
Received: June 6, 2018 331

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.30

Low Cost FPGA Implementation of RFIR Filter Based on a Radix-4 Algorithm

Chetti Venkateswarlu1* Tipparti Anil Kumar2

 1Electronics and Communication Engineering, Narsimha Reddy Engineering College, India

 2Electronics and Communication Engineering, CMR Institute of Technology, India

* Corresponding author’s Email: venkatchece@gmail.com

Abstract: The Reconfigurable Finite Impulse Response (RFIR) filter design is a significant operation in Digital Signal

Processing (DSP). The RFIR designs often implemented to evaluate the system performance and hardware utilization.

The traditional RFIR filter design depends on more sub module such as subtractions, adders, and shifters, which

occupies more area and increase the system complexity. To overcome this problem, a Low Cost -Radix4- RFIR (LC-

R4-RFIR) filter design is introduced. This research work designed an efficient RFIR filter with the help of Radix 4

approach, which reduced the filter area and hardware utilization. The RFIR filter was designed by using R4 approach

for multiplication operation. Multiplication is the one of the main process of adding a number of Partial Products (PPs)

Hence, integer multiplication is implemented in serial parallel mode by employing an accumulator to add these PPs.

Using R4, the multiplication operation performed which mitigated the area and hardware utilization of the RFIR design.

In Field Programmable Gate Array (FPGA) implementation, the number of Look Up Table (LUT), Slice, flip-flop,

area, and frequency calculated for different Virtex devices such as Virtex-6, Virtex-6 Low Power (LP) and Virtex-7.

This FPGA experimental results showed that the LC-R4-RFIR filter design performed better compared to conventional

FIR filter designs.

Keywords: Field programmable gate array, Reconfigurable finite impulse response, Low power, Radix-4 algorithm.

1. Introduction

The FIR digital filter is the basic component of

DSP systems. Generally, the FIR filters employed in

mobile communication devices and multi-media

applications such as matched filtering, video

conventional functions, signal pre-conditioning and

channelization [1]. The FIR filters provide several

advantages like computational efficiency in multi-

rate applications, Attainable Linear-Phase Response

(ALPR) and desirable numerical property employed

for finite precision, and fractional arithmetic [2, 3]. In

the present days, the RFIR filters are easily

reconfigurable based on input tabs, are used in digital

communication systems. The RFIR filter coefficients

change dynamically when runtime plays a vital

PART in the Software Defined Radio (SDR), digital

up or down converters and so on [4, 5]. Compared to

the existing non-RFIR filter designs with

reconfigurable and without reconfigurable, that RFIR

filters consumeless power [6]. In recent years, the

different implementation techniques and system

architectures have been proposed to increase the

performance of the RFIR filter in terms of reducing

system complexity and high-system performance [7].

The RFIR filter design is implemented based on

Statistics Center Reconfigurable (SCR) technique.

That filter architecture design achieved a low-area

and power consumption. But drawback of this

technique is not discussing the dynamically

reconfigurable mechanism [8]. The pipelined

modified booth multiplier technique employed for

RFIR filter architecture, which is the order of the

filter to improve low-power consumption than

existing architectures, but this strategy is not possible

for the more-power applications [9, 10]. A low-

power 8-bit RFIR with minimum power consumption

that improved system efficiency, but the drawback of

this technique only matched for 8-bit data [11]. In

existing work, multiplier and Shift and add method

has been used to perform the multiplication operation.

But, these methods occupy more area more

Received: June 6, 2018 332

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.30

computation time. To overcome above mentioned

problem, the LC-R4-RFIR filter design is

implemented in this paper, here the R4 employed for

arithmetic operations because this method occupy

less area in the RFIR filter. Generally, the complexity

of the RFIR filter design is dominated by multiplier

approach. The reduction of area and hardware

utilization can be achieved by reducing PPs of the

multiplier. In FPGA implementation, the number of

LUTs, slice and flip-flop reduced in LC-R4-RFIR for

various types of devices like Virtex-6, Virtex-6 LP,

and Virtex-7 compared to conventional techniques.

