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Abstract: Cloud computing offers dynamic allocation of resources on demand, the feature which makes it to stand 

apart providing great performance, scalability, cost efficient and less maintenance, thus making it an apt choice. Task 

scheduling becomes the essential factor in increasing the performance for the dynamic allocation of resources which 

is most essential in the cloud environment to increase performance and decrease the cost. In this work, a solution is 

proposed using makespan and cost, taking them as important constraints for the optimization problem. We have 

merged two algorithms namely, cuckoo search algorithm (CSA) and oppositional based learning (OBL) and created 

a new hybrid algorithm called oppositional cuckoo search algorithm (OCSA) to provide solution to the above stated 

issue. Our proposed OCSA algorithm showed noticeable improvement over the other task scheduling algorithms. 

The proposed work is simulated in cloudsim programming environment and the simulation results show the 

effectiveness of the proposed work by minimizing cost and makespan parameters. The obtained results are better in 

comparison to other existing algorithms like particle swarm optimization (PSO), Improved Differential Evolution 

Algorithm (IDEA) and genetic algorithm (GA).    
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1. Introduction 

In the fast growing global business environment, 

maintaining rapid application development in the 

information technology sector has been cumbersome. 

Expediting the software deployment strategies by 

reducing the time and effort requires the application 

of a recent trend called Cloud computing. Cloud 

computing is everywhere, in the simplest terms it 

can be defined as storing and accessing data and 

programs over the Internet instead of your 

computer’s hard-drive. Cloud is just a metaphor of 

the Internet. All the applications in cloud computing 

are provided as services each time and every time it 

is demanded. Thus the services including 

application storage, network, server and other 

services can be utilized effectively and efficiently. 

This results in enormous savings with respect to 

time and cost. 

Most of the quality of services parameters 

including execution time, cost, scalability, reliability, 

energy and load balancing have been achieved to a 

remarkably satisfying level with the help of cloud 

computing. In cloud computing, customer may be 

provided with numerous virtualized resources to 

utilize; it is not possible for anyone to allocate the 

jobs manually. Hence, to allocate the resources to 

the virtual machine layer, the load balancing 

algorithm becomes essential. 

1.1 Cloud models 

The models in cloud computing are classified as 

follows: 

 

Public cloud model: This model is defined as a 

cloud computing infrastructure owned and operated 

by the third party service provider to provide 

services to various types of users, and these services 

are provided through the internet. An advantage of 

this model is that they are typically larger in scale. 

The customers on public cloud share the same 

infrastructure pool with limited configurations and 
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security protection as they are wholly managed by 

the service provider. 

 

Private cloud model: It is constructed 

exclusively for each project and it is also known as 

cloud computing infrastructure. While giving the 

concerns regarding security and control, it also gives 

permission to host applications in the cloud. It also 

overcomes some of the difficulties posed by a public 

cloud because the model can also be hosted by an 

outside cloud supplier. 

 

Hybrid cloud model: This model is defined as a 

cloud computing infrastructure that combines the 

advantages of both public and private cloud model 

using special methods that allow data and 

application transfer between them.  

1.2 Cloud computing services 

Infrastructure as a service (IaaS) enables users 

to remotely access a network, storage or computing 

infrastructure. In other words it delivers cloud 

computing infrastructure-as an on-demand service, 

thus outsourcing the vital resources at a lower cost. 

E.g. Amazon Web Service, Microsoft Azure. 

 

Platform as a service (PaaS) is a cloud 

computing platform that gives permission to create 

web applications in a very fast and simple way, 

thereby providing a relief from buying and 

maintaining the software and infrastructure beneath 

it. Google App Engine is the best example for this.  

 

Software as a service (SaaS) enables a provider 

to license an application to customers either as a 

service on demand or through subscription at no 

charge through the Internet. In other words rather 

than buying the software, it can be rented. It is a 

pay-as-you-go model. E.g. Salesforce, Cisco WebEx. 

1.3 Cloud computing tools 

Cloud tools and technologies are used to sort out 

the business solutions based on the organizational 

requirements. There are numerous cloud computing 

tools namely Eucalyptus, Open Nebula, Nimbus, 

and Openstack, each having a variety of strategies 

for deployment. 

