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Abstract: With the blasting growth in data, uptake data mining techniques to mine association rules, and then find 

useful information hidden in large data has become ever more important. Several existing data mining techniques 

often through mining frequent itemsets draw association rules and get to relevant knowledge, but with the rapid 

arrival of the era of big data, traditional data mining algorithms have been impossible to meet large data's analysis 

needs. Lately, the PrePost algorithm has been suggested, a new algorithm for mining frequent itemsets based on the 

idea of N-lists. PrePost in most cases outperforms other present state-of-the-art algorithms. In mind of this, we 

present the HPrePostPlus algorithm. A better version of PrePost based on Hadoop, that utilization a HashMap to 

traverse effectively the PPC tree, and improve the process of creating the N-lists related with 1-itemsets. We 

combine also the characteristic of Hadoop with a view to process large data. Experience has demonstrated that 

HPrePostPlus algorithm is greater than the state-of-the-art methods in terms of performance and scalability. 

Keywords: Frequent itemset mining, PrePost, Hadoop, Big data. 

 

 

1. Introduction 

The past ten years has seen the outstanding 

growth of Internet contact technology particularly 

mobile Internet and detector system to perceive and 

obtain details. Organizations from industry, 

administration, and academia possess and store large 

volumes of data with enormous importance. The 

ability value of big data [1] cannot be uncovered by 

simple gathering or statistical analysis, currently 

referring to big data. Advanced big data analytics 

and applications require special technologies to 

successfully cope with massive amounts of data. 

Data mining techniques [2] are now outline care 

from the practitioners of all data related industries 

for this purpose. The aim of data mining is to look 

into data by searching and interpreting unforeseen 

trends or patterns and then verify the results with the 

detected patterns applied to new subsets. Since data 

collected from various data sources is often a series 

of solitary data, correlation analysis has hence 

become a major basis for data mining and big data 

science [3]. Association rules mining [4] was 

suggested to find out certain interesting correlation 

relationships among the data itemsets. Thus, 

frequent itemset mining [5] is an essential stage in 

the process of association rule mining. 

Most of the suggested algorithms for frequent 

itemsets can be grouped into Apriori method [6] and 

FP-growth method [7]. The Apriori mode scans the 

database to find frequent itemsets by generating a 

large set of a candidate. Whereas, FP-growth mode 

does the scan twice to mine frequent itemsets 

without generating a candidate. The FP-growth uses 

FP-tree data structure to store database and utilize a 

divide-and-conquer strategy to find frequent 

itemsets, which is much more efficient than Apriori 

mode. 

Lately, the algorithm for mining frequent itemset, 

PrePost [8, 9], has been suggested. It’s based on the 

notion of PPC tree (Pre-order Post-order Code tree), 

which is an FP-tree type structure. PrePost operates 

as follows. A tree building algorithm is accustomed 

to construct a PPC-tree. Then, the N-lists are 

generated. Each component of this N-lists is 

associated with a 1-itemset in the tree. An N-list of 
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k-itemset is a compact form of transaction ID list 

(TID list). A divide and conquer strategy is then 

used for mining frequent itemsets. 

 These algorithms working on single computer 

have shown good achievement in handling with 

small amount of data. Nevertheless, traditional 

procedures has faced considerable defiance when 

computing power and remembrance space are 

restricted to big data era. Some applications and 

attempts have been made to mine frequent itemset 

from massive data by using parallel computing 

technologies. 

Parallel programming frameworks are divided 

into two categories: memory sharing and distributed 

architectures (share nothing). Although it’s easier to 

make algorithms implemented, the scalability of 

parallelism on memory sharing framework is not 

satisfactory enough [10]. Message passing interface 

(MPI) [11], a common framework for scientific 

distributed computing, takes the advantage of 

memory locality. Thanks to certain MPI advantages 

in iterative computation, some researchers apply it 

to mine frequent itemset [12]. And yet, its 

drawbacks are its high communication load due to 

data exchanges between different computer nodes 

and the lacking of fault tolerance.  