This paper is recognized as follows. In section 2,

described some previous related work. In Section 3,

shows LC-R4-RFIR architecture design. In Section 4,

mentioned experimental setup and results and

discussion. The conclusion is made in Section 5.

2. Related work

B.K. Mohanty, P.K. Meher, S.K. Singhal, and

M.N.S. Swamy [12] implemented the VLSI

architecture employed for RFIR filter based on

Distributed Arithmetic (DA) approach. In this work,

an analyzed the register complexity of direct-form

and transform-form structure of the filter. The direct-

form structure involves fewer numbers of registers

then the transpose-form structure. The advantage of

this technique is, the less complexity of the large filter

lengths. But, this proposed method was increased the

hardware compexity.

Sriram. N, and J. Selvakumar [13] have

illustrated the Pipeline Modify Booth Multiplier

(PMBM) method used for implementing less power

RFIR filter structure. The pipeline method was

significantly utilized to increase the performance of

Digital Circuits. In this paper, the delay value was

high, because of automatically reduced the system

speed and throughput value.

S. Ramanathan, G. Anand, P. Reddy, and S.A.

Sridevi [14] proposed a low power adaptive FIR filter

design based on DA method with low-area and power

consumption. The Least Mean Square (LMS) process

was used to update the weight and reduce the Mean

Square Error (MSE) between the current filter

outcome and the desired response. The pipelined DA

table reduced switching activity and power

consumption. This research work used for carry save

accumulator for FIR filter design, which occupy more

area in the FIR filter architecture.

M. Pristach, V. Dvorak, and L. Fujcik. [15]

proposed the FIR filter architecture with the support

of block memories. The architecture has Random

Access Memory (RAM) to store the data, and one

Multiply-Accumulate (MAC) unit for the multiple

and the accumulation process purpose. That design

performed one by one computation to reach the fewer

requirement of hardware. The proposed technique

achieved high operating frequency, and low-power

consumption. The RAM was employed for the data

storage purpose in the research method, if the data

increase its not suitable for FIR filter design due to

space of RAM is limited.

S. Bhattacharjee, S. Sil, and A. Chakrabarti [16]

proposed low-power FIR filter design

implementation for DSP applications based on FPGA

with the support of Xilinx 6V1X130T1FF1156. In

this paper, many forms of the structure were observed

and analyzed and they found out that FIR structure

took a number of registers and it reduced power

consumption. But this technique is only suitable for

high-speed DSP application.

All these related works contain several problems

like more area, power, high critical path, and FPGA

utilization. To conquer this problem, the LC-R4-

RFIR method improves the FPGA implementation

results like LUT, slice, and flip-flop.

3. LC-R4-RFIR Methodology

In an existing FIR filter architecture, the (DA)

structure contains N-number of bit shift register, LUT,

scalable accumulator which contains subtraction,

adder unit, and registers. When DA procedure is

directly applied to the RFIR filter, the complex

multiplication accumulation operation converter into

the adding and shifting operation. A designing of the

FIR filter design requires filter coefficients,

multipliers and adder, which increases the size of the

filter. Hence, the R4 multiplication used for LC-RFIR

filter design, which reduce area size and increase

system speed.

3.1 The Radix-4 based RFIR filter design

Received: June 6, 2018 333

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.30

Figure. 1 Architecture design of the LC- R4-RFIR filter design

The fig. 1 shows the architecture of the LC-R4-

RFIR filter design, here M represents parameters. A

number of registers required to implement LUT

based RFIR filters. But, the registers have limited

resources in FPGA implementation. Each LUT

consists of only 2-bits of the registers in the FPGA

devices. A numbers of partial-inner-product 𝑆𝑙 , 𝑝

cannot be recovered from the Distributed RAM

(DRAM) simultaneously as only one LUT value can

be read from the DRAM per cycle. Furthermore, if 𝐿

is the bit width of the input, the duration of sample

period of the design is 𝐿 times the operation clock

period, it may not be suitable for the application that

require more throughput. Employing a DRAM to

improve LUT for every bit slice will lead to resource

consumption. Hence, this LC-R4-RFIR method

decomposes the partial inner-product generator into

𝑄 -parallel sections, each section has 𝑅 time

multiplexed operations related to 𝑅 bit slices, where

𝐿 is a composite number given by𝐿 = 𝑅𝑄(𝑅and 𝑄

two positive integer). Index 𝑙 in Eq. (1) is mapped

with 𝑟 + 𝑞𝑝 used for 𝑟 = 0,1,2,3, 𝑄 − 1 to

modify in Eq. (2).

