
Received: April 15, 2018 206

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.19

Discrete TCP: Differentiating Slow Start and Congestion Avoidance

Bhavika Gambhava 1* Chandu Bhensdadia 2

1Charotar University of Science and Technology, India

2 Dharmsinh Desai University, India

* Corresponding author’s Email: gambhava.b@gmail.com

Abstract: Deployment of wireless links (terrestrial and satellite) along with wired links has made extension of the

Internet even in remote places feasible. TCP/IP protocol suite is an integral part of the Internet. Congestion control

of TCP plays a vital role in the performance of the Internet. TCP’s unconditional flow control in case of a packet loss

has always been a concern for researchers. Further, halving congestion window in such conditions without taking in

to account the current network state is also considered inappropriate. The problem is compounded in wireless

networks where packet losses occur often due to channel errors rather than the shortfall in the available bandwidth.

In this situation, TCP’s conservative behaviour underutilises the bandwidth. We therefore, propose a scheme to

address the issue of underutilization of network resources. The proposed approach, Discrete TCP (DTCP),

differentiates slow start and congestion avoidance phases while tuning data flow over a transport connection. DTCP

evaluates ssthresh and cwnd before setting up parameters, based on the existing network condition to enhance the

performance. The proposed scheme is compared and analyzed with various existing schemes with the help of

extensive simulations using ns2. Results of simulation based experiments indicate significant performance

improvement of DTCP on erroneous links and in heterogeneous networks and confirm its suitability.

Keywords: SACK TCP, Discrete TCP, Sow start, Congestion avoidance, Congestion control, ssthresh, cwnd.

1. Introduction

The World Wide Web has seen an immense

growth in past couple of decades. Because of

everyday expansion of Internet, there is a

requirement for efficient protocols. HTTP (web

browsing) and FTP (file transfer) are two widely

used protocols over the Internet. At the transport

layer, both utilize TCP (Transmission Control

Protocol) at the transport layer [1]. In Internet, most

of the traffic is TCP-based. Thus, TCP has an

imperative role in the performance of the Internet.

TCP is used in the Internet that supports many

applications such as web access, file transfer and

email. Due to its extensive use in the Internet, it is

desirable that TCP remains in use to offer reliable

services for communications in wireless networks

and in heterogeneous networks.

TCP is a reliable end-to-end transport layer

protocol designed for wired networks characterized

by negligible random packet losses [2]. TCP keeps

increasing the sending rate of packets as long as no

packets are lost. Due to inherent reliability of wired

networks, there is an assumption made by TCP that

any packet loss is due to congestion. TCP will

invoke its congestion control mechanism whenever

any packet loss is detected. Most of the congestion

control mechanisms reduce sending data rate to

relieve the network from congestion. The reduction

is not decided based on the degree of congestion and

it affects the performance. If the sender has crossed

a certain threshold, then a drastic reduction in the

data flow results in inferior performance. If the

sender is still probing the network capacity, data rate

should be significantly decreased to help the sender

stabilize according to available network resources.

Most of the TCP variants do not take these

circumstances into account while setting up the data

rate and offer the same treatment in both the

scenarios.

Received: April 15, 2018 207

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.19

In this paper, we present a new approach to

setting up apposite data flow based on the state

whenever any loss is encountered. The transmitter

sets data flow related parameters differently during

slow start and congestion avoidance phases unlike

conventional TCP. A TCP sender enters in

congestion avoidance phase after crossing slow start

threshold and increases data flow linearly to avoid

possible congestion. Congestion Window (cwnd) is

doubled per Round Trip Time (RTT) in exponential

increase, while it is increased just by 1 in linear rise.

Hence, reduction in cwnd should also be as per the

current phase of the TCP sender. The proposed

scheme follows the behaviour of SACK TCP

whenever it is in the exponential increase, while a

new algorithm is followed during the linear rise.

This leads to improved network performance as well

as robustness. The proposed scheme is compared

with well-known existing versions of TCP by

numerous simulations.

The rest of the paper is organized as follows. In

the next section, we discuss the existing approaches

with their limitations. A new scheme named,

Discrete TCP is proposed and explained with a state

diagram in Section 3. Simulation environment and

topologies are discussed in Section 4. Simulation

results are presented and analyzed in Section 5. We

conclude the paper in Section 6.