MapReduce [13], a framework embedded in 

Apache Hadoop to process large amounts of 

distributed data in parallel, was designed to support 

distributed computing in a cloud computing 

paradigm, turning out to be an efficient platform for 

parallel data mining of large scale datasets. 

A number of distributed frequent itemset mining 

methods [14, 15-16-17-18-19] which are usually 

simple extensions of a sequential method using 

distributed data processing frameworks.has been 

proposed,  

Although the existing distributed methods can 

partially solve the limit on scalability, they still face 

some problems. First, they do not have good 

scalability due to workload skewness. The existing 

distributed methods divide the search space of 

patterns (i.e., enumeration tree) to be explored into 

multiple pieces (a subtree) and assign each piece to 

each machine. Each subtree of the enumeration tree 

tends to have different size, i.e., different amount of 

workload. In particular, the distributed methods 

based on Eclat and FP-Growth have this problem 

noticeably. As a result, the existing methods tend 

not to improve performance proportionally to the 

number of machines used. Second, they do not have 

good scalability due to high network communication 

overhead. The existing methods usually perform 

frequent itemset mining by redistributing 

intermediate data via network. This approach could 

largely degrade the performance and scalability as 

the amount of data transferred among machines 

increases. 

In this paper, we propose an improved version of 

PrePost, based on Hadoop itemset mining method 

for big data called HPrePostPlus. 

HPrePostPlus solves the above problems, and so, 

can find frequent patterns on much larger datasets 

compared with the existing distributed methods. 

Unlike FP-tree-based approaches, HPrePostPlus 

algorithm does not build additional trees on each 

iteration; it mines frequent itemset directly using the 

N-list concept. The efficiency of HPrePostPlus is 

achieved because: (i) N-lists are much more 

compact than previously proposed vertical structures, 

(ii) the support of a candidate frequent itemset can 

be determined through N-list intersection. This 

process is more efficient than finding the 

intersection of TID lists because it avoids 

unnecessary comparisons. 

For solving the problem of network 

communication overhead, HPrePostPlus broadcasts 

only frequent itemset Fk via network, which size is 

much smaller than that of intermediate data. As a 

result, HPrePostPlus shows much higher 

performance than the state-of-the-art MapReduce 

based methods. 

The main contributions of this paper are the 

following: 

(i) We propose HPrePostPlus, a scalable Hadoop 

based method for frequent itemset mining that has 

no intermediate data, and small network 

communication. 

(ii) We use HashMap to traverse efficiently the PPC 

tree and to speed up the process of creating the N-

lists associated with frequent 1-itemsets. 

Experiments show that HPrePostPlus 

outperforms the state-of-the-art MapReduce-based 

methods in terms of speed and scalability.  

The rest of the paper is organized as follows. 

Section 2 presents the basic concepts. Section 3 

outlines survey of related works. Section 4 gives 

proposed approach. Then, section 5 gives results and 

discussion and talk at last in section 6 shows the 

conclusion. 

2. Preliminaries 

2.1 Frequent itemset mining 

Suppose that I = {I1, I2, . . . , Im} is an itemset 

composed of m items. A database D consists of a 

series of transactions. Each transaction is a subset of 

I and has a unique label denoted by TID. A set of 

items is referred to as an itemset. An itemset that 
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contains k items is a k-itemset. The occurrence 

frequency of an itemset is the number of 

transactions that contain the itemset. Given an 

itemset X, the support number of X is the number of 

transactions in D that contain X. If the support 

number of X is greater than or equal to the specified 

minimum support threshold, then the itemset X is 

labelled as a frequent itemset. The purpose of 

frequent itemset mining is to find all frequent 

itemset in a given database. 

2.2 Hadoop and mapreduce 

Encouraged by benefits of parallel execution in 

the distributed environment, the Apache Foundation 

came up with open source platform, Hadoop, for 

faster and easier analysis and storage of different 

varieties of data [21]. HDFS and MapReduce 

programming model are two integral parts of it. 

