
Received: February 12, 2018 271

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.29

OCSA: Task Scheduling Algorithm in Cloud Computing Environment

Pradeep Krishnadoss1* Prem Jacob2

1St. Joseph’s College of Engineering, Chennai, Tamilnadu, India

1, 2Sathyabama Institute of Science and Technology, Chennai, Tamilnadu, India
*Corresponding author’s Email: pradeepkrishnadoss@gmail.com

Abstract: Cloud computing offers dynamic allocation of resources on demand, the feature which makes it to stand

apart providing great performance, scalability, cost efficient and less maintenance, thus making it an apt choice. Task

scheduling becomes the essential factor in increasing the performance for the dynamic allocation of resources which

is most essential in the cloud environment to increase performance and decrease the cost. In this work, a solution is

proposed using makespan and cost, taking them as important constraints for the optimization problem. We have

merged two algorithms namely, cuckoo search algorithm (CSA) and oppositional based learning (OBL) and created

a new hybrid algorithm called oppositional cuckoo search algorithm (OCSA) to provide solution to the above stated

issue. Our proposed OCSA algorithm showed noticeable improvement over the other task scheduling algorithms.

The proposed work is simulated in cloudsim programming environment and the simulation results show the

effectiveness of the proposed work by minimizing cost and makespan parameters. The obtained results are better in

comparison to other existing algorithms like particle swarm optimization (PSO), Improved Differential Evolution

Algorithm (IDEA) and genetic algorithm (GA).

Keywords: Task scheduling, Cuckoo search algorithm, Oppositional based learning, Resource, Makespan, Cost.

1. Introduction

In the fast growing global business environment,

maintaining rapid application development in the

information technology sector has been cumbersome.

Expediting the software deployment strategies by

reducing the time and effort requires the application

of a recent trend called Cloud computing. Cloud

computing is everywhere, in the simplest terms it

can be defined as storing and accessing data and

programs over the Internet instead of your

computer’s hard-drive. Cloud is just a metaphor of

the Internet. All the applications in cloud computing

are provided as services each time and every time it

is demanded. Thus the services including

application storage, network, server and other

services can be utilized effectively and efficiently.

This results in enormous savings with respect to

time and cost.

Most of the quality of services parameters

including execution time, cost, scalability, reliability,

energy and load balancing have been achieved to a

remarkably satisfying level with the help of cloud

computing. In cloud computing, customer may be

provided with numerous virtualized resources to

utilize; it is not possible for anyone to allocate the

jobs manually. Hence, to allocate the resources to

the virtual machine layer, the load balancing

algorithm becomes essential.

1.1 Cloud models

The models in cloud computing are classified as

follows:

Public cloud model: This model is defined as a

cloud computing infrastructure owned and operated

by the third party service provider to provide

services to various types of users, and these services

are provided through the internet. An advantage of

this model is that they are typically larger in scale.

The customers on public cloud share the same

infrastructure pool with limited configurations and

Received: February 12, 2018 272

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.29

security protection as they are wholly managed by

the service provider.

Private cloud model: It is constructed

exclusively for each project and it is also known as

cloud computing infrastructure. While giving the

concerns regarding security and control, it also gives

permission to host applications in the cloud. It also

overcomes some of the difficulties posed by a public

cloud because the model can also be hosted by an

outside cloud supplier.

Hybrid cloud model: This model is defined as a

cloud computing infrastructure that combines the

advantages of both public and private cloud model

using special methods that allow data and

application transfer between them.

1.2 Cloud computing services

Infrastructure as a service (IaaS) enables users

to remotely access a network, storage or computing

infrastructure. In other words it delivers cloud

computing infrastructure-as an on-demand service,

thus outsourcing the vital resources at a lower cost.

E.g. Amazon Web Service, Microsoft Azure.

Platform as a service (PaaS) is a cloud

computing platform that gives permission to create

web applications in a very fast and simple way,

thereby providing a relief from buying and

maintaining the software and infrastructure beneath

it. Google App Engine is the best example for this.

