𝑡+1

(1 − 𝑝)𝑛−𝑖               (1) 

 

Where t is the code correcting capacity  

Proakis [17] exposes that the transition probability p 

can be formulated as in Eq. (2): 

 

𝑝 = 𝑄(√2𝑅
𝐸𝑏
𝑁0
)𝑎𝑛𝑑 𝑄(𝑥)

=
1

√2𝜋
∫ 𝑒−𝑧

2 2⁄
∞

𝑥

𝑑𝑧                     (2) 

 

Where R represent the code rate (𝑅 =
𝑘

𝑛
)  and 

𝐸𝑏

𝑁0
 

represents the ratio signal/noise. 

On a Gaussian channel AWGN (Additive white 

Gaussian noise) an upper bound about decoding 

error probability [16] is given by Eq. (3). 

 

𝑃𝑒(𝐶) ≤ ∑ 𝐴𝑤

𝑛

𝑤=𝑑

𝑄(√2𝑤𝑅
𝐸𝑏
𝑁0
)                (3)  

 

The authors of [18] have demonstrated that for a 

systematic linear block code over a decoded AWGN 

channel by the maximum likelihood decoder (MLD) 

algorithm, the binary error probability Pe(C) has the 

following upper bound Eq. (4): 

 

𝑃𝑒(𝐶) ≤ 𝑃𝑎 = ∑
𝑤𝐴𝑤
𝑛

𝑛

𝑤=0

𝑄(√2𝑤𝑅
𝐸𝑏
𝑁0
)             (4)  

 

The bound Pa represents the analytical performances 

over the AWGN channel for the code C. Despite the 

various works proposed in this field, the weights 

enumerators of several codes are still unknown, for 

example the largest Quadratic Residue code QR(n) 

of which the weights enumerator is known is that of 

length 167 [19-22]. The best linear codes known 

today are given in [23]; This web site regularly 

 

Table 1. Comparison between lower bounds and the 

minimum distances of some QR codes 

n k 
Minimum weight of 

QR(n) 

Lower 

Bound 

191 96 27 27 

199 100 31 31 

223 112 31 31 

 

updated contains for each length n less than 256 and 

each dimension k the best known code of highest 

minimum distance called the lower bound LB.  

Before presenting QR codes, we give in table 1 a 

comparison between the values of LB and those of 

the minimum distances of some quadratic residue 

codes of lengths up to 223.  

The minimum distances of quadratic residue 

code of lengths 191, 193, 199 and 223 are 

respectively 27, 27, 31 and 31 [24-25]. Those of 

higher lengths are given in [26-29]; they are found 

by using the Multiple Impulse Method (MIM) and 

its improvements.  

It is well known that in the binary case all 

Extended Quadratic Residue codes (EQR) of lengths 

in the form 8.m are doubly even self-dual and all 

EQR codes with lengths in the form 8m+1 are 

formally self-dual [30]. Let E(n) the weights 

enumerator of EQR(n), we have the following 

equalitie Eq. (5) obtained from the MacWilliams-

identity [3]: 

 

       ∀𝑗 ≤ 𝑛: 𝐸𝑗 = 

2−𝑘 ∑ 𝐸𝑖
𝑛
𝑖=0 ∑ (−1)𝑙 (

𝑖
𝑙
) (
𝑛 − 𝑖
𝑗 − 𝑙

)      
𝑗
𝑙=0    (5) 

 

Let B(n) the binary weights enumerator of EQR(n), 

𝐵(𝑥) = ∑ 𝐵𝑖𝑥
𝑖𝑛

𝑖=0  where 𝐵𝑖 is equal to 1 if there are 

some codewords of weight i in EQR(n) and it is 

equal to 0 otherwise. For n in the form 8m-1 where 

𝑚 𝜖 𝐼𝑁∗ , EQR(n) are doubly even self dual code, 

therfore if 4 doesn't divide j then 𝐵𝑗 = 𝐸𝑗 = 0. 

From 𝐵(𝑛) and Eq. (5) we obtain a linear system 

S(n) of integer variables 𝐸𝑗. The resolution of S(n) 

permits to considerably reduce the number of 

unknown values in E.  

Let A(n) be, the weights enumerator of the 

QR(n). by the Pless identity [31] we have: 

 

𝑓𝑜𝑟 𝑗 ≤
𝑛 − 1

2
∶ 

2𝑗𝐴2𝑗 = (𝑛 − (2𝑗 − 1))𝐴2𝑗−1         (6) 
 

By definition of EQR codes and (6) we have: 
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𝑓𝑜𝑟 𝑗 ≤
𝑛 − 1

2
∶ 

𝐸2𝑗 =
𝑛 + 1

𝑛 + 1 − 2𝑗
𝐴2𝑗 =

𝑛 + 1

2𝑗
𝐴2𝑗−1     (7) 

 

The formula (7) permits to deduce A form E and E 

from A.  

Let 𝑐 = (𝑐0, 𝑐1, … . . , 𝑐𝑛−3, 𝑐𝑛−2, 𝑐𝑛−1)  a 

codeword from QR(n) which is cyclic, then 𝜋(𝑐) =
(𝑐𝑛−1, 𝑐0, 𝑐1, … . . , 𝑐𝑛−3, 𝑐𝑛−2)  and all words 𝜋𝑗(𝑐) 
obtained by shifting c at j time are codewords in 

QR(n). 

 

∀ 𝑗𝜖{1,2,3,… , 𝑛 − 1}: 𝜋𝑗(𝑐) = 𝜋 (𝜋 (…(𝜋(𝑐))))
⏟          

𝑗 𝑡𝑖𝑚𝑒

 

 

The codeword c is called of full order if the set  

𝑇 = 𝜋𝑗(𝑐): 𝑗𝜖{1,2,3,… , 𝑛} is of cardinal n and all n 

codewords  obtained by j cyclic shift 

(𝑗𝜖{1,2,3,… , 𝑛}) are distincts, otherwise c is called 

of incomplete order. 