Load balancing in cloud computing:  It is the 

process of distributing workload and computing 

resources in a cloud computing environment. Load 

balancing allows enterprise to manage application or 

workload demands by allocating resources among 

multiple computers, networks or servers, thus 

accounting for substantial savings in terms of time 

and cost. 

1.4 Types of load balancing algorithms 

Load balancing algorithms are of two types 

namely static and dynamic. The static scheduling 

technique is of non pre-emptive type. In this 

technique, tasks are assigned to the processor during 

compile time i.e. before the program execution. The 

main objective of static scheduling algorithm is to 

reduce the execution time. However, the 

disadvantage is that it is not feasible to change the 

load during execution time, as once the load is 

allocated to the node it cannot be transferred.  

Dynamic scheduling is based on monitoring 

changes on the system workload and redistributing 

the work accordingly. Redistribution is carried out 

by transferring the jobs between the processors 

based on workload, thus improving the efficiency of 

the system. This technique has one drawback where 

it incurs a run-time overhead among processors. 

Cloud computing comprises of a data centre, 

which are distributed geographically. There exists a 

data centre controller, which handles jobs, as and 

when it is submitted by a customer. The controller 

uses a VM to process an incoming request. 

Round Robin algorithm involves the requests to 

be provided in a circular basis with specific time 

quantum or  in other words a VM is assigned the 

first request, after which, the remaining are assigned 

in a circular fashion. Although the workload 

distribution processors are similar, the job 

processing time is not the same. The limitation of 

this algorithm is that at any point of time some 

system may be loaded heavily, while others may be 

idle. Another version of the round robin is the 

weighted round robin. 

In this method, each VM is assigned a weight. If 

one VM can handle twice as much load as another 

VM, the power has a weight of two. In which case, 

for every request assigned to a weaker VM, two 

requests will be assigned to the powerful VM. The 

disadvantage of this algorithm is that the advanced 

load balancing requirements like processing time is 

not considered. In [1] the authors provide a 

comparative analysis on the basis of Quality of 

Service (QoS) to project clear ideas on scheduling 

algorithms. 

In [2] a new technique called Optimal Time 

Algorithm (OTA) is presented to develop 

productiveness of tasks performance remarkably. It 

does not take into consideration the difference 

between implementation times of tasks on same 

processor; clusters of tasks that are dissimilar may 
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be formed. This method efficiently makes use of the 

features and qualities of MapReduce tasks for 

building a best task scheduling. It gets rid of the 

short comings involving the minimization of 

makespan of workloads with the help of the 

workflow of MapReduce jobs. 

In [3] a hybrid algorithm is proposed to 

consolidate the advantages of Ant Colony 

Optimization Algorithm (ACO) and Cuckoo search. 

The reduction of makespan time is possible using 

this algorithm. Jobs are executed in specific time 

intervals by allocating the required resources. The 

result obtained proves that hybrid algorithm 

performs better than ACO algorithm based on the 

performance and makespan. 

The migration of multiple co-located and live 

virtual machines from one node to another is 

required for power saving on cloud platforms. This 

migration is vital for running services, and due to 

this reason it needs to be completed quickly. These 

live-migration strategies optimize the migration 

performance of one or more VMs by focusing on 

Virtual Machine Monitor (VMM) and pay less 

attention towards the cloud platforms which controls 

and schedules multiple migrations. This paper 

considers the drawbacks of scheduling operations to 

reduce makespan [4]. 

For most favourable use of cloud’s power, we 

require effective and efficient scheduling algorithms 

that in turn choose the most optimal resources for 

task execution. It involves the assignment of tasks to 

the existing resources in such a way that helps in 

maximizing utilization and reduces makespan. The 

complete time required for all tasks to finish is 

known as makespan. Utilization can be said to be 

the overall extent to which network resources are 

used. The task scheduling is categorized under NP-

complete problem and meta-heuristics, due to its 

heterogeneous nature and dynamic resource 

requirement. The aim of this paper is to optimize 

task scheduling which uses Particle Swarm 

Optimization (PSO) algorithm to reduce the 

makespan. Inertia weights that have been used are 

different. The Linear Descending Inertia Weight 

(LDIW) with a mean of 22.7% reduction in 

makespan shows that the performance is best [5]. 