Software as a service (SaaS) enables a provider

to license an application to customers either as a

service on demand or through subscription at no

charge through the Internet. In other words rather

than buying the software, it can be rented. It is a

pay-as-you-go model. E.g. Salesforce, Cisco WebEx.

1.3 Cloud computing tools

Cloud tools and technologies are used to sort out

the business solutions based on the organizational

requirements. There are numerous cloud computing

tools namely Eucalyptus, Open Nebula, Nimbus,

and Openstack, each having a variety of strategies

for deployment.

Load balancing in cloud computing: It is the

process of distributing workload and computing

resources in a cloud computing environment. Load

balancing allows enterprise to manage application or

workload demands by allocating resources among

multiple computers, networks or servers, thus

accounting for substantial savings in terms of time

and cost.

1.4 Types of load balancing algorithms

Load balancing algorithms are of two types

namely static and dynamic. The static scheduling

technique is of non pre-emptive type. In this

technique, tasks are assigned to the processor during

compile time i.e. before the program execution. The

main objective of static scheduling algorithm is to

reduce the execution time. However, the

disadvantage is that it is not feasible to change the

load during execution time, as once the load is

allocated to the node it cannot be transferred.

Dynamic scheduling is based on monitoring

changes on the system workload and redistributing

the work accordingly. Redistribution is carried out

by transferring the jobs between the processors

based on workload, thus improving the efficiency of

the system. This technique has one drawback where

it incurs a run-time overhead among processors.

Cloud computing comprises of a data centre,

which are distributed geographically. There exists a

data centre controller, which handles jobs, as and

when it is submitted by a customer. The controller

uses a VM to process an incoming request.

Round Robin algorithm involves the requests to

be provided in a circular basis with specific time

quantum or in other words a VM is assigned the

first request, after which, the remaining are assigned

in a circular fashion. Although the workload

distribution processors are similar, the job

processing time is not the same. The limitation of

this algorithm is that at any point of time some

system may be loaded heavily, while others may be

idle. Another version of the round robin is the

weighted round robin.

In this method, each VM is assigned a weight. If

one VM can handle twice as much load as another

VM, the power has a weight of two. In which case,

for every request assigned to a weaker VM, two

requests will be assigned to the powerful VM. The

disadvantage of this algorithm is that the advanced

load balancing requirements like processing time is

not considered. In [1] the authors provide a

comparative analysis on the basis of Quality of

Service (QoS) to project clear ideas on scheduling

algorithms.

In [2] a new technique called Optimal Time

Algorithm (OTA) is presented to develop

productiveness of tasks performance remarkably. It

does not take into consideration the difference

between implementation times of tasks on same

processor; clusters of tasks that are dissimilar may

Received: February 12, 2018 273

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.29

be formed. This method efficiently makes use of the

features and qualities of MapReduce tasks for

building a best task scheduling. It gets rid of the

short comings involving the minimization of

makespan of workloads with the help of the

workflow of MapReduce jobs.

In [3] a hybrid algorithm is proposed to

consolidate the advantages of Ant Colony

Optimization Algorithm (ACO) and Cuckoo search.

The reduction of makespan time is possible using

this algorithm. Jobs are executed in specific time

intervals by allocating the required resources. The

result obtained proves that hybrid algorithm

performs better than ACO algorithm based on the

performance and makespan.

The migration of multiple co-located and live

virtual machines from one node to another is

required for power saving on cloud platforms. This

migration is vital for running services, and due to

this reason it needs to be completed quickly. These

live-migration strategies optimize the migration

performance of one or more VMs by focusing on

Virtual Machine Monitor (VMM) and pay less

attention towards the cloud platforms which controls

and schedules multiple migrations. This paper

considers the drawbacks of scheduling operations to

reduce makespan [4].