The remainder of this paper is organised as 

follows. In the next section, we describe briefly the 

method Hash_MIM_Weights_Enumerators 

proposed in this work. In section 3 we explain how 

to validate and check the results of 

Hash_MIM_Weights_Enumerators. In section 4, we 

give the main new results. In section 5, we present 

the advantages and strengths of the proposed 

method, finally, a conclusion and a possible future 

direction of this research are outlined in section 6. 

2. Description of the proposed method 

Hash_MIM_Weights_Enumerators 

Let N be a positive integer that represents the 

size of the Hash table and a list L of many 

codewords (only information part) of weight w. All 

elements of L belong to QR(n). In order to 

accelerate the search of an element in L, this latest is 

divided on N sub-sets L[0], L[1],...,L[N-1]; each one 

contains the words of the same hash value given by 

the Hash function presented in the algorithm A1 

below. 

 

Algorithm A1: The used hash function 

1 Function hash (word, N) 

2 Pos0 

3 For i=1 to the dimension k of the code 

4 If word [i] =1 then 

5 PosPos + i; 

6 End If 

7 End For 

8 Return (Pos modulo N) 

9 EndFunction 

 

To check if a codeword(only the information part) 

exist in the list L or not, we define the 

Fast_Search_By_Hash function presented in A2 

algorithm.  We also define, in A3 algorithm, a 

function that we called 

NumberOfCodeWordsWithoutCyclicCopie, this 

function is used to compute the number of 

codewords of a given weight in QR(n) code by 

saving a sample for each codewords class. 

 

Algorithm A2: Fast Search of a vector in a list 

1 Function Fast_Search_By_Hash (L,e) 

2 L : a set of binary vectors of length k, 

divided on N sub-sets numbered from 0 to 

N-1. 

3 e :  a binary vector of length k 

4 Outputs:  

5 True if e in L and False otherwise. 

6 Begin Function 

7        hhash(e,N) 

8        If e in L[h] then 

9                      Return True 

10        Else   

11                      Return False 

12        End If 

13 End Function 

 

Algorithm A3: Find the number of codewords of a given weight in a given QR(n) code 

1 Function NumberOfCodeWordsWithoutCyclicCopies (w, GEN, Half_Aut) 

2 Inputs: 

3 -  The weight w 

4 -  The generator matrix G of QR(n) 

5 -  The half of the sub group Half_Aut of Automorphisms without inverses 

6 Begin Function 

7 -  Initially the list L is empty : L[] 

8 -  Aw0 

9 -  Number_of_iterations  0 

10 Repeat 

11 -     Find a codeword c of weight w by the MIM method 



Received:  July 17, 2018                                                                                                                                                    223 

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018           DOI: 10.22266/ijies2018.1231.22 

 

 -    For each element  from Half_Aut do: 

12 -    If (c) is of full order then 

13 If there not exists any integer p in [0,1,2,....,n-1]: 

14 Fast_Search_By_Hash(information_part(p((c))),L)=True   then 

15 o Add (c) in the list L. 

16 o Aw Aw+1 

17 End 

18 Else    display("Element of incomplete order is found") 

19 End 

20 -     Number_of_iterations  Number_of_iterations +1 

21 Until there not exists any element to add in L 

22 Outputs: The number N of elements in L 

23 End Function 

 

In A4 algorithm we present the method 

Hash_MIM_Weights_Enumerators:  

 

Algorithm A4: hash_MIM_Weights_Enumerators 

steps 

   Inputs:  

- The length n of the quadratic residue code    

QR(n). 

- The generator matrix GE(n) of EQR(n). 

Outputs:  

- The weights enumerator E(n) and A(n) of 

the EQR(n) and QR(n) codes. 

1. Find the binary weights enumerators B(n) of 

EQR(n) using GE(n) and the MIM method 

2. Create the system S(n) by using B(n) and the 

MacWilliams identity 

3. Solve S(n) to obtain the form of E(n) and 

that of A(n) and find the list R(n) of the 

residual unknowns of the form R4j which are 

sufficient to determine A(n) and E(n) 

4. Find A(n) as follows: 

For each element R4j in R(n) do 

       4.1) find the number 4j-1 of codewords of 

weight 4j-1 in the QR(n) code without 

cyclic copies: 

4j-1NumberOfCodeWordsWithout-  

           CyclicCopies(4j-1, GEN, Half_Aut) 

4.2) A4j-1n* 4j-1 

End For 

5. Determine the weights enumerator E(n) by 

using the Pless identity and A(n). 

 

In order to reduce the temporal (run time) and 

spatial (memory) complexities of the proposed 

method, the codewords of QR(n) are divided in 

many classes as it is illustrated in the Fig. 1. Two 

codewords c and c' are in the same class if it exist an 

integer u such that c'=πu(c). The idea behind this 

reduction is to store only one representative element 

of each class to construct the set L4j-1 whose the size 

is 4j-1, then we deduce A4j-1  by multiplying 4j-1 by 

n. 

In order to clarify the proposed method 

Hash_MIM_Weights_Enumerators steps we give 

some examples.  

 

Example 1: 

The QR(7) code which can be generated by the 

polynomial g in binary form g={1,0,1,1}. 

Firstly, g is used to construct the generator 

matrices GEN(7) and GE(7) of the QR(7) and 

EQR(7) codes respectively. 

 

1000101 10001011

0100111 01001110

0010110 00101101

0001011 00010111

G GE

   
   
    
   
      
   

 

 

 

 
Figure. 1 Representation of cyclic class 
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Table 2. The system S(7) 

E[0]=1,  E[1]=0, 

E[2]=0,  E[3]=0, 

E[5]=0,  E[6]=0, 

E[7]=0,E[8]=1, 

-4E[6]+2E[3]+8E[0]+6E[1]+4E[2]-6E[7]-8E[8]-

2E[5]=0, 

4E[6]+14E[7]-2E[3]+4E[2]+14E[1]-

2E[5]+28E[0]+28E[8]-4E[4]=0, 

-14E[7]-56E[8]-6E[3]+4E[6]+6E[5]-

4E[2]+56E[0]+14E[1]=0, 

14E[7]+56E[0]-4E[2]-14E[1]+6E[3]-56E[8]-

6E[5]+4E[6]=0, 

28E[8]-14E[1]+2E[3]-14E[7]-

4E[4]+28E[0]+2E[5]+4E[2]+4E[6]=0, 

8E[0]+4E[2]+6E[7]-4E[6]-8E[8]-2E[3]+2E[5]-6E[1]=0, 

 

 

The binary weights enumerator of the EQR(7) code 

is below: 

 

B={1,0,0,0,1,0,0,0,1} 

 

From B and the MacWilliams identity (5), the 

system S(7) for the EQR(7) code is presented as 

Table 2. Solving the system (S) above gives the 

following solution  

 

{E[0]=1, E[1]=0, E[2]=0, E[3]=0, E[4]=14, E[5]=0, 

E[6]=0, E[7]=0, E[8]=1} 

 

Which doesn’t contains any unknown, therefore the 

weights enumerators E of EQR(7) is obtained 

without executing the fourth step of the method 

Hash_MIM_Weights_Enumerators. 