Google File System gave birth to HDFS (Hadoop 

Distributed File system), which mainly deal with 

storage issues. Contrary to the RDBMs, it follows 

WORM (write-once read-many) model in order to 

split large chunk of data to smaller data blocks then 

join them to the free node available [22]. Stored 

Input data blocks are kept in more than one node in 

order to achieve high performance and fault 

tolerance.  

MapReduce which is inspired by Google's 

MapReduce [13] is known to be a linearly adaptable 

programming model. It contains two main functions 

a map ( ) function and a reduce ( ) one, both of 

which work in a synchronous manner in order to 

operate on one set of key value pairs, and that, to 

produce the other set of key value pairs. These 

functions are equally valid for any size of data 

irrespective of the degree of the cluster. MapReduce 

uses the feature known as data locality to collocate 

the data with the compute node, so that data access 

is fast. It follows shared nothing architecture which 

eliminates the burden from the programmer of 

thinking about failure. The architecture itself detects 

failed map or reduce task and assigns it to a healthy 

node. 

2.3 PrePost algorithm 

PrePost algorithm [8,9] presents a data structure 

named N-list, which is a modification of the vertical 

database, storing the association rule mining all the 

information needed. PrePost also need to scan the 

database twice to construct a PPC-Tree, and make 

use of PPC-Tree to generate the N-list of frequent 1-

itemsets (FIM1). In the mining process, the database 

does not require rescanning, only need to intersect 

the merger N-list, and the complexity of the 

algorithm is O(m+n), m and n are the length of two 

N-list. Each element of N-list composed by PrePost 

Code, which is called after the sequence encoding 

the preamble, the composition in the form of «pre-

order, post-order: count», PrePost Code is based on 

the PPC-Tree respectively from the previous order 

traversal and post order traversal. Fig. 1 shows the 

PPC-Tree, which is similar to FP-Tree, and the 

construction process is the same with the FP-Tree 

but not the same as the composition of the node, 

PPC Tree node consists of five components: 

1. Item-name: represent node name 

2. Count: represent node count 

3. Children-list: represent a children collection of 

the node 

4. Pre-order: represent order of node when pre-

order 

5. Post-order: represent order of node when post-

order. 

Each k-frequent itemsets Fk corresponds to a N-

list, which in ascending order according to the pre-

order, at the same time must also be ascending 

according to post-order .PPC-Tree's main purpose is 

to construct N-list liking shown by Fig. 2, then find 

all the frequent itemsets based on N-list. We can 

then delete the PPC-Tree to reduce memory 

overhead. The main steps of the PrePost algorithm: 

1. Scan transaction database named D, output the 

FIM 1, and in descending order according to 

the number of its support to generate F1. 

2. Scan D again, select the frequent items in each 

record and arrange them in the order of F1, 

assuming list of items in each record is [p|P], p 

is the first item in the list, P is the rest of the 

items. Call the function insert tree ([p|P], Ti ). 

3. Tree formed on the second step, respectively 

pre-order traversal and post-order traversal, set 

pre-order and post-order of each node and 

establishes N-list of I-frequent itemsets. 

Figure. 1 PPC-Tree corresponding with Table 1 
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Table 1. Transaction database 

 

Figure. 2 N-list of frequent 1-itemsets 

 
4. Mining frequent itemsets based on N-list using 

the method liking Apriori Algorithm. 

5. Table 1 shows a transaction database, 

corresponding to Fig. 1 for PPC-Tree, assuming 

the minimum support is 3. 

3. Related work 

The precedent proposed algorithms for mining 

frequent itemsets classed into three groups, generate 

candidate, frequent pattern growth and Hybrid 

approach. 