𝑦 = ∑ 2−1𝐿−1
𝑙=0 (∑ 𝑆𝑙,𝑝

𝑃−1
𝑝=0) (1)

𝑆𝑙,𝑝=∑ ℎ(𝑚+𝑝𝑀)[𝑆(𝑀+𝑝𝑀)]𝑚−1
𝑚−0

 (2)

Here, 𝑙 = 0,1,2, … . , 𝐿 − 1 and 𝑝 =
0,1,2, … … , 𝑃 − 1since the sum of partial product is

𝑆𝑙,𝑝 of the 𝑀 samples.

∑ 2−𝑅𝑃[∑ 2−1(∑ 𝑟 + 𝑞, 𝑅, 𝑃𝑃−1
𝑃−0)𝑅−1

𝑟−0]𝑄−1
𝑞−1 (3)

In the Eq. (3), 𝑞 − represents as index and 𝑟

represents time index. The LC-R4-RFIR architecture

has 𝑄 portions and every portion contains of

𝑃 DRAM based on Reconfigurable Partial Product

Generators (DRPPG) and pipeline adder trees to

calculate the rightmost summation followed by Shift

Accumulate (SA), which performs based on 𝑅cycles

according to the next summation (second summation).

Block diagram of the DRPPG structure shows in the

Fig. 2.

Received: June 6, 2018 334

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.30

Figure. 2 Block diagram of the DRPPG structure

The LC-R4-RFIR architecture design can offer

𝑄𝑃partial inner products in an individual cycle and

can generate 𝐿𝑃 inner product. In 𝑟𝑡ℎ cycle, 𝑃

DRPPG in the 𝑖𝑡ℎ portion generate 𝑃 -partial inner

product 𝑆𝑟 + 𝑞𝑅, 𝑝 for 𝑃 − 1to be added by Pipeline

Adder Tree (PAT). The PAT outputs are accumulated

by SA, which is based on 𝑅cycle presented in Fig. 2.

The LC-R4-RFIR architecture has Q section and

every section consists of the DRAM based on

DRPPG and PAT to evaluate the rightmost result

followed by SA which performs over R cycles

according to the next (second) summation. The final

stage of RFIR filter (pipeline shift and add tree)

produces the shift output of the filter which

employing the output from each 𝑅 cycle. The

accumulate value reset in each 𝑅cycles by the control

signal to keep the accumulator register ready to be

employed for computing of the next output of the

filter. If the increase operating clock period is fclk,

LC-R4-RFIR structures support the input sample rate

of fclk/R. However, it employs DRAM to minimize

the total size of the LUTs by half. In the existing work,

the multiplication process by using shifter occupy

more area in the RFIR filter design. Hence, this paper

used the R4 algorithm RFIR filter design, which

occupy less area compared to existing method. Its

described in the below section 3.2.

3.2 R4 multiplier using in RFIR

With the help of RFIR, the PP is reduced by half.

PP plays an important role to perform the addition

and multiplication in the filter design. In this paper

RFIR filter design is implemented with the R4 booth

recoding algorithm. The R4 multiplier technique

increase speed by reducing the number of the PP by

half. The basic idea of the R4 algorithm is instead of

adding and shifting, every second column has been

taken and multiply with 0, -1, 1, -2, and 2 to getting

the same results. The steps of R4 algorithm presented

below.

Step 1: Consider two inputs such as input and

coefficient.

Step 2. Append zero to the Least Significant Bit

(LSB) of the multiplier.

Step 3: Represent every group as PPs and to

complete the set add necessary bits to coefficient.

Step 4: By applying R8 encoding on

multiplicands (MDs), obtained PPs.