By the formula (7) the weights enumerator A(7) 

is obtained and it is as follows: 

 

{A[0]=1,A[1]=0, A[2]=0, A[3]=7, A[4]=7, A[5]=0, 

A[6]=0, A[7]=1} 

 

Example 2: 

The QR(71) code can be generated by the 

polynomial g in binary form 

 

g={1,0,1,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,

0,1,1,0,1,1,0,0,1,1}. 

 

Like in the first example, the generator matrices 

GEN(71) and GE(71) are constructed, the binary 

weights enumerator B(71) is found and the system 

S(71) is made.  

By solving S(71), the form of E(71) is obtained 

and it is given in Table 3. By the Pless identity, the 

form of A(71) is also obtained and it is given in 

Table 4. 

From Tables 3 and 4, the list R(71) contains only 

the unknown variable R={R12}={X}. By the step 

(4.1), the value of 11 is 7 and that of A11 is 497. 

The value of R12 is 2982 and the corresponding 

enumerators A(71) and E(71) are given respectively 

in Tables 5 and 6. 

 
Table 3. The form of E(71) 

E[12]=6*x 

E[16]=249849-72*x 

E[20]=18106704+396*x 

E[24]=462962955-1320*x 

E[28]=4397342400+2970*x 

E[32]=16602715899-4752*x 

E[36]=25756721120+5544*x 

 

Table 4. The form of A(71) 

A[11]=x 

A[12]=5*x 

A[15]=55522-16*x 

A[16]=194327-56*x 

A[19]=5029640+110*x 

A[20]=13077064+286*x 

A[23]=154320985-440*x 

A[24]=308641970-880*x 

A[27]=1710077600+1155*x 

A[28]=2687264800+1815*x 

A[31]=7378984844-2112*x 

A[32]=9223731055-2640*x 

A[35]=12878360560+2772*x 

 

Table 5. The weights enumerator A(71) 

A[0]=1 

A[11]=497 

A[12]=2485 

A[15]=47570 

A[16]=166495 

A[19]=5084310 

A[20]=13219206 

A[23]=154102305 

A[24]=308204610 

A[27]=1710651635 

A[28]=2688166855 

A[31]=7377935180 

A[32]=9222418975 

A[35]=12879738244 

 

Table 6. The weights enumerator E(71) 

E[0]=1 

E[12]=2982 

E[16]=214065 

E[20]=18303516 

E[24]=462306915 

E[28]=4398818490 

E[32]=16600354155 

E[36]=25759476488 
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3. Check of the results of the method 

Hash_MIM_Weights_Enumerators 

method (Mykkeltveit congruence check) 

3.1 Check by congruence of the number of 

codewords of a given weight 

Let G the projective special linear group 

G=PSL2(n). In [22],the authors have demonstrated 

that it is possible to compute the weights enumerator 

E of EQR(n) modulo |𝐺| =
𝑛(𝑛2−1)

2
 as follows: 

i. Factor  |𝐺|  in prime numbers |𝐺| = ∏ 𝑞𝑖
𝑚𝑖𝑙

𝑖=1 , 

where qi are prime numbers and mi is the 

highest power of qi that divides G .  

ii. For each divisor 𝑞𝑖 ≠ 2 : 

a) Find a permutation gi of order qi from G, gi 

is a generator of a group Si called a Sylow 

qi-subgroup of G.   

b) Find 𝐸𝑞𝑖 the weights enumerator of the 

subcode Ci of EQR(n) fixed by gi. 

iii. For the divisor 𝑞𝑖 = 2 : 

a) Find the highest integer m such that 2m 

divide 
𝑛+1

2
 𝑜𝑟 

𝑛−1

2
. 

b) Find two permutations a and b verifying : 

aG and bG, 𝑎2
𝑚
= 1, 𝑏2 = 1, 𝑏𝑎𝑏 =

𝑎−1. 

c) Find F2 the weights enumerator of the 

subcode C2 fixed by: 𝐻2 = {1, 𝑎
2𝑚−1}. 

d) Find F0 the weights enumerator of the 

subcode C0 fixed by: 𝐺4
0 = {1, 𝑎2

𝑚−1
, 𝑏,

𝑎2
𝑚−1
𝑏 }. 

e) Find F1 the weights enumerator of the 

subcode C1 fixed by: 𝐺4
1 = {1, 𝑎2

𝑚−1
, 𝑎𝑏,

𝑎1+2
𝑚−1
𝑏 }. 

f) Find E2 the weights enumerator of the 

subcode fixed by S2, a Sylow 2-subgroup of 

G by : 

∀𝑗 ≤ 𝑛: 𝐸𝑗
2 = (2𝑚 + 1)𝐹𝑗

2 − 2𝑚−1(𝐹𝑗
0

+ 𝐹𝑗
1) 

iv. For each divisor qi of |𝐺| and for each integer 

j less than or equal to n, compute Ej modulo 

𝑞𝑖
𝑚𝑖  according to the following 

equality:𝐸𝑗 𝑚𝑜𝑑 𝑞𝑖
𝑚𝑖 = 𝐸𝑗

𝑞𝑖  𝑚𝑜𝑑 𝑞𝑖
𝑚𝑖. 

v. For each integer j ≤n, compute Ej modulo 
|𝐺| by using the Chinese remainder theorem. 