For most favourable use of cloud’s power, we

require effective and efficient scheduling algorithms

that in turn choose the most optimal resources for

task execution. It involves the assignment of tasks to

the existing resources in such a way that helps in

maximizing utilization and reduces makespan. The

complete time required for all tasks to finish is

known as makespan. Utilization can be said to be

the overall extent to which network resources are

used. The task scheduling is categorized under NP-

complete problem and meta-heuristics, due to its

heterogeneous nature and dynamic resource

requirement. The aim of this paper is to optimize

task scheduling which uses Particle Swarm

Optimization (PSO) algorithm to reduce the

makespan. Inertia weights that have been used are

different. The Linear Descending Inertia Weight

(LDIW) with a mean of 22.7% reduction in

makespan shows that the performance is best [5].

The important topic which deals in cloud

computing is task scheduling and energy usage.

There are two steps in scheduling process, one is job

prioritization and the other is processor choosing.

Various priorities may go to different manufacturing

time and for every processor the usage of energy

may differ. Thus an optimal scheduling algorithm

must involve job prioritization and choose the

optimal processor in such a manner that

manufacturing time and energy usage is decreased.

This paper [6] explains two steps in process

algorithm for scheduling named as TETS in which

the starting step includes prioritizing job and second

includes processor allocation. There are three

prioritization procedures to prioritize jobs to

produce best starting chromosomes and allocating

jobs to processors. The outputs after simulation of

algorithm showed that this algorithm is much better

than the previous algorithms on the basis of energy

usage and manufacturing time. It is capable of

improve the energy usage by 20% and

manufacturing time by 4%.

In [7] a solution is proposed using multiple

techniques and algorithms to fulfil the requirements

of users by making sure that the tasks are completed

on time with the given cost. This paper puts forward

a job scheduling algorithm named as Time Based

Ant Colony Optimization Algorithm (TBACO)

which is inspired from basic ACO. The aim is to

decrease the manufacturing time of given tasks once

they are scheduled on the different datacenters.

These datacenters are known as the resource

providers in cloud. This is simulated in CloudSim

and the results clearly showed that TBACO

algorithm performed much better than basic ACO

with a savings of 59% in makespan.

In this paper a convex optimization model is

proposed which maximizes power savings while

satisfying the job completion deadline and also

maintaining the temperature within admissible

bounds. By varying the frequency of operation of

core, optimization is ensured. The main

characteristics of this approach are the bounds of

operation. The allowed operation limit enables the

elasticity of computing resources in an autonomic

manner to achieve a pareto front for the solutions.

For validation purpose simulations can be done on a

variable workload [8].

Many computing resources allow the

implementation of jobs in cloud surroundings. Thus,

it becomes essential to find the suitable node for

finishing a job; this improves the process of large-

scale cloud computing circumstances. The collection

of required information and analysis of service

providers to make decisions is quite time-consuming

for consumers. This is a demanding job from

computer usage perspective since the same

computation may be processed repeatedly by

different customers of the same needs. The

performance is increased by distributing load among

more than one node of the distributing system for

effective resource usage and task response time. It

also makes sure that all processors do close to the

same task at any instance of time. The tool which

Received: February 12, 2018 274

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.29

helps users to simulate large-scale cloud

applications with the aim of understanding the

process under various deployment configurations is

Cloud Analyst. The simulated results are based on

the algorithm [9].

This paper illustrates MMSF which is minimum

makespan task scheduling framework and MMA

which is minimum manufacture time of the job

scheduling algorithm. This algorithm is made with

two goals. That includes reducing the total

manufacturing time and increasing the virtual

machine usage. The job scheduling problem is said

to be a multi-objective optimization problem.

Optimization techniques are used to solve it. The

experiment proves that MMA performs better than

traditional task algorithms in terms of total

makespan and virtual machine utilization [10].