Step 5: Arrange the PPs like that PP2 and PP1

after leaving three p

Step 6: An Extant sign bits of all PPs according

to MSB bits.

Step 7: Add entire PPs by employing high-

performance adder. Table 1 shows the booth recoding

for R4 algorithm.

The table 1 presented 8 different types of states.

For example, from this table, MD is considered as the

multiplicand.

Multiplicand (input) = 00001010

Multiplier (coefficient) = 00001001

The Fig. 3 shows the Multiplier bit pair forming,

the fig.4 shows the R4 multiplication operation and

fig.5 shows the 2's complement for multiplicand

bits.

Received: June 6, 2018 335

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.30

Figure. 3 Multiplier bit pair forming

Table 1. Booth recoding table for the R4

Multiplier bits

block

Recorded 1-

bit pair

2-bit booth

i+1 i i-1 i+1 i Multiplier

value

Partial

Product

(PP)

0 0 0 0 0 0 0xMD

0 0 1 0 1 1 1xMD

0 1 0 1 -1 1 1xMD

0 1 0 1 0 2 2xMD

1 0 0 -1 0 -2 -2xMD

1 0 1 -1 1 -1 -1xMD

1 1 0 0 -1 -1 -1xMD

1 1 0 0 0 0 0xMD

Figure. 4 R4 multiplication operation

Figure. 5 Two's complement for multiplicand bits

From fig.5, -2 means left shift by one bit and

compliment operation. This example shows that, the

number of PPs has been minimized, and the

multiplication process speed has been increased.

Finally, a product of the multiplication is obtained by

adding PPs. The main purpose of this algorithm is to

mitigate the number of PPs, which is important in

circuit design as it relates to the propagation delay in

running of the circuit, power consumption and circuit

complexity also mitigated in this paper.

4. Result and discussion

The RTL schematic was taken from Synplify pro

tool. FPGA performance was analyzed for different

devices of Virtex- 6, Virtex-6LP and Virtex-7 by

using Xilinx 14.4 ISE tool.

 4.1 LUT

A LUT stands for Lookup Table, in common

terms a table determines what is the result for any

given I/Ps. With regards to combinational logic, it is

called as 'truth table'. This table effectively

characterizes how your combinational logic behaves.

 4.2 Flip-flop

Flip-flops are binary shift registers used to

synchronize the logic and save logical states between

clock cycles inside an FPGA circuit. On each clock

edge, a flip-flop latch 1 or 0 esteem on it’s I/P and

holds that esteem consistent until the point that the

following clock cycle.

 4.3 Slices

Logic resources are resources on the FPGA that

perform logic functions. Logic resources gathered in

slices to make configurable logic squares. A slice

contains an arrangement of LUTs, flip-flops, and

multiplexers. A LUT is a collection of logic gates

hard-wired on the FPGA.

4.4 Frequency

Frequency is defined as the rate at which

something occurs over a particular period of time (or)

given a sample.

Received: June 6, 2018 336

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.30

Table 2. Comparison of different Xilinx FPGA devices for the Existing and LC-R4-RFIR method

Target FPGA Circuit LUT Flip-flop Slice IOB
Frequency

(MHz)

Virtex6

xc6vcx75t

Bonetti [7] 69/46560 38/91320 45/11640 18/240 158.743

Jia [8] 55/46560 27/91320 40/11640 14/240 256.32

Mohanty [12] 45/46560 21/93120 36/11640 11/240 310.214

LC-R4-RFIR 26/46560 12/91320 10/11640 10/240 436.77

Virtex 6LP

xc6vl75tl

Bonetti [7] 68/46560 37/91320 40/11640 16/240 127.945

Jia [8] 51/46560 29/91320 35/11640 13/240 280.21

Mohanty [12] 26/46560 20/93120 27/11640 11/240 350.214

LC-R4-RFIR 26/46560 12/91320 11/11640 10/240 409.5

Virtex7XC

7X330t

Bonetti[7] 73/204000 39/408000 38/51000 19/600 155.07

Jia [8] 66/204000 31/408000 35/51000 11/600 210.32

Mohanty [12] 54/46560 29/93120 28/11640 10/240 422.211

LC-R4-RFIR 26/204000 12/408000 10/51000 10/600 546.44

Figure. 6 Comparison of the FPGA performance virtex-6 for the Existing and LC-R4-RFIR method