 

3.2 Validation of the Hash_MIM_Weights_ 

Enumerators method 

In order to validate the proposed method, we 

present here its application on all quadratic residue 

codes of the form 8m-1 for which these metrics are 

available. 

3.2.1. The QR codes of lengths 7 and 71 

For QR codes of lengths 7 and 71, their weights 

enumerators found by the proposed method as 

explained in the examples above, coincide with 

those already known. 

3.2.2. The QR codes of lengths n in {23,31,47,79,103} 

For these codes, only the three fist steps are 

required. Solving the system S(n) for these codes 

yield to find the weights enumerators without any 

residual unknown variables in the list R(n). The 

obtained results coincide with the true available 

values. 

3.2.3. The QR code of length 127 

The QR(127) code can be generated by the 

polynomial g in binary form 

g={ 1,1,1,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,1,1,0,0,0,0,0,1

,0,1,0,0,1,0,0,1,0,1,0,1,1,0,1,0,0,0,1,1,1,1,1,1,1,1,0,0

,1,1,1,0,1,0,1,0,0,1}. 

The generator matrices GEN(127) and GE(127) 

are constructed and the system S(127) is made.  

By solving S(127), the form of E(127) is obtained 

and it is given in Table 7. By the Pless identity, the 

form of A(127) is also obtained and it is given in 

Table 8. 

From Tables 7 and 8, the list R(127) contains 

only the unknown variable R={R20}={X}. By the 

step (4.1), the value of 19 is 70 and that of A19 is 

8890. The value of R20 is 56896 and the 

corresponding enumerators A(127) and E(127) are 

given respectively in Tables 9 and 10.  

 
Table 7. The form of E(127) 

E[20]=32*x 

E[24]=13228320-192*x 

E[28]=2940970496-2848*x 

E[32]=320411086380+48000*x 

E[36]=18072021808640-349600*x 

E[40]=552523816524960+1637952*x 

E[44]=9491115264030720-5550432*x 

E[48]=94116072808107840+14387712*x 

E[52]=549827773219608576-29457600*x 

E[56]=1920594735166941760+48579200*x 

E[60]=4051982995220321280-65302848*x 

E[64]=5193576851944293670+72021248*x 

 



Received:  July 17, 2018                                                                                                                                                    226 

International Journal of Intelligent Engineering and Systems, Vol.11, No.6, 2018           DOI: 10.22266/ijies2018.1231.22 

 

In order to validate the implementation of the 

proposed check, we give in Tables 11 and 12 the 

Mykkeltveit method results for EQR(127) code and 

the congruence of the number of codewords of 

weight 20 for  this code. The weights enumerators 

given in Tables 9 and 10 are then successfully 

checked. 
 

Table 8. The form of A(127) 

A[19]=5*x 

A[20]=27*x 

A[23]=2480310-36*x 

A[24]=10748010-156*x 

A[27]=643337296-623*x 

A[28]=2297633200-2225*x 

A[31]=80102771595+12000*x 

A[32]=240308314785+36000*x 

A[35]=5082756133680-98325*x 

A[36]=12989265674960-251275*x 

A[39]=172663692664050+511860*x 

A[40]=379860123860910+1126092*x 

A[43]=3262570872010560-1907961*x 

A[44]=6228544392020160-3642471*x 

A[47]=35293527303040440+5395392*x 

A[48]=58822545505067400+8992320*x 

A[51]=223367532870465984-11967150*x 

A[52]=326460240349142592-17490450*x 

A[55]=840260196635537020+21253400*x 

A[56]=1080334538531404740+27325800*x 

A[59]=1899367029009525600-30610710*x 

A[60]=2152615966210795680-34692138*x 

A[63]=2596788425972146835+36010624*x 

 

Table 9. The weights enumerator A(127) 

A[0]=1 

A[19]=8890 

A[20]=48006 

A[23]=2416302 

A[24]=10470642 

A[27]=642229602 

A[28]=2293677150 

A[31]=80124107595 

A[32]=240372322785 

A[35]=5082581311830 

A[36]=12988818908010 

A[39]=172664602751130 

A[40]=379862126052486 

A[43]=3262567479655902 

A[44]=6228537915706722 

A[47]=35293536896047416 

A[48]=58822561493412360 

A[51]=223367511592873280 

A[52]=326460209251122496 

A[55]=840260234424082176 

A[56]=1080334587116677120 

A[59]=1899366974583683328 

A[60]=2152615904528174336 

A[63]=2596788489999036416 

 

Table 10. The weights enumerator E(127) 

E[0]=1 

E[20]=56896 

E[24]=12886944 

E[28]=2935906752 

E[32]=320496430380 

E[36]=18071400219840 

E[40]=552526728803616 

E[44]=9491105395362624 

E[48]=94116098389459776 

E[52]=549827720843995776 

E[56]=1920594821540759296 

E[60]=4051982879111857664 

E[64]=5193576979998072832 

 

Table 11. The Mykkeltveit method results for EQR(127) 

code. 

127 H2 
0

4G  
1

4G  S3 S7 S127 

k  17 16 22 10 1 

20 64 0 0 7 0 0 

 

Table 12. Congruence of the number of codewords of 

weight 20 in  EQR(127) 

n |G| w Ew mod |G| Check  

127 1024128 20 56896 Ok 

 
Table 13. The form of E(167) 

E[24]=7*y 

E[28]=6*x 

E[32]=5776211364-168*x+2541*y 

E[36]=1251098739072+2268*x-60144*y 

E[40]=166068570988089-19656*x+562947*y 

E[44]=13047071967014400+122850*x-2761920*y 

E[48]=629049676288183920-589680*x+5856697*y 

E[52]=19087122102289097472+2260440*x+15900192*

y 

E[56]=372099732633702386736-7104240*x-

188636133*y 

E[60]=4739291366078578079232+18648630*x+875355

712*y 

E[64]=39973673769401063697390-41441400*x-

2764837383*y 

E[68]=225696676750383595333248+78738660*x+6663

305712*y 

E[72]=860241110734660092710580-128845080*x-

12836992553*y 

E[76]=2227390680768729820388352+182530530*x+20

247545472*y 

E[80]=3935099590080354173030112-224652960*x-

26494540443*y 

E[84]=4755747408657232763578880+240699600*x+28

958598592*y 

E[88]=3935099590080354173030112-224652960*x-

26494540443*y 

E[92]=2227390680768729820388352+182530530*x+20

247545472*y 

E[96]=860241110734660092710580-128845080*x-

12836992553*y 
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E[100]=225696676750383595333248+78738660*x+666

