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Abstract: DC motors are widely used in industrial application for its different advantage such us high efficiency, 

low costs and flexibilities. For controlling the speed of DC motor, conventional controller PI and PID were the most 

widely used controllers. But due to empirically selected parameters 𝐾𝑝 , 𝐾𝑖 , 𝐾𝑑  and limitation of convention PID 

controller to achieve ideal control effect for higher order systems, a Fractional order Proportional-Integral-

Derivative PID (FOPID) based on optimization techniques was proposed in this paper. The aim of this paper is to 

study the tuning of a FOPID controller using intelligent soft computing techniques such as Differential Evolution 

(DE) and Particle Swarm Optimization (PSO) for designing fractional order PID controller. The parameters of 

FOPID controller are determined by minimizing the Integral Time Absolute Error (ITAE) between the output of 

reference model and the plant. The performance of DE and PSO were compared with several simulation experiments. 

The simulation results show that the DE-based FOPID controller tuning approach provides improved performance 

for the setpoint tracking, error minimization, and measurement noise attenuation. 

Keywords: DC motor, Fractional PID, Tuning parameters, Differential evolution, Particle swarm optimization, Cost 

function. 

 

 

1. Introduction 

The DC motors are widely used in industrial 

application for its different advantage such us high 

efficiency, low costs and flexibilities. For 

controlling the speed of DC motor different 

controllers is used, most widely used controllers are 

conventional controller PI and PID. But 

conventional PID controller has been facing lots of 

problem to achieve ideal control effect. For higher 

order systems, PID has not been working properly.  

When compared with the classical three terms 

PID controllers, the fractional order controllers have 

two additional control parameters defined as 

integration and differentiation orders which may 

enable the controller to provide the more flexibility 

and stability.  

It is quite difficult to optimize the parameters of 

the FOPID controller in linear and nonlinear 

systems. There is a need for an effective and 

efficient global approach to optimize these 

parameters automatically.  

For this reason different design methods for 

FOPID controller have been reported in the 

literatures. In [1] the authors proposed a new 

approach for robust control by fractionalizing an 

integer order integrator in the classical PID control 

scheme and they use the Sub-optimal 

Approximation of fractional order transfer function 

to design the parameters of PID controller .In [2], 

the authors designed a new tuning rules for the 
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tuning parameters of FOPID based on Ziegler–

Nichols (Z–N) rule, A new tuning method for 

designing fractional order PID controllers based on 

radial basis function (RBF) neural networks was 

proposed in [3]. Sharma et al [4] proposed a 

Fractional Order Fuzzy Proportional Integral 

Derivative (FOFPID) controller for a two-link 

planar rigid robotic manipulator for trajectory 

tracking problem. For tuning of parameters of all the 

controllers, Cuckoo Search Algorithm (CSA) 

optimization technique was used. Chang et al. [5] 

proposed a novel adaptive GA for the multi-

objective optimization design of a FOPID controller 

and applied it to the control of an active magnetic 

bearing system. They found that the fractional PID 

controllers have remarkably reduced the overshoot 

and settling time compared with the optimized 

conventional PID controller. Bingul [6] employed 

the differential evolution (DE) algorithm to tune a 

PID controller for unstable and integrating processes 

with time delay. The results showed that a faster 

settling time, less or no overshoot, and higher 

robustness were obtained with the PID tuned DE. 

Cao [7] demonstrated the parameter optimization of 

a fractional order controller based on a modified 

PSO. In their paper, the improved PSO could 

achieve faster search speed and better solution 

compared to the GA. Maiti et al. [8] employed PSO 

for designing fractional order PID controllers. They 

reduced significantly the percentage of overshoot, 

rise, and settling times using FOPID controllers 

compared to a PID controller. Alfi and Modares [9] 

found optimal system parameters for an unstable 

nonlinear system and optimal parameters of the PID 

controller using a novel Adaptive PSO (APSO). 