This paper presents two SLA-based job

scheduling algorithms; the following are SLA-MCT

and SLA-Min-Min for heterogeneous multi-cloud

surrounding. The first one is single-phased and the

next one is two-phased in scheduling. Three levels

of SLA identified by customer are supported in this

algorithm. The algorithms also incorporate the SLA

gain cost for successful completion of the services

and SLA violation cost for the unsuccessful end of

services. Benchmarks and synthetic datasets are

used for simulation. The outputs of the explained

SLA-MCT are compared with three single-phase job

scheduling algorithms and the following are CLS,

Execution-MCT, and Profit-MCT, and the results of

SLA-Min-Min are compared with two-phase

scheduling algorithms, which are Execution-Min-

Min and Profit-Min-Min in terms of four process

metrics, namely manufacturing time, mean cloud

usage, profit, and penalty cost of the services. The

output proves that this algorithm effectively

maintains a balance between manufacturing time

and profit cost of the services [11].

This paper presents a novel cloud-based

workflow scheduling (CWSA) policy for executing-

intensive jobs applications in multi-tenant cloud

computing surroundings, which assists in decreasing

all job completion time, tardiness, cost of

implementation of the jobs, and make use of unique

resources of cloud effectively. The presented

algorithm is compared with the traditional

algorithms, i.e., First Come First Served (FCFS),

EASY Backfilling, and Minimum Completion Time

(MCT) scheduling policies to determine the process.

A proof-of-concept experiment of real-world

scientific jobs applications is done to explain the

scalability of the CWSA, in which the effectiveness

of the proposed solution is verified. The simulation

outputs prove that this scheduling policy improves

the jobs process and performs better than the above

mentioned alternative scheduling policies under

typical deployment scenarios [12].

The process time of every task is in terms of

general distribution in user module. The task

scheduling module involves the process of taking a

weighted sum of makespan and flow time as the

objective function and utilizes an Ant Colony

Optimization (ACO) and a Genetic Algorithm (GA)

to solve the drawback of cloud task scheduling.

Simulation results prove that the convergence speed

and output performance of Genetic Algorithm-

Chaos Ant Colony Optimization (GA-CACO) are

optimal [13].

A Virtual Machine (VM) scheduling policy has

a very important role in the life cycle of cloud

computing. There are various steps which can be

used for allocation and scheduling performances,

which could affect the process and working of the

cloud surroundings. In this paper [14], an analysis

and execution of the existing scheduling methods

are processed using CloudSim. Also an approach for

process tuning of the light load cloud surrounding is

done by arranging jobs and VMs based on heuristics

function. This has shown process tuning on basis of

parameters like implementation time, manufacturing

and throughput of scheduled tasks.

In [15] author was the first person to propose the

Opposition Based Learning. The optimization

methods’ first step is to initialize the population to

improve the optimization solution. If the criterion is

satisfied, the search terminates and haphazard

guesses are implemented in the absence of prior

information. Utilization of the opposite random

numbers is the main principle of OBL. Thus the

opposite random number might provide another

chance for finding the solution.

In [16] author was used new hybrid techniques

called Opposition Learning-Based Grey Wolf

Optimizer Algorithm. Main contribution of this

paper is to minimize the makespan and cost in cloud

computing environment.

The above described survey did not provide near

optimum result when performance and cost are

considered together. In this proposed method we

utilize makespan and cost among VMs as

performance metrics to optimize task and resource,

using an Oppositional Cuckoo Search Algorithm

(OCSA) algorithm based on the proposed models in

cloud. The proposed scheduling hybridizes two

algorithms namely cuckoo search algorithm (CSA)

and oppositional based learning (OBL). This new

hybrid algorithm optimizes the task and resources

more efficiently. The organization of this paper is as

follows: Section 2 presents proposed scheduling

Received: February 12, 2018 275

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.29

using OCSA algorithm. Section 3present the Result

and discussion part. The conclusion part is given in

section 4.

2. Problem definition with solution

framework

The main objective of proposed methodology is

to schedule the task with minimum makespan and

cost. In this paper, the scheduling is done parallel i.e.

all the tasks are processed simultaneously.

Scheduling performs an important role in directing

tasks within the cloud. Scheduling process first

analyzes, how much of resources are needed to

complete the task and which task should be

allocated to which computing component.

