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Abstract: The Reconfigurable Finite Impulse Response (RFIR) filter design is a significant operation in Digital Signal 

Processing (DSP). The RFIR designs often implemented to evaluate the system performance and hardware utilization. 

The traditional RFIR filter design depends on more sub module such as subtractions, adders, and shifters, which 

occupies more area and increase the system complexity. To overcome this problem, a Low Cost -Radix4- RFIR (LC-

R4-RFIR) filter design is introduced. This research work designed an efficient RFIR filter with the help of Radix 4 

approach, which reduced the filter area and hardware utilization. The RFIR filter was designed by using R4 approach 

for multiplication operation. Multiplication is the one of the main process of adding a number of Partial Products (PPs) 

Hence, integer multiplication is implemented in serial parallel mode by employing an accumulator to add these PPs. 

Using R4, the multiplication operation performed which mitigated the area and hardware utilization of the RFIR design. 

In Field Programmable Gate Array (FPGA) implementation, the number of Look Up Table (LUT), Slice, flip-flop, 

area, and frequency calculated for different Virtex devices such as Virtex-6, Virtex-6 Low Power (LP) and Virtex-7. 

This FPGA experimental results showed that the LC-R4-RFIR filter design performed better compared to conventional 

FIR filter designs. 

Keywords: Field programmable gate array, Reconfigurable finite impulse response, Low power, Radix-4 algorithm. 

 

 

1. Introduction 

The FIR digital filter is the basic component of 

DSP systems. Generally, the FIR filters employed in 

mobile communication devices and multi-media 

applications such as matched filtering, video 

conventional functions, signal pre-conditioning and 

channelization [1]. The FIR filters provide several 

advantages like computational efficiency in multi-

rate applications, Attainable Linear-Phase Response 

(ALPR) and desirable numerical property employed 

for finite precision, and fractional arithmetic [2, 3]. In 

the present days, the RFIR filters are easily 

reconfigurable based on input tabs, are used in digital 

communication systems.  The RFIR filter coefficients 

change dynamically when runtime plays a vital 

PART in the Software Defined Radio (SDR), digital 

up or down converters and so on [4, 5]. Compared to 

the existing non-RFIR filter designs with 

reconfigurable and without reconfigurable, that RFIR 

filters consumeless power [6]. In recent years, the 

different implementation techniques and system 

architectures have been proposed to increase the 

performance of the RFIR filter in terms of reducing 

system complexity and high-system performance [7]. 

The RFIR filter design is implemented based on 

Statistics Center Reconfigurable (SCR) technique. 

That filter architecture design achieved a low-area 

and power consumption. But drawback of this 

technique is not discussing the dynamically 

reconfigurable mechanism [8]. The pipelined 

modified booth multiplier technique employed for 

RFIR filter architecture, which is the order of the 

filter to improve low-power consumption than 

existing architectures, but this strategy is not possible 

for the more-power applications [9, 10]. A low- 

power 8-bit RFIR with minimum power consumption 

that improved system efficiency, but the drawback of 

this technique only matched for 8-bit data [11].  In 

existing work, multiplier and Shift and add method 

has been used to perform the multiplication operation. 

But, these methods occupy more area more 
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computation time. To overcome above mentioned 

problem, the LC-R4-RFIR filter design is 

implemented in this paper, here the R4 employed for 

arithmetic operations because this method occupy 

less area in the RFIR filter. Generally, the complexity 

of the RFIR filter design is dominated by multiplier 

approach. The reduction of area and hardware 

utilization can be achieved by reducing PPs of the 

multiplier. In FPGA implementation, the number of 

LUTs, slice and flip-flop reduced in LC-R4-RFIR for 

various types of devices like Virtex-6, Virtex-6 LP, 

and Virtex-7 compared to conventional techniques. 

This paper is recognized as follows. In section 2, 

described some previous related work.  In Section 3, 

shows LC-R4-RFIR architecture design. In Section 4, 

mentioned experimental setup and results and 

discussion. The conclusion is made in Section 5. 