They compared the APSO with a Linearly 

Decreasing inertia Weight PSO (LDW-PSO) and the 

GA. The APSO has a faster convergence speed than 

the GA and LDW-PSO.  

The controllers of the speed that are conceived 

for goal to control the speed of DC motor are 

numerous: Fractional PID Controller [10, 11], 

Fractional fuzzy PID Controller [12]; Genetic 

algorithm [13, 14], Particle Swarm Optimization 

[15], … etc. 

 The benefit of FOPID controller is flexible to 

design, more robust [16] and the most important 

advantages is the better control of dynamical 

systems and less sensitivity to changes in parameters 

of a control system [17, 18]. In Fractional Order PID 

(FOPID) besides setting the proportional, derivative 

and integral constants 𝐾𝑝,  𝐾𝑖,  𝐾𝑑 
we have two more 

parameters λ (integral order)   and μ (derivative 

order). Hence, for designing FOPID controller, there 

is a need of proper tuning of five parameters 

(𝐾𝑝, 𝐾𝑖, 𝐾𝑑 , 𝜆, 𝜇) [19]. 

An evolutionary computation technique has 

become gradually popular to obtain global optimal 

solution in many areas. A Differential Evolution 

Optimization (DEO), particle swarm optimization 

(PSO) and Genetic Algorithm (GA) are stochastic 

optimization strategy from the family of 

evolutionary computation [20, 21].  

DE has been regarded widely as a promising 

optimization algorithm. What’s more, the optimal 

problems solved by genetic algorithms (GA) can be 

obtained better solutions with PSO in comparison 

with conventional methods. These are precisely the 

main motivations that led us to apply DE and PSO 

for FOPID controllers design. 

This paper proposes a new method to design a 

speed controller of a DC motor by selection of 

FOPID parameters using DE. To show the efficiency 

of DE, the results of this method are compared with 

PSO method. Minimization of time domain based 

objective function is the main focus of design 

methodology. 

The structure of this paper is organized as 

follows: Section 2 deals with mathematical 

modelling of DC motor. Sect. III introduces the 

fractional order PID controller; Section IV provides 

a brief overview of the DE and PSO algorithms. 

Section V applies the new algorithm in this paper to 

parameter setting of fractional order PID controller 

through a simulated calculation example; and 

Section VI draws the conclusion of the whole paper. 

 

2. Modelling of DC motor 

In order to experiment our proposed robust 

control strategy, let us apply it in numerical 

simulations to the general model of a DC motor 

(DCM) as depicted in [22]. The voltage 𝑉𝑎  is applied 

to command the motor angular velocity 𝜔(𝑡). Fig.1 

shows the schematic diagram of armature controlled 

DC motor. 

 
 

 

 

 

 

 

 

 

Figure.1 Closed loop response with PID controller 
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The DC motors are generally used in the linear 

range of the magnetization curve. Therefore, air gap 

flux 𝜑 is proportional of field current: 

 
𝜑 = 𝐾𝑓𝑖𝑓                                (1) 

 

Where 𝐾𝑓 is constant.  

The torque 𝑇𝑚  developed by the motor is 

proportional to the armature current and air gap flux: 

 

                           𝑇𝑚 = 𝐾𝑚𝑖𝑎                              (2) 

 

Where 𝐾𝑚 is the motor torque constant.  

The motor back EMF being proportional to 

speed is given as: 

 

                           𝑒𝑏 = 𝐾𝑏
𝑑𝜃

𝑑𝑡
                               (3) 

 

Where 𝑒𝑏 is the back EMF constant.  