2. Existing variants of TCP

In this section, we describe various TCP variants,

which are used to compare with the proposed

approach. TCP provides reliability by setting a

retransmission timer when it sends data. In slow

start phase, TCP increases cwnd each time an

acknowledgement is received, by number of packets

acknowledged [2]. This strategy effectively doubles

TCP cwnd for every RTT. When cwnd exceeds a

threshold named slow start threshold (ssthresh), it

enters congestion avoidance phase. cwnd is

increased by 1 for each RTT until a loss occurs. If

the data is not acknowledged before expiration of

the timer, it retransmits the data. TCP reduces cwnd

to 1 when Retransmission timeout (RTO) takes

place. It is because of the original design of TCP to

operate over wired networks, where congestion was

the main reason for packet losses.

TCP Tahoe is the first TCP variant, not

depending on RTO to detect a packet loss [3]. In

Tahoe TCP, a loss is detected by the arrival of three

duplicate acknowledgements (dupack). When a loss

is detected, fast retransmission is attempted. ssthresh

is set to half of the current cwnd and slow start

begins again from its initial cwnd. Tahoe TCP

reduces cwnd to 1, which deteriorates performance

of the connection.

TCP Reno involves fast recovery to reduce

impact of cwnd reduction in contrast to TCP Tahoe

[4]. When three dupacks are received, TCP Reno

halves cwnd, performs a fast retransmit and enters

fast recovery. Fast recovery sets new cwnd and

ssthresh, both by half of the current cwnd. TCP

Reno is effective to recover from a single packet

loss, but it suffers when multiple packets are

dropped from a window of data.

TCP New Reno tries to improve the TCP Reno’s

performance when a burst of packets is lost by

modifying the fast recovery algorithm [5]. In TCP

NewReno, a new data acknowledgement is not

enough to take TCP from the fast recovery phase to

congestion avoidance. Instead, it requires all the

packets outstanding at the start of the fast recovery

period are acknowledged. TCP NewReno assumes

that the packet that immediately follows the partial

acknowledgement received during fast recovery is

lost, and retransmits the packet. However, this might

not always be true because of reordering of packets

and it affects the performance of TCP.

Selective Acknowledgement (SACK) TCP adds

a number of SACK blocks in TCP header options,

where each SACK block acknowledges a non-

contiguous set of received data [6, 7]. SACK TCP’s

strength lies in its ability to avoid unnecessary

retransmissions, based on SACK blocks available

from the receiver. SACK TCP is able to recover

from losses faster than New Reno TCP because of

its ability to avoid retransmission of the packets

which have certainly reached the receiver. By

avoiding unnecessary retransmission, SACK TCP

utilizes the available bandwidth more efficiently,

which results in overall performance improvement.

However, SACK TCP also does not reduce the data

flow discreetly.

TCP Vegas [8] uses proactive measures to

encounter congestion. It does not depend solely on

packet loss as a sign of congestion. It detects

congestion before the packet losses occur. It

estimates the unacknowledged packets in the buffer

of the bottleneck link. It maintains the minimum

RTT as a reference to obtain the optimal/optimum

throughput the network can achieve. However, it

still retains the other mechanism of Reno, and a

packet loss can still be detected by retransmission

timeout if the other mechanisms fail. Issues

identified with TCP Vegas are problems of rerouting,

persistent congestion, and discrepancy in flow rate

tied with starting times and link bandwidth [9].

Linux TCP [10] sender is governed by a state

machine that determines the sender actions when

Received: April 15, 2018 208

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.19

acknowledgements arrive. Linux implements a

number of TCP enhancements proposed by Internet

Engineering Task Force (IETF), such as Explicit

Congestion Notification [11] and D-SACK [12].

The Forward Acknowledgements (FACK)

algorithm [13] takes a more aggressive approach

and considers the unacknowledged holes between

the SACK blocks as lost packets. Although this

approach often results in better TCP performance

than the conservative approach, it is overly

aggressive if packets have been reordered in the

network, because the holes between SACK blocks

do not indicate lost packets in this case.

TCP Fast Start [14] changes conventional TCP’s

slow start. The sender caches network parameters to

avoid paying the slow start penalty for each page

download. However, there is a risk of performance

degradation if the cached information is stale. To

shield the network as a whole from the ill-effects of

stale information, packets sent during the fast start

phase are assigned a higher drop priority than other

packets.