2. Related work 

B.K. Mohanty, P.K. Meher, S.K. Singhal, and 

M.N.S. Swamy [12] implemented the VLSI 

architecture employed for RFIR filter based on 

Distributed Arithmetic (DA) approach. In this work, 

an analyzed the register complexity of direct-form 

and transform-form structure of the filter. The direct-

form structure involves fewer numbers of registers 

then the transpose-form structure. The advantage of 

this technique is, the less complexity of the large filter 

lengths. But, this proposed method was increased the 

hardware compexity.  

Sriram. N, and J. Selvakumar [13] have 

illustrated the Pipeline Modify Booth Multiplier 

(PMBM) method used for implementing less power 

RFIR filter structure. The pipeline method was 

significantly utilized to increase the performance of 

Digital Circuits. In this paper, the delay value was 

high, because of automatically reduced the system 

speed and throughput value.  

S. Ramanathan, G. Anand, P. Reddy, and S.A. 

Sridevi [14] proposed a low power adaptive FIR filter 

design based on DA method with low-area and power 

consumption. The Least Mean Square (LMS) process 

was used to update the weight and reduce the Mean 

Square Error (MSE) between the current filter 

outcome and the desired response. The pipelined DA 

table reduced switching activity and power 

consumption. This research work used for carry save 

accumulator for FIR filter design, which occupy more 

area in the FIR filter architecture.  

M. Pristach, V. Dvorak, and L. Fujcik. [15] 

proposed the FIR filter architecture with the support 

of block memories. The architecture has Random 

Access Memory (RAM) to store the data, and one 

Multiply-Accumulate (MAC) unit for the multiple 

and the accumulation process purpose. That design 

performed one by one computation to reach the fewer 

requirement of hardware. The proposed technique 

achieved high operating frequency, and low-power 

consumption. The RAM was employed for the data 

storage purpose in the research method, if the data 

increase its not suitable for FIR filter design due to 

space of RAM is limited. 

S. Bhattacharjee, S. Sil, and A. Chakrabarti [16] 

proposed low-power FIR filter design 

implementation for DSP applications based on FPGA 

with the support of Xilinx 6V1X130T1FF1156. In 

this paper, many forms of the structure were observed 

and analyzed and they found out that FIR structure 

took a number of registers and it reduced power 

consumption. But this technique is only suitable for 

high-speed DSP application.  

All these related works contain several problems 

like more area, power, high critical path, and FPGA 

utilization. To conquer this problem, the LC-R4-

RFIR method improves the FPGA implementation 

results like LUT, slice, and flip-flop.  

3. LC-R4-RFIR Methodology 

In an existing FIR filter architecture, the (DA) 

structure contains N-number of bit shift register, LUT, 

scalable accumulator which contains subtraction, 

adder unit, and registers. When DA procedure is 

directly applied to the RFIR filter, the complex 

multiplication accumulation operation converter into 

the adding and shifting operation. A designing of the 

FIR filter design requires filter coefficients, 

multipliers and adder, which increases the size of the 

filter. Hence, the R4 multiplication used for LC-RFIR 

filter design, which reduce area size and increase 

system speed. 

3.1 The Radix-4 based RFIR filter design  
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Figure. 1 Architecture design of the LC- R4-RFIR filter design 

 
The fig. 1 shows the architecture of the LC-R4-

RFIR filter design, here M represents parameters. A 

number of registers required to implement LUT 

based RFIR filters. But, the registers have limited 

resources in FPGA implementation. Each LUT 

consists of only 2-bits of the registers in the FPGA 

devices. A numbers of partial-inner-product 𝑆𝑙 , 𝑝 

cannot be recovered from the Distributed RAM 

(DRAM) simultaneously as only one LUT value can 

be read from the DRAM per cycle. Furthermore,  if 𝐿 

is the bit width of the input, the duration of sample  

period of the design is 𝐿 times the operation clock  

period, it may not be suitable for the application that 

require more throughput.  Employing a DRAM to 

improve LUT for every bit slice will lead to resource 

consumption. Hence, this LC-R4-RFIR method 

decomposes the partial inner-product generator into 

𝑄 -parallel sections, each section has 𝑅  time 

multiplexed operations related to 𝑅 bit slices, where 

𝐿 is a composite number given by𝐿 = 𝑅𝑄(𝑅and 𝑄 

two positive integer). Index 𝑙 in Eq. (1) is mapped 

with 𝑟 + 𝑞𝑝 used for 𝑟 = 0,1,2,3, . . . . . . . 𝑄 − 1 to 

modify in Eq. (2). 