Recently, three types of structure have been 

suggested for representing itemsets: Node-list [23], 

N-list [8], and Node set [24, 25], to facilitate the 

mining of frequent itemsets. They are founded on a 

prefix coding tree, which save the sufficient 

information about frequent itemsets. Node-list and 

N-list is founded on a PPC-tree, which is a prefix 

tree with every node encoded by its pre-order 

number and post-order number. The N-list (or Node-

list) of an itemsets is a set of nodes in the PPC-tree. 

The solely difference between N-list and Node-list 

lies in that the Node-list of an itemset consists of 

descendant nodes while its N-list consists of 

ancestor nodes. 

 N-lists (or Node-lists) have two important 

specifications: First, the support of an itemset is the 

sum of counts registering in the nodes of its N-list 

(or Node-list). Second, the N-list (or Node-list) of a 

(k + 1)-itemset can be formed by joining the N-lists 

(or Node-lists) of its subset with length of k with 

linear computation complexity. Compared to the 

vertical structures for representing itemsets, such as 

diffset, the size of N-list or Node-list is much 

smaller.  

Compared with FP-tree [7], they are more simple 

and flexible. Therefore, the algorithms based on N-

list or Node-list demonstrate high efficient and 

outperform the existing classic algorithms, such as 

Eclat and FP-growth. Compared with Node-lists, N-

lists have two advantages. The first one is that the 

length of the N-list of an item-set is much smaller 

than the length of its Node-list. The other one is that 

N-lists have property called single path property, 

which can be utilized to directly mining frequent 

itemsets without generating candidate itemsets in 

few cases. These make that PrePost [8], the mining 

algorithm based on N-lists, is high effective than 

PPV [19], the mining algorithm based on Node-lists. 

Recently, PrePost has been improved by utilizing 

various very effective pruning techniques [9]. 

Although N-list and Node-list are efficient structures 

for mining frequent itemsets, they need to include 

pre-order and post-order number, which is memory-

consuming. 

More of the variants of PrePost algorithm were 

developed to employ for small size of data in a 

single machine system. With the apparition of big 

data for last some years, single-machine system 

shows to be incapable to treat big data. A great 

number of researches has been realising for frequent 

pattern mining in multi-machine environment, i.e., 

distributed computing environment [10]. Hadoop is 

one of the important distributed computing 

frameworks, which is adopted by many researchers 

for frequent pattern mining in big data.  

There have been proposed a lot of MapReduce-

based methods for finding frequent itemsets on 

large-scale data [14, 15, 16, 17, 18, 19, 20]. Table 2 

summarizes the characteristics of the major existing 

MapReduce-based methods [26], SPC, BigFim and 

PFP. 
 

Table 2. Resume of the characteristics of the main 

methods based on MapReduce 

Methods 
Intermediate 

data size 

Speed of 

support 

conting 

Scalability 

SPC Small Slow Good 

BigFIM Large Fast Bad 

PFP Large fast Bad 

 

ID Items Ordered frequent items 

1 a, c, g, f c ,f ,a 

2 e, a, c, b b ,c ,e ,a 

3 e, c, b, i b ,c ,e 

4 b ,f, h b ,f 

5 b, f, e, c, d b ,c ,e ,f 
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There have been suggested a lot of MapReduce 

based methods for finding frequent itemsets on 

large-scale data [14, 15, 16, 17, 18, 19, 20]. Table 2 

resumes the properties of the major existing 

MapReduce-based methods [26], SPC, BigFim and 

PFP. 

There are various Apriori-based methods on the 

MapReduce framework. Lin et al. [16] proposed 

three distributed Apriori methods on MapReduce: 

SPC, FPC, and DPC. SPC iteratively performs the 

candidate generation and testing steps as a 

MapReduce round. At the k-th iteration, every 

mapper reads a partitioned database, generates 

candidate itemsets, and calculates support counts of 

them for the partitioned database. Then, the reduce 

step aggregates the support counts of the same 

candidate itemset and tests them against minsup. 

