
Received: February 15, 2018 205

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.22

An Enhanced Framework for Effort Estimation of Agile Projects

Atef Tayh Raslan1* Nagy Ramadan Darwish2

1Department of Computer Science, Institute of Statistical Studies and Research, Cairo University, Egypt

2Department of Information Systems and Technology, Institute of Statistical Studies and Research,

Cairo University, Egypt

* Corresponding author’s Email: atef_rslan2004@yahoo.com

Abstract: Software effort estimation methods are used to measure the total time and forecast the amount of required

effort to develop the software. In addition, agile software projects, the requirements are characterized by

changeability during the software projects. Therefore using the traditional estimation models in agile software

projects may cause inaccurate effort estimation. This paper proposes a framework which utilizes The Constructive

Cost Model (COCOMO II), story points, and fuzzy logic models without affecting the sacredness of agile principles.

Furthermore, the results show the proposed framework increasing the value of Prediction Level (Pred) to 80%.

Keywords: Agile software development, Effort estimation, COCOMO II, Story point, Fuzzy logic.

1. Introduction

Software project management is the process of

planning, organizing, staffing, monitoring,

controlling and leading a software project [1]. The

characteristics of agile software development

process include: modularity on development process

level, iterative with short cycles, time-bound with

iteration cycles, economic in development process,

adaptive, incremental, minimize the risks, people

oriented, and collaborative and communicative [2].

Large scale can be defined by the amount of time

devoted to the project; the amount of people

working on the project, and how many lines of code

the software has [3]. The agile methods are difficult

to scale up to larger projects due to the lack of

sufficient architecture planning, but they emphasize

the benefits of agile development when the future

requirements are highly unpredictable [4].

Large-scale agile involves additional concerns in

interfacing with other organizational units, such as

human resources, marketing and sales, and product

management [5]. There are many challenges facing

the large-scale agile projects; challenges in regard to

realize continuous testing, increased maintenance

effort with an increase in the number of releases,

management overhead due to the need for

coordination between teams, detailed dependencies

are not discovered on a detailed level due to lack of

focus on design, long requirements engineering

duration, due to complex decision processes in

requirements engineering, requirements priority lists

are hard to create and maintain, waiting times in the

process, specifically in design waiting for

requirements, reduction of test coverage due to

shortage of projects and lack of independent testing,

and increased configuration management effort

according to some researchers existing agile

principles that do not support distributed

development environment architecture [6].

This paper aims to introduce an approach for

estimating the agile project in different scales. The

proposed framework is based on mixing between the

story point’s method and COCOMO II method. Also,

the framework utilizes the fuzzy inference system to

increase the estimation accuracy.

The remainder of this paper is organized as

follows. Section 2 describe the agile software

development. The COCOMO II method and story

point’s method are discussed in Section 3. Section 4

describes the related works in effort estimation.

Section 5 provides the architecture and process of

Received: February 15, 2018 206

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.22

the proposed framework. Section 6 introduces the

experiential analysis. Finally, the conclusions and

the future work are described in section 7.

2. Agile software development

Agile software development is an iterative and

incremental approach that is performed in a

cooperative manner to produce high quality software

that meets the changing requirements of the users

[7]. Agile software development methods are

particularly designed to deal with change and

uncertainty [3]. There are many agile methods

including eXtreme Programming (XP), Scrum,

Agile Model Driven Development (AMDD),

Dynamic System Development Methodology

(DSDM), Feature-Driven Development (FDD),

Adaptive Software development (ASD), and Lean

Software Development (LSD) [8]. These methods

promote development, teamwork, collaboration, and

process adaptability throughout the life cycle of the

project [9].

In this paper we will describe the AMDD as an

example to illustrate the agile software development

lifecycle. AMDD also helps to scale agile software

development when the team is large and/or

distributed and when “the team” is the entire IT

effort at the enterprise level [10]. Fig. 1 shows the

AMDD lifecycle for a software project which

includes four activities: Envisioning, Iteration

modelling, model storming, and Test-driven

development (TDD).

Model storming is just in time (JIT) modelling:

you identify an issue which you need to resolve, you

quickly grab a few team mates who can help you,

the group explores the issue, and then everyone

continues as before [10]. The project team uses a

modelling tools (such as whiteboard) and explore

the problem until solve it.