Basically, a large application can be split into

smaller sub-tasks prior to parallel processing. The

total gain of the computation can potentially be

higher by breaking down a computation into smaller

jobs and executing the jobs on more than one

processor. Scheduling all the jobs on a given

number of processors which is already there in order

to increase the gain without violating precedence

constraints is the ultimate goal of a task scheduling

algorithm. It is very challenging task for the task

scheduling system. Therefore our optimization

approach based scheduling has been proposed to

overcome the difficulty in the present scheduling

approaches to minimize cost and execution time.

In this, each task which is already submitted

consist of a number of embarrassingly simultaneous

and autonomous jobs. Each job needs to be

executed in a single VM instance type. Consider that

 nPMPMPMPM ,...,, 21 is a set of cloud physical

Machine.  IVMVMVMiVM ,...,2,1 is a set of virtual

machines (VM) types and  mTTTT ,...,2,1 is a set of

task.

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑ 𝑇𝑖
𝑚
𝑖=1 (𝛼 ∙ 𝑐𝑜𝑠𝑡 + 𝛽 ∙

 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒𝑠) (1)

Cost: The cost of a task is the cost required to

create an optimal scheduling based on the number of

virtual machine movements divided by the total

number of virtual machines on a particular physical

machine. The cost function is expressed by the

following equation:

𝐶𝑖 =
1

𝑃𝑀
∑ (

𝑁𝑜. 𝑜𝑓 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑉𝑀

𝑇𝑜𝑡𝑎𝑙 𝑉𝑀𝑠
)

𝑚

𝑖=1

 (2)

Table 1. Notation used in OCSA algorithm
Notations Description

PMi Physical machine i ni 1

VMi Virtual machine i, Ii 1

Ti Task i mi 1

Ci Cost

Ei Execution Time

α, β Control parameters

CPUi Number of CPU

TL Task Length

PC Processor Capacity

Where Ci denotes cost, PM denotes Physical

machine.

Execution time: The execution time of a

complete task in the task scheduling algorithm

depends on the task Length and processing capacity.

This function is expressed in the following equation:

 𝐸𝑖 = 𝑇𝐿 𝑃𝐶⁄ (3)

Where Ei denotes Execution Time, TL

represents Task Length, PC denotes Processor

Capacity

2.1 Proposed OCSA based scheduling approach

The goal of this research is to schedule the task

based on the OCSA algorithm. Our hybrid

optimization algorithm is composed of the cuckoo

search algorithm and Opposition based learning

algorithm.

Step 1: Solution encoding

𝑆𝑖 = {

𝑡1𝑐𝑝𝑢1 𝑡2𝑐𝑝𝑢2 ⋯ ⋯ 𝑡𝑛𝑐𝑝𝑢𝑛

𝑡2𝑐𝑝𝑢5 𝑡1𝑐𝑝𝑢3 ⋯ ⋯ 𝑡𝑛𝑐𝑝𝑢𝑛

𝑡3𝑐𝑝𝑢1 𝑡1𝑐𝑝𝑢4 ⋯ ⋯ 𝑡𝑛𝑐𝑝𝑢𝑛

} (4)

Step 2: Opposition based learning solutions

The opposite solution op (z1
*,z2

*,z3
*……,zn

*).

𝑍𝑖𝑗 = 𝑎𝑖 + 𝑏𝑖 − 𝑧𝑖 (5)

i€1,2,3…n.

Step 3: Fitness calculation

The fitness function is utilized to assess every

task in view of the cost, makespan and resource. In

this paper, the minimization capacity is taken as the

fitness. For minimization issues, the fitness

evolution is performed by assessing the best and

Received: February 12, 2018 276

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.29

Figure.1 Architecture diagram of task scheduling

most exceedingly awful wellness for all specialists

at a number of iteration.