Figure. 7 Comparison of the FPGA performance virtex-6LP for the Existing and LC-R4-RFIR method

Received: June 6, 2018 337

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.30

Figure. 8 Comparison of the FPGA performance virtex-7 for the Existing and LC-R4-RFIR method

Figure. 9 Comparison of the frequency for Virtex-6, Virtex-6 LP, and Virtex7

In this research work, the LC-R4-RFIR and

existing methods are implemented by using Xilinx

tool that results are tabulated, which is shown in the

tab.2. Table 2 shows the implementation of different

Xilinx FPGA devices for existing and LC-R4-RFIR

methods, which used for analyzing the performance

parameters like LUTs, the number of flip-flops, slices,

Input Output Block (IOB) and operating frequency

for Virtex-6, Virtex-6LP, Virtex-7. In existing

method [7] [8], shifter and adder has been used to

perform the multiplication operation. That method

requires more area and computation time, and

hardware utilization. To overcome that problem, R4

algorithm is introduced in this paper to improve the

FPAG performances. These four methods have been

implemented and tabulated. From the tab.2, it is clear

that the LUT, flip-flop, slices reduced and operating

frequency increased in LC-R4-RFIR method

compared to the existing methods. Due to the

reduction of those parameters, the area minimized in

RFIR architecture. These FPGA results have been

taken from Xilinx software. In the fig.6, fig.7 and

fig.8 shows the performance of virtex-6, virtex-6LP,

and virtex-7 for existing method and LC-R4-RFIR

method. In the fig.9 shows the comparison of the

frequency for Virtex-6, Virtex-6LP, and Virtex-7.

Figure. 10 RTL schematic of the top module for Virtex 6

LP device

Received: June 6, 2018 338

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.30

Figure. 11 RTL schematic of internal blocks for Virtex – 6 LP

Received: June 6, 2018 339

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.30

Figure.12 Block diagram of the RTL schematic for LC-R4-RFIR

Received: June 6, 2018 340

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.30

Figure. 13 RTL schematic of DRPPG module

Figure. 14 RTL schematic of DROM module

Received: June 6, 2018 341

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.30

Figure. 15 FPGA results for proposed Virtex - 6 LP

The fig. 10 shows the RTL schematic of the top

module for Virtex 6 LP. It is taken from the Xilinx

tool. The RTL schematic internal block presented in

the fig. 11. The fig. 12, fig.13, and fig.14 shows the

RTL schematic of entire block, DRPPG, and

Distributed Read Only Memory (DROM) which is

taken from the Synplify pro tool. The Virtex - 6LP

device output is shown in fig. 15. These results are

obtained from the Xilinx tool, which is shown in the

screenshot for verification purpose. From this FPGA

result screenshot, it’s clear that FPGA performance

has been improved in LC-R4-RFIR method

compared to conventional methods.

5. Conclusion

In this paper, LC-R4-RFIR filter design has been

implemented in Xilinx tool by using Verilog code. In

this filter design, RFIR filter has been implemented

by using R4 algorithm, which takes less area and less

hardware utilization compared to the existing

methods. A number of LUT, Flip-flop, Slice, IOB

were reduced and the frequency range increased for

three types FPGA devices like Virtex-6, Virtex-6 LP,

Virtex-7 by using Xilinx tool compared to the

conventional FIR filter designs. For example, Virtx-

6 results, average reduction 42.22% of LUT, 45.85%

Received: June 6, 2018 342

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.30

of flip flop, 72.22% of slice, 9.09% of IOB compared

to the existing method Mohanty [12]. In future work,

this RFIR filter design will be performed based on

optimal adders to further mitigate hardware

utilization.

References

[1] J.L.M. Iqbal and S. Varadarajan, “High-

Performance Reconfigurable FIR Filter

Architecture Using Optimized Multiplier”,

Circuits, Systems, and Signal Processing, Vol.32,

No.2, pp.663-682, 2013.