Test-Driven Development (TDD) is a technique

for building software that guides software

development by writing tests [11]. TDD is a

technique that concerns the development process,

rather than the structure of the developed product

[12].

The agile principles were written by agile

manifesto authors and their value which are based

on individuals and interactions at all stages of the

project, customer collaboration at each end of the

iteration and responding to change based on the

customer requirements has to be reflected at any

stage[13].

Figure. 1 The AMDD lifecycle

3. Effort estimation techniques

Software cost estimation is the set of techniques

and procedures that organizations use to arrive at an

estimate for proposal bidding, project planning and

probability estimates [14]. The most common

estimation techniques; COCOMO II Method and

story point(s) method. These methods are described

in details in the following subsections.

3.1 Story point’s method

The story points refer to measuring unit to

estimate the size of story in agile developments.

Story points are usually expressed by sequence of

numbers where each number is the sum of the

previous two, this method called by Fibonacci series

method [1, 15]. The story point’s estimation

approach is processed in the following order: Story

size estimation, complexity estimation,

implementation level estimation, velocity estimation,

velocity optimization, and overall project effort. The

teamwork estimates stories by using a relative scale

to each story. The most common methods can be

used for story size estimation is a planning poker

method [15]. The complexity refers to a measure of

the resources expended by a system while

interacting with a piece of software to perform a

given task [16]. Also, the teamwork uses the

Fibonacci series method to scale the complexity.

Velocity is the volume of work accomplished in a

specified period of time, by a given team [17]. The

velocity in agile refers to amount of stories that can

be handled in single iteration. Velocity is a measure

Received: February 15, 2018 207

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.22

of a team’s rate of progress. It is calculated by

adding the number of story points assigned to each

user story that the team completed during the

iteration.

Implementation Level Factors (ILF) includes all

factors that reflect the level of understanding the

project components by the team members. Also, the

level of implementation uses the Fibonacci series

method to scaling the each factor.

Velocity optimization phase refers to studying

the project constraints which should be completed

before the calibration to improve the stability of the

velocity calculation. This process includes two

factors; Friction factors (FR) and Dynamic force

factor (DF). The friction includes a range of factors

that may affect the team velocity which are team

composition, process, environmental factors, and

team dynamic.

The story point's estimation formulas showed in

Eqs. (1), (2), and (3):

User Story Effort= 
N

1

 Story Size×ILF× Complexity (1)

Where;

N: Total number of user story

 Velocity=Initial project velocity (DF× FR)

(2)

 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑇𝑖𝑚𝑒 =

𝑈𝑠𝑒𝑟 𝑆𝑡𝑜𝑟𝑦 𝐸𝑓𝑓𝑜𝑟𝑡

𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 × 𝑊𝑜𝑟𝑘𝑒𝑑 𝑑𝑎𝑦𝑠/𝑚𝑜𝑛𝑡ℎ
 (3)

3.2 The COCOMO II method

The Constructive Cost Model (COCOMO II)

method was developed upon the COCOMO-81

model, which provides two main models early

design model and post architecture model. The Early

Design model of the COCOMO II is used for

estimating the cost and effort values of an

incomplete project and product analysis roughly.

COCOMO II includes five different Scaling Factors

(SFs); Precedentedness (PREC), Process Flexibility

(FLEX), Risk Resolution (RESL), Team Cohesion

(TEAM), and Process Maturity (PMAT). Each of

these factors is rated in 6 levels ranging between

“Very Low” to “Extra High”.

This model includes three sub modules:

Applications composition, early design and post

architecture. The application composition model is

used to estimate effort and schedule on projects that

use integrated computer aided software engineering

tools for rapid application development [18].

The early design model includes the estimation

of the project after collecting the requirements. The

early design stage includes studying all design

alternatives based on function points, five scales

factors, and seven effort multipliers. The post

architecture model focuses on the project details

after project's overall architecture is developed. Eq.

(4) shows the effort estimation in Person/Month

(PM):

PM=A×(S)E × ∏ 𝐸𝑀𝑖
𝑛
𝑖=1 (4)

Where;

A: Constant based on the type of the project

(Organic, semidetached, and embedded).