The differential equation of armature circuit is: 

 

                     𝑉𝑎 = 𝐿
𝑑𝑖𝑎

𝑑𝑡
+ 𝑅𝑖𝑎 + 𝑒𝑏                       (4) 

 

And the dynamic equation with moment of inertia 

and coefficient of friction will be: 

 

                𝑇𝑚 = 𝐽
𝑑2𝜃

𝑑𝑡2
+ 𝑓

𝑑𝜃

𝑑𝑡
                            (5) 

 

The resulting mathematical model for controlled 

DC motor is given by the following transfer function 

[22]: 

 

𝐺𝑀(𝑠) =
𝜃(𝑠)

𝑉𝑎(𝑠)
=

𝐾𝑚

𝑠(𝐿𝑠+𝑅)(𝐽𝑠+𝑓)+𝐾𝑏𝐾𝑚
           (6) 

 

Where  

 𝑅: Armature Resistance (𝛺).  
 𝐿: Inductance of armature winding (𝐻).  
 𝑖𝑎: Armature current (𝐴).  
 𝑖𝑓:  Field current (𝐴).  

 𝑉𝑎: Applied armature voltage (𝑉).  
 𝑒𝑏: Back emf (𝑉).  
 𝑇𝑚: Torque developed by motor (𝑁𝑚).  
 𝜃: Angular displacement of motor shaft (𝑟𝑎𝑑).  
 𝜔: Angular speed of motor shaft (𝑟𝑎𝑑/𝑠𝑒𝑐).  
 𝐽: Equivalent moment of inertia of motor and 

load referred to motor shaft (𝑘𝑔 −𝑚2).  
𝑓: Equivalent friction coefficient of motor and   

load referred to motor shaft (𝑁𝑚. 𝑠/𝑟𝑎𝑑). 
As the armature time constant for most DC 

Motor (𝑀) is negligible we can simplify the model 

 

 
Figure.2 Closed loop response with PID controller: 𝐾𝑝 =

10,     𝐾𝑖 = 100, 𝐾𝑑 = 0.25 

 

(6). The resulting simplified mathematical model 

form is: 

 

𝐺𝑀(𝑠) =
𝜃(𝑠)

𝑉𝛼(𝑠)
=

𝐾𝑚

𝑠[𝑅(𝐽𝑠 + 𝐾𝑓) + 𝐾𝑏𝐾𝑚]
 

𝐺𝑀(𝑠) =
[𝐾𝑚 (𝑅𝐾𝑓+𝐾𝑏𝐾𝑚)⁄ ]

𝑠(𝜏𝑠+1)
=

𝐾𝑀

𝑠(𝜏𝑠+1)
         (7) 

 

Where: 

𝜏 = 𝐾𝑚 (𝑅𝐾𝑓 + 𝐾𝑏𝐾𝑚)⁄ :   is the time constant.  

𝐾𝑀 = 𝐾𝑚 (𝑅𝐾𝑓 + 𝐾𝑏𝐾𝑚)⁄ : is the gain. 

with 𝐾𝑚 = 𝐾𝑏.  

The specifications are: min. volt-age 1.5 𝑉, max. 

voltage 2.5 𝑉 , nominal voltage 2 V,  max rated 

current 0.08 𝐴, no load speed 3830 𝑟/𝑚𝑖𝑛 and rated 

load speed 3315 𝑟/𝑚𝑖𝑛.  
For our mini DC motor the physical constants 

are R =  6Ω,  𝐾 𝑚 = 𝐾𝑏  =  0.1,   𝐾𝑓  =  0.2 𝑁𝑚𝑠    

and  𝐽 =  0.01 𝑘𝑔𝑚2/𝑠2. 
For the considered motor parameters the transfer 

function (7) becomes: 

 

𝐺𝑀(𝑠) =
𝜃(𝑠)

𝑉𝛼(𝑠)
=

0.08

𝑠(0.05𝑠+1)
                  (8) 

 

Fig. 2 shows the closed loop response with 

conventional PID controller. Thus the system (Eq. 

(8)) is marginally stable. 