AFStart TCP [15] dynamically sets ssthresh and

cwnd. AFStart approaches ssthresh quickly than

standard slow start. Cwnd is initialized with 4

packets. An abrupt increase of cwnd may acquire the

available resources and which may force other

traffic to get congested.

Novel Quick Start [16] optimizes slow start for

the satellite communication networks. The value of

cwnd is initialized to the detected network

bandwidth. Error in estimated bandwidth is reduced

in subsequent iterations. An abrupt change of cwnd

may lead to congestion in the network.

An EQF (Explicit Queue-length Feedback) [17]

uses the queue-length of the congested switch port

as a congestion signal to trigger TCP congestion

control for controlling the sending rate of the sender

in a TCP connection.

Congestion control of Reno TCP or NewReno

TCP is recently modified in [18 - 20]. Agility based

safety growth enhanced slow start algorithm [18]

tries to reduce Epoch time to increase cwnd quickly.

This may lead to congestion if bandwidth estimation

fails or concurrent traffic by other users increases.

Slow start is modified to increase step up count to

improve the efficiency [19]. However, packet drops

are increased by 30% [19], which is wastage of

network resources. Other connections can utilise the

available bandwidth if these excess packet drops can

be avoided. TCP LR-Newreno congestion control is

an algorithm for IEEE 802.15.4 based standard [20].

It increases drop rate of the packets as compared to

Vegas TCP when channel is error free. It also

consumes more energy than Vegas TCP, which is a

crucial parameter in wireless sensor networks

(WSN).

Authors of [21] try to reduce the packet drops by

proposing an enhanced queue management scheme

for TFRC over wired networks. All the

routers/intermediate nodes need to change the

queuing mechanism which is a task. TCP variants

demanding changes at sender or receiver are viable

mechanisms.

3. Discrete TCP

TCP performance is strongly influenced by its

congestion control algorithms that limit the amount

of transmitted traffic based on the estimated network

capacity. Most of the congestion control

mechanisms assign new values to cwnd and ssthresh

after an indication of the loss. It is conventional to

halve cwnd whenever 3 dupacks are received by the

sender. We propose an algorithm, which considers

the state of the sender before setting up the

parameters, cwnd and ssthresh. Hence, we call it a

Discrete TCP. Discrete TCP (DTCP) tunes

parameters differently after a packet loss based on

slow start and congestion avoidance.

The sender doubles cwnd after each round trip

time (RTT) in the slow start. cwnd is incremented

only by 1 after an RTT if the sender is in the

congestion avoidance. 3 dupacks trigger the sender

to attempt fast retransmission and fast recovery is

evoked after that. DTCP modifies the fast recovery

based on the slow start/exponential increase or the

congestion avoidance/linear rise. DTCP reduces

cwnd and ssthresh by half of the previous cwnd in

the slow start because the last doubling of cwnd

probably caused congestion and resulted in the

packet loss. DTCP reduces cwnd and ssthresh by 3/4

of the previous cwnd in linear rise because the last

update in cwnd caused just one additional packet

over the network. It is obvious that one additional

packet cannot cause severe congestion and reduction

of cwnd to half harms the network performance. It is

also to be noted that this loss can also be due to

errors of the wireless link in today’s heterogeneous

networks. Reducing cwnd by half in such

circumstances is irrational. DTCP gracefully reduces

cwnd to relieve the network from potential

congestion, while improving the performance as

discussed in a later section. The pseudo code of

DTCP is given in Fig. 1.

The state diagram of DTCP is shown in Fig. 2.

The behaviour of the slow start and the congestion

avoidance phases are as per SACK TCP. Whenever

cwnd exceeds ssthresh, the TCP sender enters the

congestion avoidance from the slow start.

https://www.ietf.org/
https://www.ietf.org/

Received: April 15, 2018 209

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.19

Figure. 1 Pseudo code of discrete TCP

Figure. 2 State diagram of DTCP

The congestion avoidance is continued as long

as new acknowledgements are received. Whenever a

packet loss takes place on the network, dupacks are

generated by the receiver. On arrival of 3 dupacks,

the sender fast retransmits the lost packet and

changes the state. If the previous state was slow start,

then standard fast recovery is followed as shown in

Fig. 2. Whereas modified fast recovery is followed

if the previous state was congestion avoidance.