S: Refer to the software size which expressed in a

Kilo Line of Code (KLOC).

EM: Effort multiplier.

E: Constant used to estimate the development effort

which presented in Eq. (5).

E=B+0.01+∑ 𝑆𝐹𝑖
5
𝑖 (5)

B: Constant based on the juvenility of the software,

development flexibility, risk management methods

and the process maturity).

SF: Scale factor weights (very low, low, nominal,

high, very high, and extra high).

Moreover, the COCOMO II is an algorithmic

model which provides a set of tools and techniques

for evaluating the effects of software technology

improvements on software life cycle costs and

schedules [19]. It can be used with a story point

method to estimate the effort in a large scale

projects.

Further, the story point and COCOMO models

do not support the imprecision and uncertainty

associated with the effort estimation attributes such

story size, scale factors, complexity, and velocity.

3.3 Fuzzy logic

Fuzzy Logic (FL) is a methodology to solve

problems which are too complex to be understood

quantitatively. It is based on fuzzy set theory and

introduced in 1965 by Lotfy Zadeh [20]. Fuzzy logic

provides the concept of fuzzy sets to handle vague

and inaccurate data [1]. The Fuzzy Logic System

deals with fuzzy parameters, which address

imprecision and uncertainties, by mapping out the

path of a given input to an output using the

computing framework called the Fuzzy Inference

System (FIS).

Received: February 15, 2018 208

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.22

There are many membership functions but in this

research, the triangle membership function will be

used which is represented Eq. (6) [1]:

Triangle(x:a,b,c)=max(min (
 𝑥−𝑎

𝑏−𝑎
,

𝑐−𝑥

𝑐−𝑏
),0) (6)

A fuzzy inference engine is a collection of IF -

THEN rules stored in fuzzy rule base is known as

inference engine. Defuzzification is the process

which refers to the transform of fuzzy output into

crisp output. The most common tool used for fuzzy

systems is MATLAB which used for defining the

input, output, inference rules, and the shape of

membership function for the fuzzy system [1].

4. Related works

There are many researches in effort estimation

and agile software development. Some of these

researches provide good ideas in our work. The

following are some examples of these literatures:

Abeer H. introduced model that aims to

increasing the sensitivity of COCOMO cost model.

This model uses a fuzzy model to enhances the

accuracy and sensitivity of COCOMO 81

intermediate by using a fuzzifying the cost drivers.

The researcher contributed to the increasing the

sensitivity of COCOMO81 cost model [21].

Abeer H. Brought model better estimation

version primarily based a genetic fuzzy system. This

model makes use of a genetic algorithm with

COCOMO81 intermediate. The consequences

confirmed that the accuracy was improved

compared with traditional COCOMO model [22].

Carl Friedrich Kreß et al introduced scaling agile

estimation methods with a parametric cost model.

This research presents three solutions based on story

points and COCOMO II to improve the estimation

method for large agile projects [23].

Sathish Kumar C., et al, introduced guide based

on harmony search algorithm to optimize the effort

estimation on agile software development. The

results show the proposed plan gives an affecting

estimation compared with other estimation methods

[13].

Assem H. Mohammed and Nagy Ramadan

Darwish introduced a proposed fuzzy based

framework for calculating success metrics of agile

software projects. The main idea in this research is

calculating the Success metric value (SMV) based

on the Success factors values (SFV) and the

Importance value (IM) for each success factor value

(SF). The proposed framework enables the agile

stakeholders to represent the values of the success

factors in a human-like language [24].

Wilson and Corinne introduced a set of practical

effort estimation models for software development

projects during the contract bidding phase. The

study is based on data collected from 196 previous

projects from the United States Department of

Defense delivered from 2005 to 2016. Also, the

authors claimed that models may be used for agile

projects. Moreover, this study concluded that the

accuracy improved when peak staff and supper

domain are added as inputs to the calculation [25].

Simon introduced the proposed a regression

model to predict the effort required to design small

and medium scale software projects. Also, this study

used 60 previously developed software projects. On

my opinion, this study was focused on single

software company, so the study results may not

generalize to a real environment [26].