3. Fractional PID Controller Design 

3.1  Fractional Calculus 

Fractional calculus is a generalization of the 

differentiation and integration to non-integer-order 

fundamental operator 𝐷𝑡
𝜇

𝑎
  , where a and t are the 

bounds of the operation. The definition of the basic 

operator which includes the derivative and 

integration is [23]: 
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𝐷𝑡
𝜇
=𝑎

 {

𝑑𝜇

𝑑𝑡𝜇
                            𝜇 > 0

1                                𝜇 = 0

∫ (𝑑𝜏)−𝜇
𝑡

𝑎
                𝜇 < 0

                    (9) 

 

Where 𝜇 is a fractional order of differentiation 

or integration, generally 𝜇 ∈ ℝ. The negative sign of 

𝜇  indicates integration while positive one means 

derivation [24]. 

There are many mathematical definitions of 

fractional derivatives [25]. One of the most 

important used definitions is Grunwald-Letnikov 

definition which is perhaps the most popular 

because of its suitability for the realization of 

discrete control algorithms.  

The Grünwald-Letnikov definition of fractional-

order derivatives is expressed as [26]: 

 

𝐷𝑡
𝜇
𝑓(𝑡) = lim

ℎ→0

1

ℎ𝜇
∑ (−1)𝑗 (𝜇

𝑗
) 𝑓(𝑡 − 𝑗ℎ)

[
𝑡−𝑎

ℎ
]

𝑗=0𝑎
     (10) 

 

With      (𝜇
𝑗
) =

Γ(𝜇+1)

Γ(𝑗+1)(𝜇−𝑗+1)
 

 

while the definition of fractional-order integral is 

expressed as: 

 

  𝐷𝑡
−𝜆𝑓(𝑡) = lim

ℎ→0

1

ℎ−𝜆
∑ (𝜆

𝑗
) 𝑓(𝑡 − 𝑗ℎ)

[
𝑡−𝜆

ℎ
]

𝑗=0𝑎
     (11) 

 

With: 

     (𝜆
𝑗
) =

Γ(𝑛−𝜆+1)

𝑗!Γ(𝜆)
, Γ(1) = 1 and Γ(𝑥 + 1) = 𝑥Γ(𝑥) 

for   𝜆 ∈  ℕ, Γ(𝜆 + 1) = 𝜆! 
 

where: 

(𝜆
𝑗
) =

𝜆!

𝑗!(𝜆−𝑗)!
  and (𝜇

𝑗
) =

𝜇!

𝑗!(𝜇−𝑗)!
  are   the   

binomial coefficients (𝑗 > 0). 
 

𝜆, 𝜇 : Integral and derivative Order respectively. 

Γ(. )  : Gamma function 

ℎ  : Step time. 

 

Another popular definition is that of Riemann-

Liouville definition of fractional-order derivatives 

given by: 

 

𝐷𝑡
𝜇
𝑓(𝑡) =

1

Γ(𝑛−𝜇)

𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝜏)

(𝑡−𝜏)𝜇−𝑛+1
𝑑𝜏   

𝑡

𝑎𝑎
 (12) 

 

Where      𝑛 − 1 < 𝜇 < 𝑛 

while the definition of fractional-order integral is 

expressed as: 

 

𝐷𝑡
𝜆𝑓(𝑡) =

1

Γ(𝜆)
∫ (𝑡 − 𝜏)𝜆−1𝑓(𝜏)𝑑𝜏 
𝑡

𝑎𝑎
      (13) 

 

The Laplace transform of the fractional derivative of 

𝑓(𝑡) is given by: 

 

   𝐿{𝐷𝜇𝑓(𝑡)} = 𝑠𝜇𝐹(𝑠) − [𝐷𝜇−1𝑓(𝑡)]𝑡=0         (14) 

 

The Laplace transform of the fractional integral of 

𝑓(𝑡) is given as follows: 

 

  𝐿{𝐷−𝜆𝑓(𝑡)} = 𝑠−𝜆𝐹(𝑠)                    (15) 

 

Where 

  𝐹(𝑠) is the Laplace transform of 𝑓(𝑡). 