Pseudo code of the proposed algorithm is shown in

the figure.

No change is proposed in Discrete TCP for RTO.

The sender completely follows SACK algorithm in

the event of the timeout. DTCP does not require

changes at intermediate nodes or at the receiver side.

The TCP header and options are also not modified.

DTCP needs changes only in SACK TCP sender

implementation, which makes is easily deployable

and also interoperable with senders and receivers,

involving different variants.

Received: April 15, 2018 210

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.19

4. Simulation environment

The performance of Discrete TCP was evaluated

with several TCP variants, using simulations under

identical conditions. The simulations were carried

out using network simulator ns-2[22]. Selective

Acknowledgement TCP(SACK)[6], Vegas

TCP(Vegas)[8], Linux TCP(Linux)[10], Forward

acknowledgement TCP(FACK)[13], Fast Start

TCP(FS)[14], and Reno TCP(Reno)[4] are used for

evaluation in ns-2. In order to examine the

performance of DTCP, experiments were conducted

for three types of environments: 1. only errors, no

congestion 2. congestion but no error 3. errors and

congestion.

The basic error model of ns was chosen for

experiments. It simulates link-level errors by

marking the packet’s error flag or dumping the

packet to a drop target. A random variable is

uniformly distributed from 0 to 1 to cause packet

drops according to the percentage error rate.

Different error-rates (0.00,0.001 and 0.01) in terms

of percentage of packets were configured during

simulations to analyze the impact on the

performance.

FTP traffic was generated for 100 seconds. The

purpose of conducting simulations for longer

duration is to examine the impact of changes on a

settled TCP connection. Packet size was kept 1500

bytes to be compatible with Ethernet. All the

parameters are summarized in Table 1.

Simulation Topologies

A simple network topology shown in Fig. 3, was

used to evaluate the performance in the presence of

only errors. Node 1, node 2 and node 3 are

transmitter, router and receiver respectively. The

propagation delay of all duplex links is 50 msec

with data rate of 100 Mbps. The erroneous packets

were dropped from the intermediate node 2,

resulting in a gap in sequence numbers at the

receiver node 3. Because of equal incoming and

outgoing data rates at a router, congestion never

takes place. Hence, all packet losses are because of

corruption only. This scenario was created to

Table 1. Simulation parameters

Simulator ns2

Application FTP

Packet size 1500 byes

Link type Full duplex

Time 100 sec

Error rates 0, 0.001, 0.01

Error model Random. Uniform (0-1)

Queue length 50

Type of the Queue Droptail

Figure. 3 Erroneous network topology

Figure. 4 Congested network topology

characterize a simple wireless network. The

performance of DTCP along with previously

mentioned variants was tested in this scenario.

Simulations were repeated on a topology shown

in Fig. 4. It shows a typical network with two

sources (node 1 and node 2), transmitting on 10

Mbps full duplex link with a 1 msec delay. The link

between router (node 3) and a common destination

(node 4), is a bottleneck link with 2 Mbps data rate

with 10ms delay. A router with a finite buffer of size

50, drops packets in case of overflow. This

obviously creates congestion at a router because of

total incoming traffic from sources is 20 Mbps

whereas the capacity of the outgoing line is only 2

Mbps. In the second experiment, we assume error-

free environment to study the impact of only

congestion.

Simulations were also carried out on a topology

shown in Fig. 5. The topology consists two sources

(node 1 and node 2), transmitting on 10 Mbps full

duplex link with a 1 msec delay. The link between

router1 (node 3) and router 2(node 4) is a bottleneck

link with 5Mbps data rate and 100ms delay. Source

1 and source 2 are sending data to destination

1(node 5) and destination 2(node 6) respectively.

Router 2 is connected to destinations by 10Mbps full

duplex link with 1ms Delay. Error model is

configured at router1 to cause losses due to

corruption also. Error rates were changed during

simulations in the presence of congestion. The

packet losses in this environment may be either due

to congestion or because of errors. This environment

resembles a heterogeneous network with wired and

wireless links.