Based on this literature, there are studies focused

on improving the COCOMO model by using the

fuzzy model [21-22]. Also, some of the researchers

trying to improve the effort estimation in the agile

environment by using the story points, COCOMO II,

fuzzy logic, harmony algorithm, and regression

method [13, 23-24, 26]. Moreover, there is a study

discussed the effort estimation during the bidding

phase in agile methods [25].

These studies don’t cover the agile environment

characteristics. So, we introduce the proposed

framework using the fuzzy logic method to increase

the accuracy of effort estimation in agile methods.

5. The proposed framework

The agile development life cycle includes four

phases; inception, construction phase, transition

phase, and production phase. The inception phase is

a first phase in the life cycle which includes the

requirements envisioning and planning the initial

project resources. The construction phase focuses on

the development and testing for each project unit.

Furthermore, the construction phase could be

implemented by different agile methods. The

transition phase includes many tasks such finalizing

testing, finalizing documentation, users training, and

running pilot programs. The production phase aims

to keep the project useful and more efficient after it

has been deployed.

The proposed framework starts with the

envisioning phase which performed during the first

week of a project, as shown in Fig. 2. The

envisioning phase aims to identify the scope and

architecture of the project accordance with the

available requirements. Moreover, it provides a

preliminary estimation for the project schedule and

Received: February 15, 2018 209

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.22

Figure. 2 The proposed framework

budgets without an extravagant cost of

documentation.

The Early Effort Estimation Model (EEEM) is a

fuzzy logic based which helps the project team to

make early effort judgments. The EEEM uses a

COCOM early design factors classified as 5 Scale

factors and 7 cost drivers. The scale factors include

Precedentedness (PREC), Process Flexibility

(FLEX), Risk Resolution (RESL), Team Cohesion

(TEAM), and Process Maturity (PMAT).

Table 1 shows the COCOMO scale factors and

their weights ranked from very low to very high.

The PREC reflects the similarity between the

current project and historical developed projects.

The FLEX reflects the amount of the elasticity in the

development process.

The RESL factor represents the amount of risk

that may have faced the project during the

development life cycle. The TEAM factor reflects

the extent to which the project’s team members

know each other and worked well together

previously.

The PMAT reflects the amount of the strength

ripeness model of the organization that is realizing

the project. Furthermore, the COCOMO cost drivers

includes 7 factors includes the Product Reliability

and Complexity (RCPX), Developed for Reusability

(RUSE), Platform Difficulty (PDIF), Personnel

Capability (PERS), Personnel Experience (PREX),

Schedule (SCED), and Support Facilities (FCIL).

These factors rated in 6 levels ranging between

“very low” to “extra high” [27].

 Fig. 3 shows the EEEM which accepts 5 scale

factors, 7 cost drivers, and project size in Kilo Line

of Code (KLOC) as inputs and produces the project

preliminary estimation. Each of these factors has a

numerical value named scale factor weight.

All input variables in EEEM mutated to the

fuzzy sets based on the fuzzification process. The

terms Very Low (VL), Low (L), Nominal (N), High

(H), Very High (VH), and Extra High (EH) were

defined for the 12 variables, early design properties

and scale factors, in COCOMO II.

Received: February 15, 2018 210

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.22

Table 1. Scale factors

SCALE

FACTOR
SYMBOL VL L N H VH

PREC SF1 6.20 4.96 3.72 2.48 1.24

FLEX SF2 5.07 4.05 3.04 2.03 1.01

RESL SF3 7.07 5.65 4.24 2.83 1.41

TEAM SF4 5.48 4.38 3.29 2.19 1.10

PMAT SF5 7.80 6.24 4.68 3.12 1.56

Table 2.COCOMO II cost drivers

COST

DRIVERS
EL VL L N H VH EH

RCPX 0.73 0.81 0.89 1.0 1.30 1.74 2.38

RUSE - - 0.95 1.0 1.07 1.15 1.24

PDIF - - 0.87 1.0 1.29 1.81 2.61

PERS 2.12 1.62 1.26 1.0 0.83 0.63 0.50

PREX 1.59 1.33 1.12 1.0 0.87 0.71 0.62

SCED 1.43 1.30 1.10 1.0 0.87 0.73 0.62

FCIL 0.00 1.43 1.14 1.0 1.0 1.0 -

Figure. 3 The early effort estimation model (EEEM)

Figure. 4 Antecedents fuzzy sets of RCPX factor

The KLOC variable represents the project size

which transformed to fuzzy sets in terms of Small,

Medium, Large, and Extra Large. The software size

categorization based on the definition is defined as a

large system software project is about 10,000

function points, greater, or about 128 KLOC, while

Figure. 5 Consequent cost driver of RCPX factor

a super large system was taken to be 512 KLOC or

more [28].