[2] J. Chen, J. Tan, C.H. Chang, and F. Feng, “A new

cost-aware sensitivity-driven algorithm for the

design of FIR filters”, IEEE Transactions on

Circuits and Systems I: Regular Papers, Vol.64,

No.6, pp.1588-1598, 2017.

[3] C.Y. Yao, W.C. Hsia, and Y.H. Ho, “Designing

hardware-efficient fixed-point FIR filters in an

expanding sub-expression space”, IEEE

Transactions on Circuits and Systems I: Regular

Papers, Vol.61, No.1, pp.202-212, 2014.

[4] S.Y. Park and P.K. Meher, “Efficient FPGA and

ASIC realizations of a DA-based reconfigurable

FIR digital filter”, IEEE Transactions on Circuits

and Systems II: Express Briefs, Vol.61, No.7,

pp.511-515, 2014.

[5] N. Bhagyalakshmi, K.R. Rekha, and K.R. Nataraj,

“Design and implementation of DA-based

reconfigurable FIR digital filter on FPGA”, In:

Proc. of International Conf. on Emerging

Research in Electronics, Computer Science and

Technology, pp. 214-217, 2015.

[6] A. Liacha, A.K. Oudjida, F. Ferguene, M. Bakiri,

and M.L. Berrandjia, “Design of high-speed,

low-power, and area-efficient FIR filters”, IET

Circuits, Devices & Systems, Vol.12, No.1, pp.1-

11, 2017.

[7] A. Bonetti, A. Teman, P. Flatresse, and A. Burg,

“Multipliers-driven perturbation of coefficients

for low-power operation in reconfigurable FIR

filters”, IEEE Transactions on Circuits and

Systems I: Regular Papers, Vol.64, No.9,

pp.2388-2400, 2017.

[8] R. Jia, H.G. Yang, C.Y. Lin, R. Chen, X.G. Wang,

and Z.H. Guo, “A computationally efficient

reconfigurable FIR filter architecture based on

coefficient occurrence probability”, IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol.35, No.8,

pp.1297-1308, 2016.

[9] S.J. Lee, J.W. Choi, S.W. Kim, and J. Park, “A

reconfigurable FIR filter architecture to trade off

filter performance for dynamic power

consumption”, IEEE Transactions on Very Large

Scale Integration Systems, Vol.19, No.12, pp.

2221-2228, 2011.

[10] H. Jiang, J. Han, F. Qiao, and F. Lombardi,

“Approximate radix-8 booth multipliers for

low-power and high-performance operation”,

IEEE Transactions on Computers, Vol.65, No.8,

pp.2638-2644, 2016.

[11] K.H. Chen and T.D. Chiueh, “A low-power

digit-based reconfigurable FIR filter”, IEEE

Transactions on Circuits and Systems II:

Express Briefs, Vol.53, No.8, pp.617-621, 2006.

[12] B.K. Mohanty, P.K. Meher, S.K. Singhal, and

M.N.S. Swamy, “A high-performance VLSI

architecture for reconfigurable FIR using

distributed arithmetic”, Integration, the VLSI

Journal, Vol.54, pp.37-46, 2016.

[13] N. Sriram and J. Selvakumar, “A

Reconfigurable FIR Filter Architecture to Trade

Off Filter Performance for Dynamic Power

Consumption”, Int. J. Adv. Comput. Theor. Eng.,

Vol.2, No.1, 2013.

[14] S. Ramanathan, G. Anand, P. Reddy, and S.A.

Sridevi, “Low Power Adaptive FIR Filter Based

on Distributed Arithmetic”, Int. Journal of

Engineering Research and Applications, Vol.6,

No.5, pp.47-51, 2016.

[15] M. Pristach, V. Dvorak, and L. Fujcik,

“Enhanced Architecture of FIR Filters Using

Block Memories”, IFAC-PapersOnLine, Vol.48,

No.4, pp.306-311, 2015.

[16] S. Bhattacharjee, S. Sil, and A. Chakrabarti,

“Evaluation of Power Efficient FIR Filter for

FPGA based DSP Applications”, Procedia

Technology, Vol.10, pp.856-865, 2013.