Received: April 15, 2018 211

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.19

Figure. 5 Congested and erroneous network topology

5. Simulation results and analysis

The results are analyzed on the basis of number

of packets successfully delivered over the simulation

period of 100 seconds. The error rate is varied from

0.00 to 0.001 and 0.01 in order to check response of

the network in absence of errors, in presence of

moderate error rate and in presence of severe error

rate. Results of three topologies are discussed in this

section.

5.1 Errors without congestion

As the incoming and outgoing link capacity is

identical in the topology of Fig. 3, no packet is

dropped because of congestion.

(i) Error rate 0.00

Initially, the error rate was kept 0.00 to check the

response of all variants in utopian condition. In this

congestion-free and error-free network, TCP scheme

is expected to deliver the best performance in

absence of channel errors. However, the TCP

performance is obviously constrained by its inherent

dynamic parameter like cwnd apart from other

network parameters like the channel bandwidth,

delay and router queue length etc. Performance of

all schemes is observed to be identical in absence of

errors except Linux TCP as shown in Table 2. This

indicates that these schemes adopt the conventional

TCP behaviour in absence of packet losses. Our

detailed examination revealed that Linux TCP

delivered almost significantly (almost 6 times) more

packets than rest of the TCP schemes in the same

period. We confirmed aggressive behaviour of

Linux TCP by observing its cwnd at intermediate

points. All other TCP variants never send more than

50 packets in one RTT because of specified

maximum window (maxwnd). Linux TCP does not

restrict its data flow to 50 and sends up to 543 by the

end of 100 seconds simulation. We carried out other

simulations with higher maxwnd values and other

TCP variants were found to perform same as Linux

TCP. Note that, this aggressive data flow is not

friendly with other competing connections in the

network and it may hamper their performance. In

the absence of errors, DTCP performs same as other

TCP as expected. We verified here that no action is

taken by our proposed algorithm if no loss is

encountered. DTCP is activated only when any

packet loss is detected in order to revise the sending

rate of TCP judiciously.

(ii) Error rate 0.001

Error rate was then increased to 0.001 to check

behaviour of various TCP variants in the presence of

moderate link errors. Vegas TCP shows better

performance than other variants because of its

ability of estimating network bandwidth and

accordingly adjusting cwnd. Note that Vegas TCP

adopts the conventional behaviour along with

conservative cwnd value after a packet loss. Linux

TCP reduces cwnd frequently in case of random

error losses without considering network condition.

This leads to underutilization of network. The

proposed algorithm, DTCP sets up higher data rate

as compared to other TCP variants, which helps in

using the available bandwidth promptly and more

efficiently. The same can be observed in the third

column of Table 2.

DTCP delivers only 7.8% lesser packets in

presence of 0.001 error rate than the most

favourable network condition of 0.00 error rate as

compared to other variants, which reduce by 19.3%

to 87.9% as mentioned in Table 2. Vegas TCP is

second best to DTCP, while Linux TCP’s aggressive

data rate is controlled by link errors, which

deteriorates performance greatly.

(iii) Error rate 0.01

Error rate 0.01 was also configured over the

network to check the response in the presence of a

highly error-prone link. DTCP surpasses all other

Table 2. Number of delivered packets for erroneous

network

error=0 error=0.001 error=0.01

SACK[6] 24762 15940 6331

Vegas[8] 24587 19836 8456

Linux[10] 146302 17567 6561

FACK[13] 24762 17009 6226

FS[14] 24762 14598 5259

Reno[4] 24762 16225 5049

DTCP 24762 22818 8671

Received: April 15, 2018 212

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.19

protocols once again as observed from the last

column of Table 2. The performance gain in the

number of successfully delivered packets varies

from 2.54% to 71.7% in DTCP against other

protocols. DTCP performs 43.14% and 36.96%

better than one of the widely used implementation

SACK TCP for 0.001 and 0.01 error rates

respectively. The rationale behind this improvement

is pertinent cwnd setting while encountering a loss at

the sender.

5.2 Congestion without errors

In order to examine compatibility with the

existing terrestrial wired network, the next set of

experiments was carried out in a congested

environment without link impairments. Incoming

data flow at a router, as shown in Fig. 4, is much

higher than the capacity of the outgoing link.