𝐹𝐹𝑖 = ∑ 𝑇𝑖

𝑚
𝑖=1 (𝛼 ∙ 𝑐𝑜𝑠𝑡 + 𝛽 ∙ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒)

(6)

Step 4: Update based on cuckoo search algorithm

The calculated fitness is then updated based on

cuckoo search, which is shown below:

𝑆𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝛼  𝐿𝑒𝑣𝑦 (𝜆) (7)

Step 5: Stop criteria when it is satisfied

2.2 Proposed flow chart of OCSA

The step by step decision process of proposed

OCSA algorithm is illustrated in Fig. 2. The overall

architecture of proposed task scheduling is given in

Fig. 1. User specifies the task and hands it over to

the task scheduler. Task scheduler schedules the task

based on fitness function of each task. Resource

manager monitors the virtual machine usage. Hybrid

OCSA algorithm is effectively used for reducing the

cost and execution time.

2.3 Proposed algorithm of OCSA

Input:

Number of task, Number of Host machines,

Number of virtual machine.

Output:

Minimize cost and makespan.

OCSA Algorithm

Step 1: Randomize Initialization of solution as

population and generate opposite learning based

algorithm.

Step 2: Evaluate the fitness function of the task till

the optimal solution is obtained.

Step 3: Fitness function of resources is randomly

selected.

Step 4: If the fitness function of the task is greater

than the resources select another random resources.

Step 5: The worst resources are eliminated and the

best solution is retained.

Step 6: Rank the solution to find the current best

and stop.

3. Result and discussion

This section presents the output obtained from

the proposed OCSA scheduling based task

scheduling method. Here the input task is 100 to

1000. In our experiment 100 VMs and 200 VMs

were considered. We have implemented our

proposed task scheduling, using Java (jdk 1.6) with

Cloudsim tool. A series of experiments were

conducted on a PC with Windows 7 OS at 2 GHz

dual core with 4 GB main memory, running a 64-bit

version of Windows 2007. The results of proposed

Hybrid OCSA are compared with PSO, GA and

with the result that is obtained in [17], where the

author had used an Improved Differential Evolution

Algorithm (IDEA). The results obtained shows that

our proposed technique produces better performance

and cost when compared to other techniques.

3.1 Comparison of makespan

One of the main aspects of proposed system is to

reduce the execution time of the task. We have

compared different algorithms and their

performance with varied makespan values from the

simulation, the algorithm considered here are OCSA,

PSO, GA and IDEA. Fig. 3 compares the

performance of the tasks execution time using 100

VMs. For the given tasks of 250, the values obtained

are 180.35, 188.3, 194.2 and 190.78 for OCSA, PSO,

GA and IDEA respectively. When the task is

increased to 500, the values obtained are 291.2, 299,

Cuckoo Search

Oppositional

learning based

Hybrid

OCSA

Resource

Manager

Execution

Time

Cost

No of Task

Task

Scheduler

User

Received: February 12, 2018 277

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.29

Figure.2 Flow Chart of proposed algorithm

Figure. 3 Makespan of 100 VMs

312.4 and 305.23 for OCSA, PSO, GA and IDEA

respectively. For 750 tasks, the values obtained are

539.4, 548, 566 and 557.6 for OCSA, PSO, GA and

IDEA respectively. For 1000 tasks, the values

obtained are 870.3, 891.1, 907.6 and 900.43 for

OCSA, PSO, GA and IDEA respectively.

From Fig. 4 we infer that for the task 250, the

corresponding makespan values of OCSA, PSO, GA

and IDEA are 96.34, 101, 108.5 and 104.12

respectively. These results show the performance of

OCSA is better considering double the number of

VMs 200. When the task is increased to 500, the

corresponding makespan values of OCSA, PSO, GA

Yes

No

Yes
No

Randomly initialize the solution& Opposition learning based

Fitness of each solution is calculated and stores it

Find the near optimal solution which has highest

Objective function

Termination

Condition

Satisfied

Start

Finest Solution is obtained

Update the solution based on OCSA Algorithm

Maximum

iterations

reached?