3305712*y 

E[104]=39973673769401063697390-41441400*x-

2764837383*y 

 

Table 14. The form of A(167) 

A[23]=y 

A[24]=6*y 

A[27]=x 

A[28]=5*x 

A[31]=1100230736-32*x+484*y 

A[32]=4675980628-136*x+2057*y 

A[35]=268092586944+486*x-12888*y 

A[36]=983006152128+1782*x-47256*y 

A[39]=39540135949545-4680*x+134035*y 

A[40]=126528435038544-14976*x+428912*y 

A[43]=3417090277075200+32175*x-723360*y 

A[44]=9629981689939200+90675*x-2038560*y 

A[47]=179728478939481120-68480*x+1673342*y 

A[48]=449321197348702800-21200*x+4183355*y 

A[51]=5907918745946625408+699660*x+4921488*y 

A[52]=13179203356342472064+1560780*x+10978704*

y 

A[55]=124033244211234128912-2368080*x-

62878711*y 

A[56]=248066488422468257824-4736160*x-

125757422*y 

A[59]=1692604059313777885440+6660225*x+3126270

40*y 

A[60]=3046687306764800193792+11988405*x+562728

672*y 

A[63]=15228066197867071884720-15787200*x-

1053271384*y 

A[64]=24745607571533991812670-25654200*x-

1711565999*y 

A[67]=91353416779917169539648+31870410*x+26970

52312*y 

A[68]=134343259970466425793600+46868250*x+3966

253400*y 

A[71]=368674761743425754018820-55219320*x-

5501568237*y 

A[72]=491566348991234338691760-73625760*x-

7335424316*y 

A[75]=1007629117490615871128064+82573335*x+915

9603904*y 

A[76]=1219761563278113949260288+99957195*x+110

87941568*y 

A[79]=1873856947657311510966720-106977600*x-

12616447830*y 

A[80]=2061242642423042662063392-117675360*x-

13878092613*y 

A[83]=2377873704328616381789440+120349800*x+14

479299296*y 

A[84]=2377873704328616381789440+120349800*x+14

479299296*y 

A[87]=2061242642423042662063392-117675360*x-

13878092613*y 

A[88]=1873856947657311510966720-106977600*x-

12616447830*y 

A[91]=1219761563278113949260288+99957195*x+110

87941568*y 

A[92]=1007629117490615871128064+82573335*x+915

9603904*y 

A[95]=491566348991234338691760-73625760*x-

7335424316*y 

A[96]=368674761743425754018820-55219320*x-

5501568237*y 

A[99]=134343259970466425793600+46868250*x+3966

253400*y 

A[100]=91353416779917169539648+31870410*x+2697

052312*y 

A[103]=24745607571533991812670-25654200*x-

1711565999*y 

 

3.2.4. The QR code of length 167 

From Tables 13 and 14, the list R(167) contains 

two unknown variables R={R24, R28}={X, Y}. By 

the step (4.1), the value of 23 is 664 and that of 

A23 is 110888 and that of 27 is 18094 and that of 

A27 is 3021698. The value of R24 is 776216 and 

that of R28 is 18130188. Therefore the 

corresponding enumerators A(167) and E(167) are 

obtained and they coincide with those already found 

in [21]. 

Tables 15 and 16 give the Mykkeltveit method 

results for the EQR(167) code and the congruence of 

the number of codewords of weights 24 and 28 for  

this code. The weights enumerators A(167) and 

E(167) are then successfully checked. 
 

Table 15. The Mykkeltveit method results for EQR(167) 

code 

167 H2 
0

4G  
1

4G  S3 S7 S83 S167 

k  22 21 28 12 2 1 

E[24] 

E[28] 

252 

1812 

6 

36 

4 

0 

140 

0 

0 

6 

0 

0 

0 

0 

 

Table 16. Congruence of the number of codewords of 

weights 24 and 28 in  EQR(167) 

n |G| w Ew Ew mod 

|G| 

Check 

167 2328648 24 776216 776216 Ok 

167 2328648 28 18130188 1829652 Ok 

 
Table 17. The form of E(191) 

E[28]=48*x 

E[32]=6*y 

E[36]=69065734464+11568*x-192*y 

E[40]=16681003659936-387072*x+2976*y 

E[44]=2638181865286080+4662144*x-29760*y 

E[48]=260118707412159120-30019584*x+215760*y 

E[52]=16506204128755716672+102079872*x-

1208256*y 

E[56]=688919563458768198624-7108608*x 

+5437152*y 

E[60]=19261567021963529559744-2055291840*x- 
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20195136*y 

E[64]=366292346792783194741815+13670572032*x+ 

63109800*y 

E[68]=4798230291291549388046400-56511000000*x- 

168292800*y 

E[72]=43753732703694320252103840+175210813440*

x+ 387073440*y 

E[76]=280144274178089715889150656-

434619319680*x-774146880*y 

E[80]=1268289709189717721455882224+89027831808

0*x+1354757040*y 

E[84]=4082464373929527973794806080-

1533608219520*x-2084241600*y 

E[88]=9382224038665793129097020640+22466297548

80*x+2828613600*y 

E[92]=15439604564036779974450436032-

2818036032480*x-3394336320*y 

E[96]=18224832149069836877698945680+3037942333

440*x+3606482340*y 

 

Table 18. The form of A(191) 