Multiple losses in a single transmitted window tend

to be present due to congestion. DTCP restricts

packet sending rate in a congested network as there

is no scope of utilizing bandwidth further. No

improvement can be expected in this case. Therefore,

there was no valid reason for DTCP to set up cwnd

according to the proposed modifications as most of

the losses were from the slow start phase. The

bottleneck link in Fig. 4 can carry up to 2×106

bits/sec or 25× 104 bytes/sec. Thus, maximum

16666 packets of 1500 byes each can be sent in 100

seconds simulation period. All TCP versions

perform nearly same as seen in Table 3. However, it

is noteworthy that DTCP does not deteriorate

network performance when deployed in severely

congested environment.

5.3 Errors and congestion

Real networks are likely to suffer from errors

and congestion together. Most of heterogeneous

networks experience packet losses due to congestion

as well as errors. The same was tested on topology

shown in Fig. 5 to examine all the possibilities. The

error rate was increased to 0.001 to evaluate

behaviour in a realistic environment. DTCP

transfers highest number of packets followed by

Vegas TCP [8]. DTCP delivered 4.48% and 23.2%

more packets than Vegas TCP and SACK TCP,

respectively. When error rate was further increased

to 0.01 to observe the impact of highly noisy

wireless links, DTCP outperformed all other

schemes considered for experiments. DTCP’s

performance was found to be 10.55% and 58.47%

higher than Vegas TCP and SACK TCP,

respectively. DTCP delivers 92% more packets than

FS TCP in case of congested network having 0.01

error rate. Fig. 6 illustrates the percentage

improvement of DTCP in terms of delivered packets

over other TCP schemes. It can be observed from

that DTCP performs better when higher error rates

were encountered. It validates DTCP’s ability to

rightly assign cwnd according to the state of the

network.

Table 3. Number of delivered packets for error-free congested network

 SACK Vegas Linux FACK FS Reno DTCP

Sender 1 7274 8334 8192 8148 8560 7366 8097

Sender 2 8983 8330 8084 8119 7610 8728 8182

Total Packets 16257 16664 16276 16267 16170 16094 16279

Table 4. Number of delivered packets for erroneous and congested network

error=0 error=0.001 error=0.01

SACK 40217 30631 10592

Vegas 40289 36118 15183

Linux 39373 32306 10644

FACK 40217 30833 10630

FS 40217 27979 8705

Reno 40217 30567 9690

DTCP 40217 37739 16786

Received: April 15, 2018 213

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.19

Figure. 6 Improvement of DTCP over other variants for erroneous and congested network

6. Conclusion

In this paper, we propose a modification to

change congestion control algorithm of the

conventional TCP with a more appropriate value of

cwnd in case of a packet loss. The proposed scheme,

Discrete TCP (DTCP) tunes data flow differently in

case of slow start and linear rise. The objective is to

use available bandwidth more efficiently.

The performance of the proposed scheme is

evaluated over different topologies in presence of

different error rates, delay, and levels of congestion.

The performance of the proposed scheme is

compared with other well-known TCP variants. Our

observations are as under:

1. In absence of errors, performance of all TCP

variants is observed to be same. DTCP

adopts behaviour of the conventional TCP

when links are error free. DTCP improves

performance up to 56.3% and 71.7% over

erroneous network with 0.001 and 0.01 error

rates respectively.

2. There is no improvement in case of severe

congestion, which in turn confirms network

friendliness of DTCP.

3. Simulation results indicate substantial

performance enhancement in DTCP as

compared to many other TCP variants in the

presence of errors in a congested network

also.

All changes in implementation are confined to

the sending side. No changes are needed in the TCP

header, routers or at the receiver implementation.

Hence, it is interoperable with any other TCP

implementation at the receiver.

Acknowledgments

Authors would like to thank Dr. Nikhil Kothari and

Dr. Brijesh Bhatt for their helpful suggestions and

proofreading drafts of this paper.

References

[1] M. Duke, E. Blanton, A. Zimmermann, R.

Braden, and W. Eddy, “A roadmap for

transmission control protocol (TCP)”, RFC

7414, 2015.

[2] Y. Tian, K. Xu and N. Ansari, “TCP in wireless

environments: problems and solutions”, IEEE

Communications Magazine, Vol. 43, No. 3,

pp.S27-S32, 2005.