The result of the reduce step is broadcasted for 

being utilized in the next iteration. FPC reduces the 

number of MapReduce rounds by utilizing the map 

function that processes the candidate k-itemsets, 

(k+1)-itemsets, (k+2)-itemsets together in a single 

MapReduce round. DPC dynamically gathers 

candidate itemsets of consecutive multiple lengths to 

be processed by the mappers in a single MapReduce 

round according to the number of candidate itemsets. 

By comparing these Apriori-based methods, 

HPrePostPlus performs support counting much 

faster from the intersection of N-lists, avoiding 

needless comparisons. 

Moens et al. [17] proposed BigFIM, which is a 

hybrid approach between Apriori and Eclat. It first 

finds frequent itemsets of short lengths using the 

distributed algorithm of the Apriori approach and 

generates conditional databases, i.e., equivalence 

classes whose prefixes are the itemsets previously 

found. After that, it performs the sequential Eclat 

algorithm on each conditional database 

independently in each machine. Compared with SPC, 

its support counting is fast by using an efficient 

sequential algorithm, Eclat. However, since the sizes 

of conditional databases are quite different with 

each other, i.e., there is workload skewness, mining 

task tends to fail due to lack of memory in a certain 

machine, or takes too long time due to the machine 

having the largest workload. In addition, it generates 

a large amount of intermediate data and incurs large 

network communication overhead during generating 

conditional databases. Therefore, BigFIM tends to 

show bad scalability as the number of machines 

increases.  

PFP [20] and its variations [27] are the 

distributed methods based on the FP-Growth 

approach. They first project an input database and 

build independent FP-Trees, which are kind of 

conditional databases, using the projected databases. 

Then, they perform frequent itemset mining on each 

FP-Tree independently in each machine. Like 

BigFIM, PFP and its variations can find frequent 

itemsets from FP-Trees by using an efficient 

sequential algorithm, FP-Growth.  

However, similarly with BigFIM, PFP and its 

variations have several drawbacks such as workload 

skewness, large intermediate data size, and large 

network communication overhead. Therefore, they 

tend to fail due to lack of memory, and show bad 

scalability. Comparing to BigFIM and PFP, 

HPrePostPlus shows much better scalability as the 

number of machines increases, since it does not 

intermediate data, and small network overhead. 

Liao et al. [18] presented a MRPrePost algorithm 

a parallel algorithm adapted for mining big data 

based on Hadoop platform under Mapreduce, the 

algorithm uses N-list data structure, which enhances 

PrePost by way of adding a prefix pattern. An 

enhanced  PrePost algorithm with hadoop platform 

suggested  by Thakare et al.[26] based on N-list data 

structure and improved by implementing compact 

PPC tree.  

Comparing to the precedent versions of PrePost 

based on hadoop [18, 19], general tree method is 

utilized to traverse the tree PPC tree. The general 

tree method utilized linked list which is an 

implementation of the List interface. It provides 

sequential access and effective for inserting and 

deleting items in the list. But, it became less 

efficient while accessing items in the list. In 

HPrePostPlus algorithm, general tree method is 

implemented with HashMap which is an 

implementation of the Map interface. It provides an 

efficient and fast for locating value based on the key. 

It does not save the item in the order and it provides 

an easy way to access and delete items on the basis 

of key value pairs. The HPrePostPlus algorithm uses 

also a HashMap to improve the process of creating 

the N-lists associated with 1-itemsets and combines 

the features of Hadoop in order to process large data. 

4. HPrePostPlus algorithm 

4.1 HPrePostPlus design 

The HPrePostPlus algorithm is a data mining 

algorithm for frequent itemsets which uses N-list 

data structure to represent the itemsets. All the 

required information of the itemsets is to be saved 

by N-list. Efficacy of the HPrePostPlus algorithm is 

achieved by using the method of generating frequent 

itemsets without generation of candidate itemsets. 

The HPrePostPlus algorithm uses also a HashMap to 
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improve the process of creating the N-lists 

associated with 1-itemsets from the PPC tree and 

combines the features of Hadoop in order to process 

large data. 