Minimize Cost and Execution Time based on objective function

Stop

Received: February 12, 2018 278

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.29

Figure.4 Makespan of 200 VMs

Figure. 5 cost of 100 VMs

Figure. 6 cost of 200 VMs

and IDEA are 141.5, 148.5, 156.7 and 151.67

respectively. For 750 tasks, the corresponding

makespan values of OCSA, PSO, GA and IDEA are

262.5, 271.5, 283.4 and 277.8 respectively. For 1000

tasks, the corresponding makespan values of OCSA,

PSO, GA and IDEA are 435,439.5, 449.5 and 443.1

respectively. Thus the results obtained using OCSA

make it optimal for usage due to the significant

difference it provides when compared to rest. Also

this difference increases steadily as makespan

increases to 250, 500, 750 and 1000 indicating that

OCSA yields better performance.

3.2 Comparison of cost

In Fig. 5 the performance metric is computed for

analyzing the maximum cost of the task per

schedule. The maximum cost of the task for 250,500,

750 and 1000 of the given four algorithms are

calculated. For the first one done with 100VMs, the

cost of 250 tasks is 126.73, 138.7, 160 and 145.53

for OCSA, PSO, GA and IDEA respectively, in

which the OCSA is ahead of the rest. In the second

one, the cost of 500 tasks are 202.4, 233, 260 and

249.7 for OCSA, PSO, GA and IDEA respectively

in which the OCSA is ahead of the rest. In third one

the cost of 750 tasks are 360.45, 384.4, 395 and

388.3 for OCSA, PSO, GA and IDEA respectively,

in which the OCSA is ahead of the rest. In fourth

one the cost of 1000tasks are 540.3, 580, 610 and

592.1 for OCSA, PSO, GA and IDEA respectively,

in which the OCSA is ahead of the rest.

Fig. 6 presents the last comparison for cost using

200 VMs that is carried using the same set of

algorithms.

It could be inferred from Figs. 5 and 6 in which

our OCSA approach shows an overall improvement

with respect to cost and time. For 250 tasks the cost

of OCSA, PSO, GA and IDEA are 70.2, 83.4, 97.8

and 89.56 respectively.

When jobs are 500 the cost of OCSA, PSO, GA

and IDEA are 110.3, 124.8, 141.4 and 136.9

respectively. For 750 tasks the cost of OCSA, PSO,

GA and IDEA are 191.34, 203.8, 228.8 and 214.32

respectively. For 1000 tasks the cost of OCSA, PSO,

GA and IDEA are 285.4, 299, 319.4 and 307.32

respectively.

This clearly shows that the performance of

OCSA increases even further when the numbers of

tasks are increased to 500, 750 and 1000. The cost

of OCSA is much lesser when compared to PSO and

IDEA. Also there is a drastic difference in cost when

OSCA is compared to GA, thus proving the cost

efficiency of OCSA.

From Figs. 3 to 6, we conclude that OSCA

provides enhanced performance and is cost efficient

when compared to the rest of the algorithms.

4. Conclusion

In this paper, hybridization of cuckoo search and

opposition learning algorithm is done to propose

oppositional cuckoo search algorithm (OCSA). The

main objective of the scheduling technique is to

assign users task and minimize cost and makespan

of the system. The multi-objective optimization

approach is used to improve the scheduling

performance compared to single function. The

experimental outputs were taken based on 100 to

Received: February 12, 2018 279

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.29

1000 tasks and 100 VM and 200 VM. By

performing hybridization of cuckoo search and

oppositional based learning, a highly efficient

solution for the scheduling mechanism can be

achieved. The results produced clearly show that the

OCSA out performs IDEA, GA and PSO in terms of

performance and cost. In future, more Quality of

service (QoS) parameters can be integrated with our

OSCA approach to extend it to support real time

operations.

References

[1] K. Pradeep and T. P. Jacob, “Comparative

analysis of scheduling and load balancing

algorithms in cloud environment”, In: Proc. of

International Conf. on Control, Instrumentation,

Communication and Computational

Technologies, pp. 526-531, 2016.