The important topic which deals in cloud 

computing is task scheduling and energy usage. 

There are two steps in scheduling process, one is job 

prioritization and the other is processor choosing. 

Various priorities may go to different manufacturing 

time and for every processor the usage of energy 

may differ. Thus an optimal scheduling algorithm 

must involve job prioritization and choose the 

optimal processor in such a manner that 

manufacturing time and energy usage is decreased. 

This paper [6] explains two steps in process 

algorithm for scheduling named as TETS in which 

the starting step includes prioritizing job and second 

includes processor allocation. There are three 

prioritization procedures to prioritize jobs to 

produce best starting chromosomes and allocating 

jobs to processors. The outputs after simulation of 

algorithm showed that this algorithm is much better 

than the previous algorithms on the basis of energy 

usage and manufacturing time. It is capable of 

improve the energy usage by 20% and 

manufacturing time by 4%. 

In [7] a solution is proposed using multiple 

techniques and algorithms to fulfil the requirements 

of users by making sure that the tasks are completed 

on time with the given cost. This paper puts forward 

a job scheduling algorithm named as Time Based 

Ant Colony Optimization Algorithm (TBACO) 

which is inspired from basic ACO. The aim is to 

decrease the manufacturing time of given tasks once 

they are scheduled on the different datacenters. 

These datacenters are known as the resource 

providers in cloud. This is simulated in CloudSim 

and the results clearly showed that TBACO 

algorithm performed much better than basic ACO 

with a savings of 59% in makespan. 

In this paper a convex optimization model is 

proposed which maximizes power savings while 

satisfying the job completion deadline and also 

maintaining the temperature within admissible 

bounds. By varying the frequency of operation of 

core, optimization is ensured. The main 

characteristics of this approach are the bounds of 

operation. The allowed operation limit enables the 

elasticity of computing resources in an autonomic 

manner to achieve a pareto front for the solutions. 

For validation purpose simulations can be done on a 

variable workload [8]. 

Many computing resources allow the 

implementation of jobs in cloud surroundings. Thus, 

it becomes essential to find the suitable node for 

finishing a job; this improves the process of large-

scale cloud computing circumstances. The collection 

of required information and analysis of service 

providers to make decisions is quite time-consuming 

for consumers. This is a demanding job from 

computer usage perspective since the same 

computation may be processed repeatedly by 

different customers of the same needs. The 

performance is increased by distributing load among 

more than one node of the distributing system for 

effective resource usage and task response time. It 

also makes sure that all processors do close to the 

same task at any instance of time. The tool which 
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helps users to simulate large-scale cloud 

applications with the aim of understanding the 

process under various deployment configurations is 

Cloud Analyst. The simulated results are based on 

the algorithm [9]. 

This paper illustrates MMSF which is minimum 

makespan task scheduling framework and MMA 

which is minimum manufacture time of the job 

scheduling algorithm. This algorithm is made with 

two goals. That includes reducing the total 

manufacturing time and increasing the virtual 

machine usage. The job scheduling problem is said 

to be a multi-objective optimization problem. 

Optimization techniques are used to solve it. The 

experiment proves that MMA performs better than 

traditional task algorithms in terms of total 

makespan and virtual machine utilization [10]. 

This paper presents two SLA-based job 

scheduling algorithms; the following are SLA-MCT 

and SLA-Min-Min for heterogeneous multi-cloud 

surrounding. The first one is single-phased and the 

next one is two-phased in scheduling. Three levels 

of SLA identified by customer are supported in this 

algorithm. The algorithms also incorporate the SLA 

gain cost for successful completion of the services 

and SLA violation cost for the unsuccessful end of 

services. Benchmarks and synthetic datasets are 

used for simulation. The outputs of the explained 

SLA-MCT are compared with three single-phase job 

scheduling algorithms and the following are CLS, 

Execution-MCT, and Profit-MCT, and the results of 

SLA-Min-Min are compared with two-phase 

scheduling algorithms, which are Execution-Min-

Min and Profit-Min-Min in terms of four process 

metrics, namely manufacturing time, mean cloud 

usage, profit, and penalty cost of the services. The 

output proves that this algorithm effectively 

maintains a balance between manufacturing time 

and profit cost of the services [11]. 