[3] V. Jacobson, "Congestion avoidance and

control", ACM SIGCOMM Computer

Communication Review, Vol. 18, No. 4, pp.

314-329, 1988.

[4] M. Allman, V. Paxson, and E. Blanton, “TCP

congestion control”, RFC 5681, 2009.

[5] T. Henderson, S. Floyd, A. Gurtov, and Y.

Nishida, “The NewReno modification to TCP's

fast recovery algorithm”, RFC 6582, 2012.

[6] M. Mathis, M. Jamshid, S. Floyd, and A.

Romanow, “TCP selective acknowledgment

options”, RFC 2018, 1996.

[7] S. Floyd, M. Jamshid, M. Matt, and P. Matthew,

“An extension to the selective acknowledgement

(SACK) option for TCP”, RFC 2883, 2000.

[8] U. Hengartner, B. Jürg, and G. Thomas, "TCP

Vegas revisited", In: Proc. of Nineteenth

Annual Joint Conference of the IEEE Computer

and Communications Societies, Vol. 3, pp.

1546-1555, 2000.

Received: April 15, 2018 214

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.19

[9] K. Srijith, J. Lillykutty, and A. Ananda, "TCP

Vegas-A: solving the fairness and rerouting

issues of TCP Vegas", In: Proc. of IEEE

conference on Performance, Computing and

Communications, pp. 309-316, 2003.

[10] P. Sarolahti and A. Kuznetsov, "Congestion

Control in Linux TCP", In: Proc. of USENIX

Annual Technical Conference, FREENIX Track,

pp. 49-62, 2002.

[11] K. Ramakrishnan, S. Floyd, and D. Black, “The

addition of explicit congestion notification

(ECN) to IP”, RFC 3168, 2001.

[12] E. Blanton and M. Allman, "Using TCP

duplicate selective acknowledgement

(DSACKs) and stream control transmission

protocol (SCTP) duplicate transmission

sequence numbers (TSNs) to detect spurious

retransmissions", RFC 3708, 2004.

[13] M. Mathis and J. Mahdavi, "Forward

acknowledgement: Refining TCP congestion

control", ACM SIGCOMM Computer

Communication Review, vol. 26, no. 4, pp. 281-

291, 1996.

[14] V. Padmanabhan and R. Katz, "TCP fast start:

A technique for speeding up web transfers", In:

Proc. IEEE Globecom, 1998.

[15] Y. Zhang, N. Ansari, W. Mingquan, and H. Yu,

"AFStart: An adaptive fast TCP slow start for

wide area networks", In: Proc. of IEEE

International Conference on Communications,

pp. 1260-1264, 2012.

[16] D. Zhang, K. Zheng, D. Zhao, X. dong Song,

and X. Wang, "Novel quick start (QS) method

for optimization of TCP", Wireless Networks,

pp. 211-222, 2016.

[17] Y. Lu, X. Fan, and Lei Qian, "EQF: An explicit

queue-length feedback for TCP congestion

control in datacenter networks", In: Proc. of the

Fifth International Conference on Advanced

Cloud and Big Data, pp. 69-74, 2017.

[18] P. Moorthy and K. EaswaraMoorthy, “Agility

based safety growth of Slow-Start Congestion

Avoidance and Control Scheme in TCP”,

International Journal of Intelligent Engineering

and Systems, Vol.10, No.6, pp. 30-38, 2017.

[19] R. Patel and A. Ganatra, “TCP M-Start: A New

Slow Start Method of TCP to Transfer Data

Over Long Fat Pipe Network”, International

Journal of Intelligent Engineering and Systems,

Vol.10, No.1, pp. 124-133, 2017.

[20] A. Sembiring, M. Abdurohman, and F.

Yulianto, “TCP LR-Newreno Congestion

Control for IEEE 802.15.4-based Network”,

International Journal of Intelligent Engineering

and Systems, Vol.10, No.5, pp. 181-190, 2017.

[21] R. Nalavala, C. Pakanati, and P. Mokkala, “An

Enhanced Queue Management Scheme for

TFRC Over Wired Networks”, International

Journal of Intelligent Engineering and Systems,

Vol.10, No.1, pp. 22-27, 2017.

[22] http://www.isi.edu/nsnam/ns/,Network

Simulator ns-2.