The HPrePostPlus algorithm is implemented 

with Hadoop to enhance its performance. We store 

the big transactional data in Hadoop distributed file 

system (HDFS) of Hadoop framework, and multiple 

partitions of data are distributed across cluster nodes. 

The complete algorithm is divided into three phases, 

which are described as follows: 

 

Phase 1: The data file is given as input to the 

Hadoop. It divides whole input file into fixed size 

blocks called shard, and map it to the different 

DataNode in Hadoop cluster. DataNode counts the 

number of items in each block. Then, apply support 

count and arrange all items in the descending order. 

Then, reducer combines data from all DataNode and 

generate list called F1 list. The F1 list is mapped to 

different DataNode with the distributed cache. The 

main input file is rearranged according to F1 list. 

Here, uses the concept of distributed cache to 

compare two files with Map. Then, generate the list 

of frequent 1-itemset by descending called FL1 list. 

The Pseudo-code for the complete process of phase 

1 is presented in Fig. 3. 

Algorithm of parallel statistical 1-frequent itemsets and 

sort them 

Input: D = Transactional Dataset, minsup= Minimum 

Support Threshold, I = item 

Ouput: FL1=  the set of frequent l -itemsets by descending 

order 

1. Procedure Mapper(key,value=T) 

2. For each item I in T do 

3. Output (key=I, value=1) 

4. End 

5. End Procedure 

6. Procedure Reduce (key=I,value=S(I)) 

7. Sum=0 

8. For each 1 in S(I) do 

9. Sum=Sum + 1 

10. End 

11. If (sum>=minsup) Output(key=I,value=Sum) 

12. Then Call function Sort(Fim1) 

13. End if 

14. Output (FL1) 

15. End Procedure 

Figure. 3 Pseudo code of parallel statistical 1-frequent 

itemsets and sort them 

 

Phase2: All the non-frequent items are removed 

from the original input data, which reduces the data 

size. Only the FL1 list is passed as input to reduce 

network communication overhead, and generate a 

compressed tree called PPC tree similar like FP tree. 

Post-order traversal effectively the tree to determine 

post-order and preorder the tree to determine 

preorder, and then use the HashMap created to 

speed up the process of creating the N-lists 

associated with 1-frequent items. The Pseudo-code 

is shown in Figs. 4 and 5. 

 
Algorithm of constructing PPC-Tree and corresponding 

HashMap 

lnput: shard and FL1  

1. Output: PPC –Tree, H1 the HashMap of FL1 

2. Create H1  

3. Procedure Mapper(key, value=T) 

4. for each Transaction T in D do 

5. select the frequent item in T and sort out them  

according to the order of FL1 

Let the sorted frequent-item list in T be a path [p|P] as the 

value to output <key, [p|P]> 

where p is the first element and P is the remaining list. 

6. End for 

7. Procedure Reduce (key, [p|P]) 

8. Create root of a PPC –tree, and label it as “null” 

9. For each [p|P] 

10. Call insert_tree([p|P],T). 

11. End for 

12. Scan PPC-tree to generate the post-order of each 

node 

13. Return H1 

14. Function insert_tree([p|P],T) 

15. if T has a child N such that N.item-name = p.item-

name 

16. Then  increase N’s count by 1; 

17. Else create a new node N, with its count initialized to 

1, and add it to T’s children-list; 

18. If P is nonempty then call insert tree(P,N)  

recursively. 

19. End if 

20. End if 

Figure. 4 Algorithm of constructing PPC Tree 

 

Algorithm of generating N-List of 1-frequent itemsets 

from the HashMap 

Input: PPC-tree and FL1 the set of frequent 1-itemsets,  

                                 H1 the HashMap of FL1 

Output: NL1, the set of the N-lists of frequent 1-itemsets. 