This paper presents a novel cloud-based 

workflow scheduling (CWSA) policy for executing-

intensive jobs applications in multi-tenant cloud 

computing surroundings, which assists in decreasing 

all job completion time, tardiness, cost of 

implementation of the jobs, and make use of unique 

resources of cloud effectively. The presented 

algorithm is compared with the traditional 

algorithms, i.e., First Come First Served (FCFS), 

EASY Backfilling, and Minimum Completion Time 

(MCT) scheduling policies to determine the process. 

A proof-of-concept experiment of real-world 

scientific jobs applications is done to explain the 

scalability of the CWSA, in which the effectiveness 

of the proposed solution is verified. The simulation 

outputs prove that this scheduling policy improves 

the jobs process and performs better than the above 

mentioned alternative scheduling policies under 

typical deployment scenarios [12]. 

The process time of every task is in terms of 

general distribution in user module. The task 

scheduling module involves the process of taking a 

weighted sum of makespan and flow time as the 

objective function and utilizes an Ant Colony 

Optimization (ACO) and a Genetic Algorithm (GA) 

to solve the drawback of cloud task scheduling. 

Simulation results prove that the convergence speed 

and output performance of Genetic Algorithm-

Chaos Ant Colony Optimization (GA-CACO) are 

optimal [13]. 

A Virtual Machine (VM) scheduling policy has 

a very important role in the life cycle of cloud 

computing. There are various steps which can be 

used for allocation and scheduling performances, 

which could affect the process and working of the 

cloud surroundings. In this paper [14], an analysis 

and execution of the existing scheduling methods 

are processed using CloudSim. Also an approach for 

process tuning of the light load cloud surrounding is 

done by arranging jobs and VMs based on heuristics 

function. This has shown process tuning on basis of 

parameters like implementation time, manufacturing 

and throughput of scheduled tasks. 

In [15] author was the first person to propose the 

Opposition Based Learning. The optimization 

methods’ first step is to initialize the population to 

improve the optimization solution. If the criterion is 

satisfied, the search terminates and haphazard 

guesses are implemented in the absence of prior 

information. Utilization of the opposite random 

numbers is the main principle of OBL. Thus the 

opposite random number might provide another 

chance for finding the solution. 

In [16] author was used new hybrid techniques 

called Opposition Learning-Based Grey Wolf 

Optimizer Algorithm. Main contribution of this 

paper is to minimize the makespan and cost in cloud 

computing environment. 

The above described survey did not provide near 

optimum result when performance and cost are 

considered together. In this proposed method we 

utilize makespan and cost among VMs as 

performance metrics to optimize task and resource, 

using an Oppositional Cuckoo Search Algorithm 

(OCSA) algorithm based on the proposed models in 

cloud. The proposed scheduling hybridizes two 

algorithms namely cuckoo search algorithm (CSA) 

and oppositional based learning (OBL). This new 

hybrid algorithm optimizes the task and resources 

more efficiently. The organization of this paper is as 

follows: Section 2 presents proposed scheduling 
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using OCSA algorithm. Section 3present the Result 

and discussion part. The conclusion part is given in 

section 4. 

2. Problem definition with solution 

framework 

The main objective of proposed methodology is 

to schedule the task with minimum makespan and 

cost. In this paper, the scheduling is done parallel i.e. 

all the tasks are processed simultaneously. 

Scheduling performs an important role in directing 

tasks within the cloud. Scheduling process first 

analyzes, how much of resources are needed to 

complete the task and which task should be 

allocated to which computing component.  