 

𝑦 = ∑ 2−1𝐿−1
𝑙=0 (∑ 𝑆𝑙,𝑝

𝑃−1
𝑝=0 )                                (1) 

 

𝑆𝑙,𝑝=∑ ℎ(𝑚+𝑝𝑀)[𝑆(𝑀+𝑝𝑀)]𝑚−1
𝑚−0

                               (2) 

 

Here, 𝑙 = 0,1,2, … . , 𝐿 − 1 and 𝑝 =
0,1,2, … … , 𝑃 − 1since the sum of partial product is 

𝑆𝑙,𝑝 of the 𝑀 samples. 

 

∑ 2−𝑅𝑃[∑ 2−1(∑ 𝑟 + 𝑞, 𝑅, 𝑃𝑃−1
𝑃−0 )𝑅−1

𝑟−0 ]𝑄−1
𝑞−1         (3) 

               

In the Eq. (3), 𝑞 − represents as index and 𝑟 

represents time index. The LC-R4-RFIR architecture 

has 𝑄  portions and every portion contains of 

𝑃 DRAM based on Reconfigurable Partial Product 

Generators (DRPPG) and pipeline adder trees to 

calculate the rightmost summation followed by Shift 

Accumulate (SA), which performs based on 𝑅cycles 

according to the next summation (second summation).  

Block diagram of the DRPPG structure shows in the 

Fig. 2.  
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Figure. 2 Block diagram of the DRPPG structure 

 

The LC-R4-RFIR architecture design can offer 

𝑄𝑃partial inner products in an individual cycle and 

can generate 𝐿𝑃 inner product. In 𝑟𝑡ℎ cycle, 𝑃 

DRPPG in the 𝑖𝑡ℎ portion generate 𝑃 -partial inner 

product 𝑆𝑟 + 𝑞𝑅, 𝑝 for 𝑃 − 1to be added by Pipeline 

Adder Tree (PAT). The PAT outputs are accumulated 

by SA, which is based on 𝑅cycle presented in Fig. 2. 

The LC-R4-RFIR architecture has Q section and 

every section consists of the DRAM based on 

DRPPG and PAT to evaluate the rightmost result 

followed by SA which performs over R cycles 

according to the next (second) summation. The final 

stage of RFIR filter (pipeline shift and add tree) 

produces the shift output of the filter which 

employing the output from each 𝑅 cycle. The 

accumulate value reset in each 𝑅cycles by the control 

signal to keep the accumulator register ready to be 

employed for computing of the next output of the 

filter. If the increase operating clock period is fclk, 

LC-R4-RFIR structures support the input sample rate 

of fclk/R. However, it employs DRAM to minimize 

the total size of the LUTs by half. In the existing work, 

the multiplication process by using shifter occupy 

more area in the RFIR filter design. Hence, this paper 

used the R4 algorithm RFIR filter design, which 

occupy less area compared to existing method. Its 

described in the below section 3.2. 

3.2 R4 multiplier using in RFIR 

With the help of RFIR, the PP is reduced by half.  

PP plays an important role to perform the addition 

and multiplication in the filter design. In this paper 

RFIR filter design is implemented with the R4 booth 

recoding algorithm. The R4 multiplier technique 

increase speed by reducing the number of the PP by 

half. The basic idea of the R4 algorithm is instead of 

adding and shifting, every second column has been 

taken and multiply with 0, -1, 1, -2, and 2 to getting 

the same results.  The steps of R4 algorithm presented 

below. 

Step 1: Consider two inputs such as input and 

coefficient.  

Step 2. Append zero to the Least Significant Bit 

(LSB) of the multiplier.  

Step 3: Represent every group as PPs and to 

complete the set add necessary bits to coefficient. 

Step 4: By applying R8 encoding on 

multiplicands (MDs), obtained PPs.  

Step 5: Arrange the PPs like that PP2 and PP1 

after leaving three p  

Step 6: An Extant sign bits of all PPs according 

to MSB bits. 

Step 7: Add entire PPs by employing high-

performance adder. Table 1 shows the booth recoding 

for R4 algorithm. 