[2] R. Raju, J. Amudhavel, M. Pavithra, S. Anuja,

and B. Abinaya, “A heuristic fault tolerant Map

Reduce framework for minimizing makespan in

Hybrid Cloud Environment”, In: Proc. of

International Conf. on Green Computing

Communication and Electrical Engineering, pp.

1-4 , 2014.

[3] R. Raju, R. Babukarthik, P. Chandramohan, P.

Dhavachelvan, and T. Vengattaraman,

“Minimizing the makespan using Hybrid

algorithm for cloud computing”, In: Proc. of

International Conf. on Advance Computing

Conference, pp. 957-962, 2013.

[4] X. Yuan, Y. Li, Y. Wang, and K. Sun,

“Scheduling cloud platform managed live-

migration operations to minimize the makespan”,

In: Proc. of IFIP International Conf. on Network

and Parallel Computing, pp. 595-599, 2014.

[5] A. Khaliliand and M. Seyed, “Makespan

improvement of PSO-based dynamic scheduling

in cloud environment”, In: Proc. of Iranian

Conf. on Electrical Engineering, pp. 613-618,

2015.

[6] M. Shojafar, M. Kardgar, A. Hosseinabadi, S.

Shamshirb, and A. Abraham, “TETS: A

Genetic-Based Scheduler in Cloud Computing

to Decrease Energy and Makespan”, In: Proc. of

International Conf. on Hybrid Intelligent

Systems, pp.103-115, 2016.

[7] H. Sachdeva, K. Sakshi, and V. Amandeep, “An

Enhanced Strategy to Minimize Makespan in

Cloud Environment to Accelerate the

Performance”, In: Proc. of International

Conference on ICT for Sustainable Development,

pp. 179-191, 2016.

[8] S. Usman, K. Bilal, N. Ghani, S. Khan, and L.

Yang, “Thermal-aware, power efficient, and

makespan realized Pareto front for cloud

scheduler”, In: Proc. of International conf. on

Local Computer Networks, pp. 769-775, 2015.

[9] K. Garala, and H. Dobariya, “Effective selection

of node for cloud environment using makespan”,

In: Proc. of International conf. on

Communication Networks, pp.138-141, 2015.
[10] N.Sasikaladevi, “Minimum Makespan Task

Scheduling Algorithm in Cloud Computing”,

International Journal of Grid and Distributed

Computing, Vol. 9, No. 11, pp.61-70, 2016.

[11] K. Panda and K. Jana, “SLA-based task

scheduling algorithms for heterogeneous multi-

cloud environment”, The Journal of

Supercomputing, Vol. 73, No.6, pp.2730-2762,

2017.

[12] P. Rimal and M. Maier, “Workflow Scheduling

in Multi-Tenant Cloud Computing

Environments”, IEEE Transactions on Parallel

and Distributed Systems, Vol.28, No.1, pp.290-

304, 2017.

[13] H. Cui, X. Li, T. Yu, H. Zhang, Y. Fang, and Z.

Xia, “Cloud Service Scheduling Algorithm

Research and Optimization”, Security and

Communication Networks, Vol. 2017, 2017.

[14] G. Lal, T. Goel, V. Tanwar, and R. Tiwari,

“Performance Tuning Approach for Cloud

Environment”, The International Symposium on

Intelligent Systems Technologies and

Applications, pp. 317-326, 2016.

[15] H. Tizhoosh, “Opposition-based learning: A

new scheme for machine intelligence”, In: Proc.

of International Conf. on Computational

Intelligence for Modelling Control and

Automation, Vol. 1, pp. 695–701, 2005.

[16] N. Gobalakrishnan and C. Arun, “Opposition

Learning-Based Grey Wolf Optimizer

Algorithm for Parallel Machine Scheduling in

Cloud Environment”, International Journal of

Intelligent Engineering and Systems, Vol.10,

No.1, pp. 186-195, 2017.

[17] D. Zou, H. Liu, L. Gao, and S. Li, “An

improved differential evolution algorithm for

the task assignment problem”, Engineering

Applications of Artificial Intelligence, Vol.24,

No.4, pp. 616-624, 2011.