Basically, a large application can be split into 

smaller sub-tasks prior to parallel processing. The 

total gain of the computation can potentially be 

higher by breaking down a computation into smaller 

jobs and executing the jobs on more than one 

processor. Scheduling all the jobs on a given 

number of processors which is already there in order 

to increase the gain without violating precedence 

constraints is the ultimate goal of a task scheduling 

algorithm. It is very challenging task for the task 

scheduling system. Therefore our optimization 

approach based scheduling has been proposed to 

overcome the difficulty in the present scheduling 

approaches to minimize cost and execution time. 

In this, each task which is already submitted 

consist of a number of embarrassingly simultaneous 

and autonomous jobs.  Each job needs to be 

executed in a single VM instance type. Consider that 

 nPMPMPMPM ,...,, 21  is a set of cloud physical 

Machine.  IVMVMVMiVM ,...,2,1 is a set of virtual 

machines (VM) types and  mTTTT ,...,2,1  is a set of 

task. 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∑ 𝑇𝑖
𝑚
𝑖=1 (𝛼 ∙ 𝑐𝑜𝑠𝑡 +  𝛽 ∙

                                                     𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒𝑠)    (1)  

 

Cost:  The cost of a task is the cost required to 

create an optimal scheduling based on the number of 

virtual machine movements divided by the total 

number of virtual machines on a particular physical 

machine. The cost function is expressed by the 

following equation: 

 

𝐶𝑖 =
1

𝑃𝑀
∑ (

𝑁𝑜. 𝑜𝑓 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑉𝑀

𝑇𝑜𝑡𝑎𝑙 𝑉𝑀𝑠
)

𝑚

𝑖=1

           (2) 

 

 

Table 1. Notation used in OCSA algorithm 
Notations Description 

PMi Physical machine i ni 1  

VMi Virtual machine i,     Ii 1  

Ti Task i mi 1  

Ci Cost 

Ei Execution Time 

α, β Control parameters 

CPUi Number of CPU 

TL Task Length 

PC Processor Capacity 

 

Where Ci denotes cost, PM denotes Physical 

machine. 

 

Execution time: The execution time of a 

complete task in the task scheduling algorithm 

depends on the task Length and processing capacity. 

This function is expressed in the following equation: 

 

     𝐸𝑖 = 𝑇𝐿 𝑃𝐶⁄                                                        (3) 

 

Where Ei denotes   Execution Time, TL 

represents Task Length, PC denotes Processor 

Capacity 

2.1 Proposed OCSA based scheduling approach 

The goal of this research is to schedule the task 

based on the OCSA algorithm. Our hybrid 

optimization algorithm is composed of the cuckoo 

search algorithm and Opposition based learning 

algorithm. 

 

Step 1: Solution encoding 

 

𝑆𝑖 =  {

𝑡1𝑐𝑝𝑢1 𝑡2𝑐𝑝𝑢2 ⋯ ⋯ 𝑡𝑛𝑐𝑝𝑢𝑛

𝑡2𝑐𝑝𝑢5 𝑡1𝑐𝑝𝑢3 ⋯ ⋯ 𝑡𝑛𝑐𝑝𝑢𝑛

𝑡3𝑐𝑝𝑢1 𝑡1𝑐𝑝𝑢4 ⋯ ⋯ 𝑡𝑛𝑐𝑝𝑢𝑛

}              (4) 

 

Step 2: Opposition based learning solutions  

 

The opposite solution op (z1
*,z2

*,z3
*……,zn

*). 

 

𝑍𝑖𝑗 =  𝑎𝑖 +  𝑏𝑖 − 𝑧𝑖                               (5)  
                

i€1,2,3…n. 

 

Step 3: Fitness calculation 

The fitness function is utilized to assess every 

task in view of the cost, makespan and resource.  In 

this paper, the minimization capacity is taken as the 

fitness. For minimization issues, the fitness 

evolution is performed by assessing the best and 
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Figure.1 Architecture diagram of task scheduling 

 

most exceedingly awful wellness for all specialists 

at a number of iteration. 