A[27]=7*x 

A[28]=41*x 

A[31]=y 

A[32]=5*y 

A[35]=12949825212+2169*x-36*y 

A[36]=56115909252+9399*x-156*y 

A[39]=3475209095820-80640*x+620*y 

A[40]=13205794564116-306432*x+2356*y 

A[43]=604583344128060+1068408*x-6820*y 

A[44]=2033598521158020+3593736*x-22940*y 

A[47]=65029676853039780-7504896*x+53940*y 

A[48]=195089030559119340-22514688*x+161820*y 

A[51]=4470430284871339932+27646632*x-327236*y 

A[52]=12035773843884376740+74433240*x-881020*y 

A[55]=200934872675474057932-

2073344*x+1585836*y 

A[56]=487984690783294140692-

5035264*x+3851316*y 

A[59]=6019239694363602987420-642278700*x-

6310980*y 

A[60]=13242327327599926572324-1413013140*x-

13884156*y 

A[63]=122097448930927731580605+4556857344*x+21

036600*y 

A[64]=244194897861855463161210+9113714688*x+42

073200*y 

A[67]=1699373228165757074933100-20014312500*x-

59603700*y 

A[68]=3098857063125792313113300-36496687500*x-

108689100*y 

A[71]=16407649763885370094538940+65704055040*x

+145152540*y 

A[72]=27346082939808950157564900+109506758400*

x+241920900*y 

A[75]=110890441862160512539455468-

172036814040*x-306433140*y 

A[76]=169253832315929203349695188-

262582505640*x-467713740*y 

A[79]=528454045495715717273284260+370949299200

*x+564482100*y 

A[80]=739835663694002004182597964+519329018880

*x+790274940*y 

A[83]=1786078163594168488535227660-

670953596040*x-911855700*y 

A[84]=2296386210335359485259578420-

862654623480*x-1172385900*y 

A[87]=4300186017721821850836134460+10297053043

20*x+1296447900*y 

A[88]=5082038020943971278260886180+12169244505

60*x+1532165700*y 

A[91]=7398143853600957071090833932-

1350308932230*x-1626452820*y 

A[92]=8041460710435822903359602100-

1467727100250*x-1767883500*y 

A[95]=9112416074534918438849472840+15189711667

20*x+1803241170*y 

 

Table 19. Results of Hash_MIM_Weights_ Enumerators 

method for EQR(191) Q
R

(1
9

1
) 

Weigh

t w 

Sizeof 

(Half_A

ut) 
w-1 Aw-1 Ew 

28 9073 665 127015 870960 

32 9073 
14004

9 

267493

59 

1604961

54 

 

Table 20. The Mykkeltveit method results for EQR(191) 

191 H2 
0

4G  
1

4G  S3 S5 S19 S191 

k  25 24 32 20 6 1 

E[28] 

E[32] 

144 

5274 

6 

30 

0 

42 

0 

0 

0 

19 

0 

0 

0 

0 

 

Table 21. Congruence of the number of codewords of 

weights 28 and 32 in  EQR(191) 

N |G| w Ew Ew mod 

|G| 

Check 

191 3483840 28 870960 870960 Ok 

191 3483840 32 160496154 239514 Ok 

 

4. New results obtained by the proposed 

Hash_MIM_Weights_Enumerators 

method  

4.1 For the QR(191) code 

The forms of E(191) and A(191) are given in  

Tables 17 and 18. From Tables 17 and 18, the list 

R(191) contains two unknown variables R={R28, 

R32}={X, Y}. By the step (4.1), the value of 27 is 

665 and that of A27 is 127015 and that of 31 is 

140049 and that of A31 is 26749359. The value of 

R28 is 870960 and that of R32 is 160496154. 

Tables 20 and 21 give the Mykkeltveit method 

results for the EQR(191) code and the congruence of 

the number of codewords of weights 28 and 32 for  
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this code. The obtained weights enumerators A(191) 

and E(191) are then successfully checked. 

4.2 For the QR(199) code 

The forms of E(199) and A(199) are given in 

Tables 22 and 23. From Tables 22 and 23, the list 

R(199) contains one unknown variable 

R={R32}={X}. By the step (4.1), the value of 31 

is 40260 and that of A31 is 8011740. The value of 

R32 is 50073375. 
 

Table 22. The form of E(199) 

E[32]=25*x 

E[36]=21005534550-450*x 

E[40]=6467522952660+1225*x 

E[44]=1252975498471200+48800*x 

E[48]=152872620852751800-824600*x 

E[52]=12069364505468120400+7427600*x 

E[56]=630615147670747950200-46927800*x 

E[60]=22215915779698502141280+227986400*x 

E[64]=535999851662996527356550-892437300*x 

E[68]=8973312175360724436541800+2896038600*x 

E[72]=105388467829350995361897825-7941316500*x 

E[76]=876310274663366548170765600+18652452000*

x 

E[80]=5197894915757311013178267720-

37900941000*x 

E[84]=22129281942550350836000132400+6711754200

0*x 

E[88]=67949637583204730713462120200-

104150049000*x 

E[92]=151037779970268049961942408800+142175052

000*x 

E[96]=243659108313146247784654076100-

171190052250*x 

E[100]=285720732951827690430040227204+18209200

0500*x 

 

Table 23. The form of A(199) 

A[31]=4*x 

A[32]=21*x 

A[35]=3780996219-81*x 

A[36]=17224538331-369*x 

A[39]=1293504590532+245*x 

A[40]=5174018362128+980*x 

A[43]=275654609663664+10736*x 

A[44]=977320888807536+38064*x 

A[47]=36689429004660432-197904*x 

A[48]=116183191848091368-626696*x 

A[51]=3138034771421711304+1931176*x 

A[52]=8931329734046409096+5496424*x 

A[55]=176572241347809426056-13139784*x 

A[56]=454042906322938524144-33788016*x 

A[59]=6664774733909550642384+68395920*x 

A[60]=15551141045788951498896+159590480*x 

A[63]=171519952532158888754096-285579936*x 

A[64]=364479899130837638602454-606857364*x 

A[67]=3050926139622646308424212+984653124*x 

A[68]=5922386035738078128117588+1911385476*x 

A[71]=37939848418566358330283217-2858873940*x 

A[72]=67448619410784637031614608-5082442560*x 

A[75]=332997904372079288304890928+7087931760*

x 

A[76]=543312370291287259865874672+11564520240

*x 

A[79]=2079157966302924405271307088-

15160376400*x 

A[80]=3118736949454386607906960632-

22740564600*x 

A[83]=9294298415871147351120055608+2818936764

0*x 

A[84]=12834983526679203484880076792+389281743

60*x 

A[87]=29897840536610081513923332888-

45826021560*x 

A[88]=38051797046594649199538787312-

58324027440*x 

A[91]=69477378786323302982493508048+654005239

20*x 

A[92]=81560401183944746979448900752+767745280

80*x 

A[95]=116956371990310198936633956528-

82171225080*x 

A[96]=126702736322836048848020119572-

89018827170*x 

A[99]=142860366475913845215020113602+91046000

250*x 

 