3.2 Fractional PID controller 

The Fractional Order PID (FOPID) Controller is 

the expansion of the generic control loop feedback 

mechanism (PID controller) widely used in industrial 

control systems. The FOPID Controller attempts to 

correct the error between a measured process 

variable and a desired set point by calculating and 

then outputting a corrective action that can adjust the 

process accordingly.  

The transfer function of the FOPID controller is 

described as follows: 

 

𝐺𝑐(𝑠) = 𝐾𝑝 + 𝐾𝑖𝑆
−𝜆 + 𝐾𝑑𝑆

𝜇               (16) 

 

The FOPID equation has five unknown parameters, 

where 𝐾𝑝 is the proportional gain, 𝐾𝑖is the integral 

gain, 𝐾𝑑  is the derivative gain,  𝜆 is the fractional-

order integral and 𝜇 is the fractional-order derivative 

and 𝜆, 𝜇 are positive real numbers. 

The block diagram of control system employing 

Soft computing FOPID control action is shown in 

Fig.3.   

 
 
 
 
 
 
 

 

 

 

 

 

 

 
Figure.3 A block diagram of Intelligent FOPID controller 
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Initialize particles in searching space with random position 

and velocity 

 

Stop: giving gbest as optimal solution 

Maximum iteration 
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End 

Yes 

Yes 

No 

No 

where  

𝑉(𝑠) : Input Signal  

𝐸(𝑠) : Error Signal  

𝐺𝑐(𝑠): Controller Transfer Function  

𝐺(𝑠) : System or plant (DC Motor)  

𝜃(𝑠)  : Output Signal  

𝑈(𝑠)  : Control Signal 

3.3 Cost function 

To evaluate the controller performance, there are 

always several criterions of control quality like 

integral of absolute error (IAE), integral of time 

absolute error (ITAE), integral of squared error (ISE) 

and integral of time squared error (ITSE) [27].  

A disadvantage of the ISE and IAE criteria 

(weight all errors equally and independent of time) is 

that they may result in a response with a long settling 

time and relatively small overshoot [27]. To 

overcome this drawback, an integral of time 

weighted absolute error (ITAE) is used in this paper 

as fitness function. 

Therefore, the controller can be evaluated using 

the following performance index: 

 

𝐽(𝐾𝑝, 𝐾𝑖, 𝐾𝑑 , 𝜆, 𝜇) = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡
∞

0
         (17) 

              

 

J is called as ITAE. It explains indirectly the level 

that the controlled object is close to the reference 

model. Where 𝑡  is the time and 𝑒(𝑡)   is the 

difference between set point and controlled variable. 

4. PSO and DE optimization methods 

In this paper, the FOPID controller is optimized 

to achieve the optimal behaviour of the plant. The 

optimizer is used to search for the optimal solution of 

the FOPID control gain. 

4.1  Particle swarm optimization algorithm 

PSO is a modern heuristic search method 

inspired by the social behavior of bird and fish 

schooling. PSO optimization consists of designing 

the optimization goal, i.e. the fitness function and 

then encoding the parameters to be searched.  

PSO exploits a swarm of particles probing 

promising regions of the D-dimension search space 

with adaptable velocity. It runs until the stop 

condition is satisfied. The best particle’s position 

gives the optimized parameters for the controller. 

The flowchart of a typical PSO algorithm is shown 

in Fig.4. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.4  Flowchart of PSO algorithm procedure 

 

The update formula of velocity and position is 

stated by Eqs. (18) and (19): 

 

𝑣𝑖
𝑘+1 = 𝑤𝑖𝑣𝑖

𝑘 + 𝐶1𝑎(𝑃𝑖 − 𝑥𝑖
𝑘) + 𝐶2𝑏(𝑃𝑔 − 𝑥𝑖

𝑘) (18) 

 

                        𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1                       (19) 

 

Where:  

𝑣𝑖
𝑘, 𝑥𝑖

𝑘     : Velocity and positioning vectors of 

particle 𝑖 at iteration  𝑘 respectively. 