1. Procedure N-lists construction (R, H1) 

2. Let C=(R.pre-order,R.post-order,R.count) 

3. Add C to H1 [R,name] count by C.count 

4. For each child in R.children do 

5. N-lists construction(child) 

6. End for 

Figure. 5 Pseudo code of generating N-List of 1-frequent 

itemsets 
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Phase3: The N-lists of 1-frequents itemsets  NL1 are 

distributed over cluster nodes as a group of lists for 

loading balance on the cluster. For example from 

PPC-tree of Fig. 2: 

NL1G1 = {b → {< (4,8): 4 >}, f → {< (2,1): 1 >, < 

(8,4): 1 >, < (9,7): 1 >}},  

NL1G2 = {c → {< (1,2): 1 >, < (5,6): 3 >}, a → {< 

(3,0): 1 >, < (7,3): 1 >}},  

NL1G3 = {e → {< (6,5): 3 >}. 

We store thus the N-list of 1-frequent itemsets in 

a distributed cache, which is shared among all the 

nodes. Each node independently depth-first 

traversals every frequent item in the group assigned, 

until all frequent item sets with the current prefixes 

sub-tree are located far. For example, for b in group 

1, the current prefix is b, when c and e are added to 

the prefix sub-tree to generate 2-frequent itemsets 

{bc,be }(bf and ba are not frequent itemsets). To bc, 

be prefixed to continue the operation, eventually get 

all the frequent item sets on b.{b,bc,be,bce}. 

In the prefix subtree merge process, normally 

when b and c are combined, the original algorithm 

generates PPCode <(b.preorder, b.postorder): 

c.count> when the condition is b.preorder <c. 

preorder && b.postorder> c.postorder. But, this 

paper will generate PPCode as <c.preorder, 

c.postorder): c.count> in the same condition. As a 

result of the depth-first and prefix subtree policy, we 

must promise the new added element and the current 

prefix subtree on the same path, necessary and 

sufficient condition is the new element added and 

the last element of the current prefix subtree are on 

the same path.This's the reason why we generate 

PPCode as <(b.preorder, b.postorder): 

c.count>.Finally, reduce combines output. The 

Pseudo-code of phase 3 is presented in Fig. 6. 

 

Algorithm of mining frequent itemsets 

Input: NL1G [i]=group i of NL1 and shared the NL1 to be 

saved in distributed cache 

Output: FLk =frequent k-itemsets F 

1. For each mapper do 

2. For each NL_l of NL1G [i] do 

3. Call mining_fim_k(NL_l, FLk,NL1, minsup)  

4. end for  

5. end for 

6. Function mining_fim_k(NL_k, NL1,minsup) 

7. For  i = 0 to NL1 do 

8. If (NL_k.count  >= |DBI|* minsup) 

9. F=F U Lk 

10. If (NL_kcount >= NL1[i].count) 

11. Assume Lk= x1x2….xk , L[i].item = xk+1 , supp(xk) > 

supp(xk+1) 

12. FLk+1 = FLk+FL1[i] // FLk+1 = x1x2….xkxk+1 

13. FLk= FLk+1 

14. Compare N-list ofNL_k with N-list of NL1[i] 

15. If  ( NL_k.preorder < NL1 [i].postorder && NL_k . 

postorder > NL1[i].preorder|) 

16. NL_k+l.N-list.add ( NL1[i].prepost, 

NL1[i].postorder.count ):NL1[i].count) 

17. End if  

18. End If. 

19. End if 

20. End for 

Figure. 6 Pseudo code of mining frequent itemsets 

 

Table.3 The properties of datasets used in experiment 

5. Experiments 

In this section, the algorithm HPrePostPlus was 

compared with its original version PrePost [8], three 

state-of-the art algorithms negFin [25], MRPrePost 

[18] and the well-known PFP [20]. We evaluated 

the speed performance by analyzing the running 

time and scalability. 
The experiments were conducted on a Hadoop 

cluster of  3 nodes where each node contains Intel® 

Core ™ i5- 3230M CPU@2.60GHz  processing 

units and 12.00GB RAM . HDFS was used for 

storage of input dataset and output frequent itemsets. 