The table 1 presented 8 different types of states. 

For example, from this table, MD is considered as the 

multiplicand.  

Multiplicand (input) = 00001010 

Multiplier (coefficient) = 00001001 

The Fig. 3 shows the Multiplier bit pair forming, 

the fig.4 shows the R4 multiplication operation and 

fig.5 shows the 2's complement for multiplicand 

bits. 
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Figure. 3 Multiplier bit pair forming 

 

Table 1. Booth recoding table for the R4 

Multiplier bits 

block 

Recorded 1-

bit pair 

2-bit booth 

i+1 i i-1 i+1 i Multiplier 

value 

Partial 

Product 

(PP) 

0 0 0 0 0 0 0xMD 

0 0 1 0 1 1 1xMD 

0 1 0 1 -1 1 1xMD 

0 1 0 1 0 2 2xMD 

1 0 0 -1 0 -2 -2xMD 

1 0 1 -1 1 -1 -1xMD 

1 1 0 0 -1 -1 -1xMD 

1 1 0 0 0 0 0xMD 

 

 
Figure. 4 R4 multiplication operation 

 

 
Figure. 5 Two's complement for multiplicand bits 

 

From fig.5, -2 means left shift by one bit and 

compliment operation. This example shows that, the 

number of PPs has been minimized, and the 

multiplication process speed has been increased. 

Finally, a product of the multiplication is obtained by 

adding PPs. The main purpose of this algorithm is to 

mitigate the number of PPs, which is important in 

circuit design as it relates to the propagation delay in 

running of the circuit, power consumption and circuit 

complexity also mitigated in this paper.   

4. Result and discussion 

The RTL schematic was taken from Synplify pro 

tool. FPGA performance was analyzed for different 

devices of Virtex- 6, Virtex-6LP and Virtex-7 by 

using Xilinx 14.4 ISE tool.  

    4.1 LUT 

A LUT stands for Lookup Table, in common 

terms a table determines what is the result for any 

given I/Ps. With regards to combinational logic, it is 

called as 'truth table'. This table effectively 

characterizes how your combinational logic behaves. 

    4.2 Flip-flop  

Flip-flops are binary shift registers used to 

synchronize the logic and save logical states between 

clock cycles inside an FPGA circuit. On each clock 

edge, a flip-flop latch 1 or 0 esteem on it’s I/P and 

holds that esteem consistent until the point that the 

following clock cycle. 

 4.3 Slices 

Logic resources are resources on the FPGA that 

perform logic functions. Logic resources gathered in 

slices to make configurable logic squares. A slice 

contains an arrangement of LUTs, flip-flops, and 

multiplexers. A LUT is a collection of logic gates 

hard-wired on the FPGA. 

4.4 Frequency 

Frequency is defined as the rate at which 

something occurs over a particular period of time (or) 

given a sample. 
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Table 2. Comparison of different Xilinx FPGA devices for the Existing and LC-R4-RFIR method 

Target FPGA Circuit LUT Flip-flop Slice IOB 
Frequency 

(MHz) 

Virtex6 

xc6vcx75t 

Bonetti [7] 69/46560 38/91320 45/11640 18/240 158.743 

Jia [8] 55/46560 27/91320 40/11640 14/240 256.32 

Mohanty [12] 45/46560 21/93120 36/11640 11/240 310.214 

LC-R4-RFIR 26/46560 12/91320 10/11640 10/240 436.77 

Virtex 6LP 

xc6vl75tl 

Bonetti [7] 68/46560 37/91320 40/11640 16/240 127.945 

Jia [8] 51/46560 29/91320 35/11640 13/240 280.21 

Mohanty [12] 26/46560 20/93120 27/11640 11/240 350.214 

LC-R4-RFIR 26/46560 12/91320 11/11640 10/240 409.5 

Virtex7XC 

7X330t 

 

Bonetti[7] 73/204000 39/408000 38/51000 19/600 155.07 

Jia [8] 66/204000 31/408000 35/51000 11/600 210.32 

Mohanty [12] 54/46560 29/93120 28/11640 10/240 422.211 

LC-R4-RFIR 26/204000 12/408000 10/51000 10/600 546.44 

 