Table 24. Results of Hash_MIM_Weights_ Enumerators 

method for EQR(199) Q
R

(1
9

9
) 

Weight 

w 

Sizeof 

(Half_Aut) 
w-1 Aw-1 Ew 

32 9851 40260 8011740 
500733

75 

 

Table 25. The Mykkeltveit method results for EQR(199) 

code 

199 H2 
0

4G  
1

4G  S3 S5 S11 S199 

k  25 26 34 20 10 1 

E[32] 2675 33 15 165 0 0 0 

 

Table 26. Congruence of the number of codewords of 

weight 32 in  EQR(199) 

n |G| w Ew 
Ew mod 

|G| 
Check 

199 3940200 32 50073375 2790975 Ok 

 

Tables 25 and 26 give the Mykkeltveit method 

results for the EQR(199) code and the congruence of 

the number of codewords of weight 32 for  this code. 

The obtained weights enumerators A(199) and 

E(199) are then successfully checked. 
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4.3 For the QR(223) code 

The forms of E(223) and A(223) are given in 

Tables 27 and 28. From Tables 27 and 28, the list 

R(223) contains two unknown variables 

R={R32,R36}={X, Y}. By the step (4.1), the value 

of 31 is 3219 and that of A31 is 717837 and the 

value of 35 is 301365 and that of A35 is 67204395. 

The value of R32 is 5024859 and the value of R36 is 

418160680. 
 

Table 27. The form of E(223) 

E[32]=7*x 

E[36]=56*y 

E[40]=246417930220+2884*x-1232*y 

E[44]=80690107161664-47936*x+7112*y 

E[48]=17550496534206454-82670*x+92064*y 

E[52]=2504471683086108736+8145088*x-2263800*y 

E[56]=240078191252776863116-

97417180*x+24670128*y 

E[60]=15763939270240573508096+645783040*x-

183186696*y 

E[64]=720767184970029831323690-

2704246405*x+1038487296*y 

E[68]=23271686084583894860833280+6325921280*x-

4740925728*y 

E[72]=536980260826595701652416880+3049738832*x

+17984612800*y 

E[76]=8945959934878559088858602240-

104783015680*x-57879288544*y 

E[80]=108548656056240810065913755400+561702053

976*x+160365374848*y 

E[84]=966438422361296455257637094144-

1999652402944*x-386702936928*y 

E[88]=6353270924418855788746208965424+55229306

24400*x+818266002624*y 

E[92]=31000218573269999868742423985664-

12508919711232*x-1528972452000*y 

E[96]=112755414265555964374737628832469+238756

60564350*x+2535090243840*y 

E[100]=306759943483298927727889868797440-

39008931601920*x-3743402125680*y 

E[104]=625861933005349483774332446615016+55080

443818680*x+4936109381280*y 

E[108]=959338593364805114215735730445696-

67605850032000*x-5822988919440*y 

E[112]=1105989123247284833952831214328836+7236

0343810860*x+6151986456000*y 

 

Table 28. The form of A(223) 

A[31]=x 

A[32]=6*x 

A[35]=9*y 

A[36]=47*y 

A[39]=44003201825+515*x-220*y 

A[40]=202414728395+2369*x-1012*y 

A[43]=15849842478184-9416*x+1397*y 

A[44]=64840264683480-38520*x+5715*y 

A[47]=3760820685901383-17715*x+19728*y 

A[48]=13789675848305071-64955*x+72336*y 

A[51]=581395212144989528+1890824*x-525525*y 

A[52]=1923076470941119208+6254264*x-1738275*y 

A[55]=60019547813194215779-

24354295*x+6167532*y 

A[56]=180058643439582647337-

73062885*x+18502596*y 

A[59]=4222483733100153618240+172977600*x-

49067865*y 

A[60]=11541455537140419889856+472805440*x-

134118831*y 

A[63]=205933481420008523235340-

772641830*x+296710656*y 

A[64]=514833703550021308088350-

1931604575*x+741776640*y 

A[67]=7064618989962968082752960+1920368960*x-

1439209596*y 

A[68]=16207067094620926778080320+4405552320*x-

3301716132*y 

A[71]=172600798122834332673991140+980273196*x+

5780768400*y 

A[72]=364379462703761368978425740+2069465636*x

+12203844400*y 

A[75]=3035236406476653976577025760-

35551380320*x-19637615756*y 

A[76]=5910723528401905112281576480-

69231635360*x-38241672788*y 

A[79]=38767377162943146452112055500+2006078764

20*x+57273348160*y 

A[80]=69781278893297663613801699900+3610941775

56*x+103092026688*y 

A[83]=362414408385486170721613910304-

749869651104*x-145013601348*y 

A[84]=604024013975810284536023183840-

1249782751840*x-241689335580*y 

A[87]=2495927863164550488436010664988+21697227

45300*x+321461643888*y 

A[88]=3857343061254305300310198300436+33532078

79100*x+496804358736*y 

A[91]=12732232628307321374662066994112-

5137592024256*x-627970828500*y 

A[92]=18267985944962678494080356991552-

7371327686976*x-901001623500*y 

A[95]=48323748970952556160601840928201+1023242

5956150*x+1086467247360*y 

A[96]=64431665294603408214135787904268+1364323

4608200*x+1448622996480*y 

A[99]=136946403340758449878522262856000-

17414701608000*x-1671161663250*y 

A[100]=169813540142540477849367605941440-

21594229993920*x-2072240462430*y 

A[103]=290578754609626546038082921642686+25573

063201530*x+2291765069880*y 

A[104]=335283178395722937736249524972330+29507

380617150*x+2644344311400*y 

A[107]=462538250372316751496872584322032-

32595677694000*x-2807512514730*y 

A[108]=496800342992488362718863146123664-

35010172338000*x-3015476404710*y 

A[111]=552994561623642416976415607164418+36180
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171905430*x+3075993228000*y 