𝑣𝑖
𝑘+1, 𝑥𝑖

𝑘+1 : Modified velocity and position of 

particle 𝑖  at the next iteration  𝑘 + 1 

respectively.  

𝑎 , 𝑏            : Random number between 0 and 1 

𝐶1, 𝐶2         : Positive constants 

𝑃𝑖, 𝑃𝑔        : Best positions found by particle 𝑖 and 𝑔 

respectively 

𝑤𝑖            : Weight function for velocity of particle  𝑖.  
 

In order to design optimum controller, the fitness 

function are defined in Eq. (17).  
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Figure.5  Flowchart of DE algorithm 

4.2 Differential evolution 

DE was introduced by Storn and Price in 1996. 

It is a stochastic, population based optimization 

algorithm like Genetic Algorithm. But one big 

difference is that DE is developed to optimize real 

parameters that are non-differentiable, non-

continuous, non-linear, noisy, flat, multi-

dimensional or have many local minima. As a result, 

the idea of mutation and crossover are substantially 

different in both the techniques. 

DE has better convergence to global optimum, 

more accurate and reduced number of simulations in 

comparison to other optimization techniques.  

Minimizing the cost function generates the 

controller parameters. The error criterion is 

considered as the cost function, and the values of 

 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑  are continuously adjusted, until the 

error of the closed-loop system is minimum. Eq. 

(17) shows the normally considered error criterion 

in control system to evaluate the performance of 

controller. 

The flowchart of DE algorithm is shown in Fig.5. 

5. Tuning of the FOPID controller using 

PSO and DE optimizations  

The speed control loop of DC motor (model 

number PN13KA12C) has been modeled in 

SIMULINK PSO and DE algorithms has been 

programmed and implemented in Matlab.  

 

 

 

In this paper a time domain quantities such as 

maximum overshoot, rise time, setting time, 

damping ratio and undamped natural frequency of 

the desired dominant closed-loop poles, is used for 

evaluating the FOPID controller. A set of good 

control parameters P, I, D, 𝜆 and 𝜇 can yield a good 

step response that will result in performance criteria 

minimization in the time domain. To control the 

plant model the following intelligent tuning methods 

PSO and DE parameters are used to verify the 

performance of the FOPID controller Parameters. 

Table 1 summarizes the values of parameters 

affecting the optimization. Table 2 displays the 

optimization parameters for each optimization 

method used in this paper. 

6. Simulation results and discussion  

All optimization procedures are successful, 

producing gains inside the specified bounds and 

providing valid solutions for each case. Conventional 

methods of controller tuning lead to a rise time, 

overshoot, large settling time and steady state error 

of the controlled system. Hence intelligent soft 

computing techniques are introduces into the control 

loop. PSO and DE based FOPID tuning methods 

have proved their excellence in giving better results 

by improving the performance indices and the steady 

state characteristics. 

Performance characteristics of process model 

(dynamic response characteristic of the closed loop) 

was indicated and compared with the intelligent 

tuning methods as shown in Figs.6 and 7. 

It can be observed from the Fig.6 that, the DE 

algorithm method gives much better time domain 

performance comparatively to PSO algorithm 

especially for maximum overshoot, rise time, and 

settling time and also comparatively to [22] study. 
 

Table 1. Optimization parameters 

Optimization parameters Value 

Number of Population (NP) 50 

D-dimensional parameter 5 

Generation number 100 

 

Table 2. Optimization methods parameters 

Optimization Process 

Optimization method 
Optimization 

Parameter 
Value 

Differential Evolution 
CR  

F  

8.0  

9.0  

Particle Swarm 

Optimization 

1C  

2C  

1 

3  
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Figure.6 Unit step response of closed-loop system: (a) 

FOPID-PSO and (b) Zoom 

 

 
Figure.7 Unit step response of closed-loop system: 

FOPID-DE 

 

As can be seen in Fig.7, the dynamic properties 

(overshoot and settling time) of the controlled 

system response obtained from the FOPID-DE are 

much better than those of obtained from FOPID-

PSO controller. 