The datasets T10I4D100K and T40l10D100K are 

used for experiments. These two real datasets were 

presented at the first IEEE ICDM workshop on 

Frequent Itemset Mining (FIMI’ 03) [28]. Table 3 

shows the detail of the two datasets. 

The running time with different support degree 

for dataset T10l4D100K and T40l10D100K is 

shown in Figs. 7 and 8 separately. The x-axis 

denotes the support degree and y-axis represents the 

running time. The support degree grows from 0.1% 

to 0.5%. 

The experimental results with respect to the 

runtime experiments are presented in Figs. 7 and 8. 

Figure 7 reflects that the performance of the parallel 

algorithms HPrePostPlus, MRPrePost and PFP, is 

not as good as negFIN and PrePost on small dataset. 

The reason is each node needs to send message to 

others in clusters, but delay of network bandwidth is 

unpredictable, so I/O operation occupies main 

runtime, thus affecting the performance of the 

algorithm. Contrarily, negFIN and PrePost has an 

advantage of data localization. But when the dataset 

is large, the sequential methods negFIN and PrePost 

at a lower support threshold cannot be performed 

 

Dataset Size Transactions Items 
Average 

length 

T10I4D100K 
3.8 

MB 
100.000 870 10 

T40l10D100K 
14 

MB 
100.000 1000 40 



Received:  April 24, 2018                                                                                                                                                   233 

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018           DOI: 10.22266/ijies2018.1031.21 

 

 
Figure. 7 The running time of T10I4D100K 

 

 
Figure. 8 The running time of T40l10D100K 

 

 
Figure.9 The running time with different computer nodes 

 

due to memory overflow, On the other hand, the 

distributed algorithm, can still frequent itemsets 

mining, which is the purpose of PrePost algorithm 

parallelization, the main purpose of parallelization is 

to handle large dataset, which cannot be processed 

on standalone.  

The results in Fig. 8 reflect this view. In addition, 

we can also know from Fig. 8, HPrePostPlus, 

MRPrePost and PFP are significantly superior to 

negFIN and PrePost, and achieved a good 

performance. At this time, communication time 

between the nodes in a distributed cluster is not a 

major factor, but data processing time. 

Parallelization is to use multiple processors 

independently to process small scale data, so the 

algorithm superior performance compared to a 

stand-alone environment. The results also reflect, 

whether on a large or small datasets, runtime of 

HPrePostPlus is shorter than MRPrePost and PFP, 

because of sharing cache on Hadoop when 

HPrePostPlus conducts a depth-first strategy, which 

reduces the communication. However, using a 

HasMap to speed up the process of creating the N-

lists associated with frequent items from PPC tree is 

very effective. 

In Fig. 9, x-axis represents the number of 

computer nodes of Hadoop cluster and y-axis 

represents the running time of HPrePostPlus 

algorithm. Fig. 10 illustrates the running time with 

different numbers of computer nodes. With more 

computer nodes, HPrePostPlus needs less execution 

time, and the curve of HPrePostPlus has a nearly 

linear decline. HPrePostPlus shows a characteristic 

of near-linear scalability. 

6. Conclusion 

This paper has suggested the HPrePostPlus 

algorithm as an effective algorithm for mining 

frequent itemsets using the N-list. First, we 

proposed several ameliorations on the previously 

published PrePost algorithm: (i) use of a HasMap to 

improve the process of creating the N-lists 

associated with the frequent 1-itemsets from PPC 

tree and (ii) implementate a scalable Hadoop-based 

method for frequent itemset mining that has no 

intermediate data, and small network 

communication. HPrePostPlus does not improve 

over the negFIN and PrePost with respect to small 

datasets but the time gap is not significant. With 

respect to large datasets, HPrePostPlus is faster. 

Besides, the runtime of HPrePostPlus is always 

faster than MRPrePost and PFP. Also, the 

experimental results indicated that the proposed 

algorithm shows better efficiency and scalability. 

For future work we will focus on applying our 

approach for mining frequent closed itemsets and 

maximal itemsets. 
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