 
𝐹𝐹𝑖 = ∑ 𝑇𝑖

𝑚
𝑖=1 (𝛼 ∙  𝑐𝑜𝑠𝑡 +  𝛽 ∙  𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒) 

(6) 
 
Step 4: Update based on cuckoo search algorithm 

The calculated fitness is then updated based on 

cuckoo search, which is shown below: 
 

𝑆𝑖(𝑘 + 1) =  𝑥𝑖(𝑘) + 𝛼   𝐿𝑒𝑣𝑦 (𝜆)            (7) 

  

Step 5: Stop criteria when it is satisfied 

2.2 Proposed flow chart of OCSA 

The step by step decision process of proposed 

OCSA algorithm is illustrated in Fig. 2. The overall 

architecture of proposed task scheduling is given in 

Fig. 1. User specifies the task and hands it over to 

the task scheduler. Task scheduler schedules the task 

based on fitness function of each task. Resource 

manager monitors the virtual machine usage. Hybrid 

OCSA algorithm is effectively used for reducing the 

cost and execution time. 

2.3 Proposed algorithm of OCSA 

Input: 

Number of task, Number of Host machines, 

Number of virtual machine. 

Output: 

Minimize cost and makespan. 
 

OCSA Algorithm 

Step 1: Randomize Initialization of solution as 

population and generate opposite learning based 

algorithm. 

Step 2: Evaluate the fitness function of the task till 

the optimal solution is obtained. 

Step 3: Fitness function of resources is randomly 

selected.  

Step 4: If the fitness function of the task is greater 

than the resources select another random resources. 

Step 5: The worst resources are eliminated and the 

best solution is retained. 

Step 6: Rank the solution to find the current best 

and stop. 

3. Result and discussion 

This section presents the output obtained from 

the proposed OCSA scheduling based task 

scheduling method. Here the input task is 100 to 

1000. In our experiment 100 VMs and 200 VMs 

were considered. We have implemented our 

proposed task scheduling, using Java (jdk 1.6) with 

Cloudsim tool. A series of experiments were 

conducted on a PC with Windows 7 OS at 2 GHz 

dual core with 4 GB main memory, running a 64-bit 

version of Windows 2007. The results of proposed 

Hybrid OCSA are compared with PSO, GA and 

with the result that is obtained in [17], where the 

author had used an Improved Differential Evolution 

Algorithm (IDEA). The results obtained shows that 

our proposed technique produces better performance 

and cost when compared to other techniques. 

3.1 Comparison of makespan 

One of the main aspects of proposed system is to 

reduce the execution time of the task. We have 

compared different algorithms and their 

performance with varied makespan values from the 

simulation, the algorithm considered here are OCSA, 

PSO, GA and IDEA. Fig. 3 compares the 

performance of the tasks execution time using 100 

VMs. For the given tasks of 250, the values obtained 

are 180.35, 188.3, 194.2 and 190.78 for OCSA, PSO, 

GA and IDEA respectively. When the task is 

increased to 500, the values obtained are 291.2, 299, 

Cuckoo Search 

Oppositional 

learning based  

 

Hybrid 

OCSA 

Resource 

Manager 

Execution  

Time  

Cost 

No of Task 

Task 

Scheduler 

User 
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Figure.2 Flow Chart of proposed algorithm 

 

 
Figure. 3 Makespan of 100 VMs 

 

312.4 and 305.23 for OCSA, PSO, GA and IDEA 

respectively. For 750 tasks, the values obtained are 

539.4, 548, 566 and 557.6 for OCSA, PSO, GA and 

IDEA respectively. For 1000 tasks, the values 

obtained are 870.3, 891.1, 907.6 and 900.43 for 

OCSA, PSO, GA and IDEA respectively. 