We remark also, in all figures, a sluggish initial 

responses which is due to ITAE index (ITAE index 

reduces the settling time and absolute error but it has 

sluggish initial response). 

Fig.8 shows the responses of the FOPID-PSO 

and PID-PSO controllers with the ITAE cost 

function. 

 

 
Figure.8 Comparison of PID-PSO and FOPID-PSO 

 

 

 
Figure.9 Comparison of PID-DE and FOPID-DE 

 

 
Figure.10 Convergence of behaviours of FOPID-DE 

 

 
Figure.11 Convergence of behaviours of the: FOPID-PSO 

 

As can be seen in Fig.8, the dynamic properties 

(overshoot and settling time) of the controlled 

system response obtained from the FOPID-PSO 

controller are much better than those of the PID-

PSO controller. 

Fig.9 shows the responses of the FOPID-DE and 

PID-DE controllers with the ITAE cost function. As 

can be seen from Fig.9, the FOPID-DE controller is 

more robust and has better trajectory tracking than 

the PID-DE. In order to compare the search 

performance of the different intelligent optimization 

methods, PSO and DE algorithms are applied to the 

FOPID controller optimization with ITAE cost 

function. 

Figs.10 and 11 show the fitness values of 

different algorithms and as can be seen, the fitness 

value of the FOPID-DE is decreased to 0.53 after 2 

generations. On the second hand, the fitness value of 

the FOPID-PSO is decreased to 2.45 after 2 

generations. It is clear from Fig.10 that DE 

converges fast initially and requires fewer 

generations to reach the optimal point. As can be 

seen, through about 2 generations, the DE algorithm 

provides better convergence. Furthermore, the 

results obtained here show that the DE algorithm 
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Figure.12 FOPID controller with random output noise of 

5 % of the  reference signal amplitude 

 

Table 3. Parameters of controllers 

 

can search optimal FOPID controller parameters 

more quickly and efficiently than the PSO algorithm. 

Fig.12 shows the time response characteristics for a 

step change of the system (2) with random output 

noise of a magnitude equal to 5% of the reference 

signal amplitude. 

We remark the FOPID-DE controller give them 

a certain diminution of the noise effect (Absolute 

error =2%). For DC Motor, the Evolution 

optimization algorithms    (PSO, DE) aims to find 

optimal value of FOPID controller to minimize the 

objective function as given in Eq. (12). For ITAE 

cost function, the parameters of the FOPID 

controller tuned with two different algorithms and a 

comparaison in terms of the cost function are 

summarized in Tables 3. From Tables 3, the 

parameters of the FOPID-DE controller for the cost 

function ITAE are approximately close to that of the 

FOPID-PSO controller. 

7. Conclusion 

In this work, a new design of intelligent 

optimization-based model independent controller 

tuning for DC Motor plant has been attempted. All of 

the parameters related to the fractional order PID 

controller were determined using PSO and DE. The 

robust design of the FOPID controller is difficult to 

compare to the PID controller, since the FOPID 

controller includes more parameters. The parameters 

of FOPID controller were determined by minimizing 

the ITAE between the output of reference model and 

the plant. The robustness of the FOPID-DE 

controller was tested in the case of presence noise at 

the reference signal amplitude. 

Considering all of the results from the simulation 

experiments, the FOPID-DE controller can achieve 

good performance, noises rejection and robustness, 

superior to those obtained with the FOPID-PSO 

controller. The FOPID-DE controller has good 

tracking performance in comparison with the 

FOPID-PSO controller. In addition, the FOPID-DE 

controller enhanced the flexibility and stability of the 

PID controller. Furthermore, the implementation of 

the controller tuning with DE is much easier than 

with the traditional methods because there is no need 

for derivative knowledge or complex mathematical 

equations. In future studies, Bacterial Foraging (BF-

FOPID) will be developed using these optimized 

FOPID controllers. 
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