 
Figure. 6 Comparison of the FPGA performance virtex-6 for the Existing and LC-R4-RFIR method 

 

 
Figure. 7 Comparison of the FPGA performance virtex-6LP for the Existing and LC-R4-RFIR method 
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Figure. 8 Comparison of the FPGA performance virtex-7 for the Existing and LC-R4-RFIR method 

 

 

Figure. 9 Comparison of the frequency for Virtex-6, Virtex-6 LP, and Virtex7 

 

In this research work, the LC-R4-RFIR and 

existing methods are implemented by using Xilinx 

tool that results are tabulated, which is shown in the 

tab.2. Table 2 shows the implementation of different 

Xilinx FPGA devices for existing and LC-R4-RFIR 

methods, which used for analyzing the performance 

parameters like LUTs, the number of flip-flops, slices, 

Input Output Block (IOB) and operating frequency 

for Virtex-6, Virtex-6LP, Virtex-7. In existing 

method [7] [8], shifter and adder has been used to 

perform the multiplication operation. That method 

requires more area and computation time, and 

hardware utilization. To overcome that problem, R4 

algorithm is introduced in this paper to improve the 

FPAG performances. These four methods have been 

implemented and tabulated. From the tab.2, it is clear 

that the LUT, flip-flop, slices reduced and operating 

frequency increased in LC-R4-RFIR method 

compared to the existing methods. Due to the 

reduction of those parameters, the area minimized in 

RFIR architecture. These FPGA results have been 

taken from Xilinx software. In the fig.6, fig.7 and 

fig.8 shows the performance of virtex-6, virtex-6LP, 

and virtex-7 for existing method and LC-R4-RFIR 

method. In the fig.9 shows the comparison of the 

frequency for Virtex-6, Virtex-6LP, and Virtex-7. 

 

 

Figure. 10 RTL schematic of the top module for Virtex 6 

LP device 
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Figure. 11 RTL schematic of internal blocks for Virtex – 6 LP 
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Figure.12 Block diagram of the RTL schematic for LC-R4-RFIR 
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Figure. 13 RTL schematic of DRPPG module 

 

 
Figure. 14 RTL schematic of DROM module 
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Figure. 15 FPGA results for proposed Virtex - 6 LP 

 

The fig. 10 shows the RTL schematic of the top 

module for Virtex 6 LP. It is taken from the Xilinx 

tool.  The RTL schematic internal block presented in 

the fig. 11. The fig. 12, fig.13, and fig.14 shows the 

RTL schematic of entire block, DRPPG, and 

Distributed Read Only Memory (DROM) which is 

taken from the Synplify pro tool. The Virtex - 6LP 

device output is shown in fig. 15. These results are 

obtained from the Xilinx tool, which is shown in the 

screenshot for verification purpose.  From this FPGA 

result screenshot, it’s clear that FPGA performance 

has been improved in LC-R4-RFIR method 

compared to conventional methods. 

5. Conclusion 

In this paper, LC-R4-RFIR filter design has been 

implemented in Xilinx tool by using Verilog code. In 

this filter design, RFIR filter has been implemented 

by using R4 algorithm, which takes less area and less 

hardware utilization compared to the existing 

methods. A number of LUT, Flip-flop, Slice, IOB 

were reduced and the frequency range increased for 

three types FPGA devices like Virtex-6, Virtex-6 LP, 

Virtex-7 by using Xilinx tool compared to the 

conventional FIR filter designs. For example, Virtx-

6 results, average reduction 42.22% of LUT, 45.85% 



Received:  June 6, 2018                                                                                                                                                      342 

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018           DOI: 10.22266/ijies2018.1031.30 

 

of flip flop, 72.22% of slice, 9.09% of IOB compared 

to the existing method Mohanty [12]. In future work, 

this RFIR filter design will be performed based on 

optimal adders to further mitigate hardware 

utilization.    

References 

[1] J.L.M. Iqbal and S. Varadarajan, “High-

Performance Reconfigurable FIR Filter 

Architecture Using Optimized Multiplier”, 

Circuits, Systems, and Signal Processing, Vol.32, 

No.2, pp.663-682, 2013. 