From Fig. 4 we infer that for the task 250, the 

corresponding makespan values of OCSA, PSO, GA 

and IDEA are 96.34, 101, 108.5 and 104.12 

respectively. These results show the performance of 

OCSA is better considering double the number of 

VMs 200. When the task is increased to 500, the 

corresponding makespan values of OCSA, PSO, GA 

 

Yes 

No 

Yes 
No 

Randomly initialize the solution& Opposition learning based 

 

 

 

Fitness of each solution is calculated and stores it 

 

 
Find the near optimal solution which has highest 

Objective function 

 
Termination 

Condition 

Satisfied 

Start 

Finest Solution is obtained 

Update the solution based on OCSA Algorithm 

Maximum 

iterations 
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Minimize Cost and Execution Time based on objective function 
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Figure.4 Makespan of 200 VMs 

 

 
Figure. 5 cost of 100 VMs 

 

 
Figure. 6 cost of 200 VMs 

 

and IDEA are 141.5, 148.5, 156.7 and 151.67 

respectively. For 750 tasks, the corresponding 

makespan values of OCSA, PSO, GA and IDEA are 

262.5, 271.5, 283.4 and 277.8 respectively. For 1000 

tasks, the corresponding makespan values of OCSA, 

PSO, GA and IDEA are 435,439.5, 449.5 and 443.1 

respectively. Thus the results obtained using OCSA 

make it optimal for usage due to the significant 

difference it provides when compared to rest. Also 

this difference increases steadily as makespan 

increases to 250, 500, 750 and 1000 indicating that 

OCSA yields better performance. 

3.2 Comparison of cost 

In Fig. 5 the performance metric is computed for 

analyzing the maximum cost of the task per 

schedule. The maximum cost of the task for 250,500, 

750 and 1000 of the given four algorithms are 

calculated. For the first one done with 100VMs, the 

cost of 250 tasks is 126.73, 138.7, 160 and 145.53 

for OCSA, PSO, GA and IDEA respectively, in 

which the OCSA is ahead of the rest. In the second 

one, the cost of 500 tasks are 202.4, 233, 260 and 

249.7 for OCSA, PSO, GA and IDEA respectively 

in which the OCSA is ahead of the rest. In third one 

the cost of 750 tasks are 360.45, 384.4, 395 and 

388.3 for OCSA, PSO, GA and IDEA respectively, 

in which the OCSA is ahead of the rest. In fourth 

one the cost of 1000tasks are 540.3, 580, 610 and 

592.1 for OCSA, PSO, GA and IDEA respectively, 

in which the OCSA is ahead of the rest.  

Fig. 6 presents the last comparison for cost using 

200 VMs that is carried using the same set of 

algorithms. 

It could be inferred from Figs. 5 and 6 in which 

our OCSA approach shows an overall improvement 

with respect to cost and time. For 250 tasks the cost 

of OCSA, PSO, GA and IDEA are 70.2, 83.4, 97.8 

and 89.56 respectively. 

When jobs are 500 the cost of OCSA, PSO, GA 

and IDEA are 110.3, 124.8, 141.4 and 136.9 

respectively. For 750 tasks the cost of OCSA, PSO, 

GA and IDEA are 191.34, 203.8, 228.8 and 214.32 

respectively. For 1000 tasks the cost of OCSA, PSO, 

GA and IDEA are 285.4, 299, 319.4 and 307.32 

respectively.  

This clearly shows that the performance of 

OCSA increases even further when the numbers of 

tasks are increased to 500, 750 and 1000. The cost 

of OCSA is much lesser when compared to PSO and 

IDEA. Also there is a drastic difference in cost when 

OSCA is compared to GA, thus proving the cost 

efficiency of OCSA. 

From Figs. 3 to 6, we conclude that OSCA 

provides enhanced performance and is cost efficient 

when compared to the rest of the algorithms. 

4. Conclusion 

In this paper, hybridization of cuckoo search and 

opposition learning algorithm is done to propose 

oppositional cuckoo search algorithm (OCSA). The 

main objective of the scheduling technique is to 

assign users task and minimize cost and makespan 

of the system. The multi-objective optimization 

approach is used to improve the scheduling 

performance compared to single function. The 

experimental outputs were taken based on 100 to 
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1000 tasks and 100 VM and 200 VM. By 

performing hybridization of cuckoo search and 

oppositional based learning, a highly efficient 

solution for the scheduling mechanism can be 

achieved. The results produced clearly show that the 

OCSA out performs IDEA, GA and PSO in terms of 

performance and cost. In future, more Quality of 

service (QoS) parameters can be integrated with our 

OSCA approach to extend it to support real time 

operations. 
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