 
Table 29. Results of Hash_MIM_Weights_Enumerators 

method for EQR(223) 

Q
R

(2
2

3
) 

Weig

ht w 

Sizeof 

(Half_Au

t) 
w-1 Aw-1 Ew 

32 12377 3219   717837 5024859 

36 12377 
30136

5   
6720439

5 
4181606

80 
 

Table 30. The Mykkeltveit method results for EQR(223) 

code 

223 H2 
0

4G  
1

4G  S3 S7 S37 S223 

k  29 28 38 16 4 1 

E[32] 

E[36] 

539 

7448 

9 

50 

9 

0 

0 

481 

0 

0 

0 

0 

0 

0 

 

Table 31. Congruence of the number of codewords of 

weights 32 and 36 in  EQR(223) 

n |G| w Ew 
Ew mod 

|G| 

Chec

k  

22

3 

554467

2 
32 5024859 5024859 Ok 

22

3 

554467

2 
36 

41816068

0 
2310280 Ok 

 

 
Figure. 2 Study of the convergence of A3 algorithm for 

QR(191), QR(199) and QR(223) for 27 and 31 

 

Tables 30 and 31 give the Mykkeltveit method 

results for the EQR(223) code and the congruence of 

the number of codewords of weights 32 and 36 for  

this code. The obtained weights enumerators A(223) 

and E(223) are then successfully checked.  

The main advantage of the proposed method is 

its very low complexity comparing to known 

methods. All results found here are given by a 

simple configuration machine instead of the grid 

that contains about 1500 machines used in [20] for 

only the small length 137.  

 

 

 
Figure. 3 Study of the convergence of A3 algorithm for 

QR(223) and 35 

 

We note that during the computing of the three 

weights enumerators of QR(191), QR(199) and 

QR(223) no codeword of incomplete order is found.  

The stop criteria of the algorithm A3 isn’t 

deterministic but when this algorithm seems 

converges to true value, the proposed check method 

permits to verify if the convergence is reached or 

not yet. For example, as it is explained in [7], for the 

QR(191) there exists an integer  such that 

31=3040*+209. 

When A3 converges to the value 31=140049 it 

means that =46. In order to show the convergence 

of the algorithm A3 for the QR(191), QR(199) and 

QR(223) codes, we plot in Fig. 2 and 3 the value of 

Gamma versus number of iterations. These figures 

show clearly the convergence of A3 for these three 

codes. We note that the compute of 35 in QR(223) 

by A3 has required more number of iterations before 

its convergence. 

5. Advantages and strengths of the 

proposed method Hash_MIM_Weights_ 

Enumerators 

The main succes of the proposed method is that 

it is succesfully used for enumerating three 

Quadratic Residue codes that they aren’t 

enumerables despite all developped methods in this 

field. 

The first main advantage is that without hash 

techniques, the latest step in the old method [7] is 

very complex and it is very difficult to find the 

complete list Lw of codewords of a given weight w 

because it was necessary to verify if a new 

codeword isn’t in Lw before inserting it in Lw when 

the size of this latest increases. For solving this 

problem, the authors of [7] have proposed to use a 

statistical Monte Carlo method to estimate the value 

of the size Aw of Lw. This statistical way allows 

finding an estimation of Aw when it is relatively 
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small. When Aw increases, a list Sw of codewords of 

weight w, which they found by applying the 

automorphism group on an initial list Iw obtained by 

a genetic algorithm, is used to estimate the size of 

Lw as a set, i.e. without repetition of any codeword. 

So, the old method uses an estimation based on 

other estimation and the use of the automorphism 

group generates a set of samples  used in the Monte 

Carlo method that aren’t uniformly distributed. 

These problems have a direct impact on the quality 

of the estimated values of Aw and they justified the 

partial differences between the results obtained in 

[7] and those obtained in this work. For the QR(191) 

code the values of A27 is 127015 both in [7] and in 

this work, but the value of A31 is 26749359 here 

and it is estimated by 19677165 in [7]. For the 

QR(199) code the value of A31 is 8011740 here but 

it is estimated by 6755539 in [7]. 

The second main advantage is that in [7] a 

genetic algorithm is used to catch codewords of a 

given weight, but here it is replaced by the powerful 

faster Multiple Impulse Method. 

The third main advantage is that this new 

proposed method requires finding only the list 4j-1 

of codewords of weight 4j-1 in the QR(n) code 

without cyclic copies. This improvement allows 

reducing considerably both the used space memory 

and the run time.  

The spatial and temporal complexity is divided 

by the length of the code. The temporal complexity 

is much reduced due to the hash technique used to 

verify the non existence of a codeword before 

adding it and also due to the no use of the cyclic 

copies.   

The fourth main advantage is that the 

congruence of the number of codewords for a given 

weight firstly proposed by Mykkeltveit is used here 

to check the obtained result and to verify if the new 

proposed method completely converges to the exact 

values, but it is used in the old method to estimate 

the most likelihood values of the weights 

enumerators. 

6. Conclusion and perspectives  

In this paper we have presented a new efficient 

method for finding the weights enumerators for 

binary quadratic residue codes having lengths of in 

the form 8m-1. These codes are very old but they 

are very important; they were discovered by Prange 

in 1957. For the lengths 191, 199 and 223 the 

weights enumerators are remained unknowns in this 

long period of 60 years because they present a very 

hard and difficult problem. In consequence of the 

new results found in this paper, the analytical 

performances of these three codes are now available. 

The very important particular property of these three 

codes is that they are the best known linear block 

codes until now in terms of the minimum distances 

that they offer. In the perspectives we have to apply 

our method on QR Codes with higher lengths and 

also for other linear block codes like BCH and 

LDPC codes. 
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