[2] J. Chen, J. Tan, C.H. Chang, and F. Feng, “A new 

cost-aware sensitivity-driven algorithm for the 

design of FIR filters”, IEEE Transactions on 

Circuits and Systems I: Regular Papers, Vol.64, 

No.6, pp.1588-1598, 2017. 

[3] C.Y. Yao, W.C. Hsia, and Y.H. Ho, “Designing 

hardware-efficient fixed-point FIR filters in an 

expanding sub-expression space”, IEEE 

Transactions on Circuits and Systems I: Regular 

Papers, Vol.61, No.1, pp.202-212, 2014. 

[4] S.Y. Park and P.K. Meher, “Efficient FPGA and 

ASIC realizations of a DA-based reconfigurable 

FIR digital filter”, IEEE Transactions on Circuits 

and Systems II: Express Briefs, Vol.61, No.7, 

pp.511-515, 2014. 

[5] N. Bhagyalakshmi, K.R. Rekha, and K.R. Nataraj, 

“Design and implementation of DA-based 

reconfigurable FIR digital filter on FPGA”, In: 

Proc. of International Conf. on Emerging 

Research in Electronics, Computer Science and 

Technology, pp. 214-217, 2015. 

[6] A. Liacha, A.K. Oudjida, F. Ferguene, M. Bakiri, 

and M.L. Berrandjia, “Design of high-speed, 

low-power, and area-efficient FIR filters”, IET 

Circuits, Devices & Systems, Vol.12, No.1, pp.1-

11, 2017. 

[7] A. Bonetti, A. Teman, P. Flatresse, and A. Burg, 

“Multipliers-driven perturbation of coefficients 

for low-power operation in reconfigurable FIR 

filters”, IEEE Transactions on Circuits and 

Systems I: Regular Papers, Vol.64, No.9, 

pp.2388-2400, 2017. 

[8] R. Jia, H.G. Yang, C.Y. Lin, R. Chen, X.G. Wang, 

and Z.H. Guo, “A computationally efficient 

reconfigurable FIR filter architecture based on 

coefficient occurrence probability”, IEEE 

Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, Vol.35, No.8, 

pp.1297-1308, 2016. 

[9] S.J. Lee, J.W. Choi, S.W. Kim, and J. Park, “A 

reconfigurable FIR filter architecture to trade off 

filter performance for dynamic power 

consumption”, IEEE Transactions on Very Large 

Scale Integration Systems, Vol.19, No.12, pp. 

2221-2228, 2011. 

[10] H. Jiang, J. Han, F. Qiao, and F. Lombardi, 

“Approximate radix-8 booth multipliers for 

low-power and high-performance operation”, 

IEEE Transactions on Computers, Vol.65, No.8, 

pp.2638-2644, 2016. 

[11] K.H. Chen and T.D. Chiueh, “A low-power 

digit-based reconfigurable FIR filter”, IEEE 

Transactions on Circuits and Systems II: 

Express Briefs, Vol.53, No.8, pp.617-621, 2006. 

[12] B.K. Mohanty, P.K. Meher, S.K. Singhal, and 

M.N.S. Swamy, “A high-performance VLSI 

architecture for reconfigurable FIR using 

distributed arithmetic”, Integration, the VLSI 

Journal, Vol.54, pp.37-46, 2016. 

[13] N. Sriram and J. Selvakumar, “A 

Reconfigurable FIR Filter Architecture to Trade 

Off Filter Performance for Dynamic Power 

Consumption”, Int. J. Adv. Comput. Theor. Eng., 

Vol.2, No.1, 2013. 

[14] S. Ramanathan, G. Anand, P. Reddy, and S.A. 

Sridevi, “Low Power Adaptive FIR Filter Based 

on Distributed Arithmetic”, Int. Journal of 

Engineering Research and Applications, Vol.6, 

No.5, pp.47-51, 2016. 

[15] M. Pristach, V. Dvorak, and L. Fujcik, 

“Enhanced Architecture of FIR Filters Using 

Block Memories”, IFAC-PapersOnLine, Vol.48, 

No.4, pp.306-311, 2015. 

[16] S. Bhattacharjee, S. Sil, and A. Chakrabarti, 

“Evaluation of Power Efficient FIR Filter for 

FPGA based DSP Applications”, Procedia 

Technology, Vol.10, pp.856-865, 2013. 

 