Table 2 shows the COCOMO II cost drivers

which are ranked in seven levels Extra Low (EL),

Very Low (VL), Low (L), Nominal (N), High (H),

Very High (VH), and Extra High (EH).

For example, in case of Product Reliability and

Complexity (RCPX) cost driver, we define a fuzzy

set for each linguistic value with a Triangular

Membership Function (TRIMF).

Fig. 4 shows the fuzzy sets of the antecedent part

which are derived using the definition of the RCPX

levels (EL, VL, L, N, H, VL, and EH) where are

given by Table 2. All inputs converted to fuzzy sets

by using a triangular membership function, as

shown in Eq. (6).

The effort selection in EEEM upon on 5 inputs

factors and 5 membership functions ranked as

Increases Significantly (IS), Increased (I),

Unchanged (U), Decreased (D), and Decreased

Significantly, where the inputs factors and

membership functions are produced 55 rules. The

consequent of ETC factor showing in Fig. 4.

The fuzzy sets of the consequent part that are

derived using the RCPX factor values given by

Table 2, as shown in Fig. 5.

The user requirements in agile development

methods are subject to changes during the

development phase. Developing in iterations allows

the development team to adapt quickly to changing

requirements [29]. After all requirements identified

in the EEEM the project team creating a stack of

user requirements which are ranked by their priority.

The Iteration Effort Estimation Model (IEEM) is

an iterative model that starts after the project

architecture was defined in EEEM. Fig. 6 shows the

IEEM which classified into a two sub-models as

velocity factors and COCOMO factors. The velocity

sub-model accepts two inputs Friction factors (FR)

and Dynamic force factor (DF).

Received: February 15, 2018 211

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.22

Figure. 6 The iteration effort estimation model (IEEM)

The FR and DF factors in velocity sub-model

converted to fuzzy variables based on the

fuzzification process. The DF consists of 9 factors

could affect the velocity, these factors ranked as

Normal (N), High (H), Very High (VH), and Extra

High (XH), as shown in Table 2. The FR includes 4

forces could slow down the project development

process. Each of FR forces scaled according to

amount of the risk as Stable(S), Volatile (V), Highly

Volatile (HV), and Extra Volatile (XV), as shown in

Table 4.

In COCOMO sub-model, the estimated effort for

the development of the agile project is calculated

using 19 factors and output adjusted cost drivers.

The 19 input variables Represented in Impact of

Software Failure (FAIL), Product Complexity

(CPLX), Developed for Reusability (RUSE),

Required Software Security (SECU),Platform

Constraints (PLAT),Platform Volatility (PVOL),

Analyst Capability (ACAP),Programmer Capability

(PCAP),Personnel Continuity (PCON), Applications

Experience (APEX), Language and Tool Experience

(LTEX), Platform Experience (PLEX),

Precedentedness (PREC), Development Flexibility

(FLEX), Opportunity and Risk Resolution (RESL),

Stakeholder Team Cohesion (TEAM), Process

Capability & Usage (PCUS),Use of Software Tools

(TOOL), and Multisite Development (SITE).

Table 3 shows the COCOMO II factors which

ranked as Very Low (VL), Low (L), Nominal (N),

High (H), Very High (VH), and Extra High (XH).

In the fuzzification phase, we have defined fuzzy

groups corresponding to the various associated

linguistic values for each attribute. The triangular

membership function is used to define the linguistic

values for each factor based on its definition. The

model rule base contains the linguistic variables

related to the agile project. Each rule uses a

connective number of rules which have used in this

model is more than 300 rules for the velocity and

cost drivers.

Table 3. COCOMO II factors

Attributes
Cost

Drivers
VL L N H VH XH

Product

factors

FAIL 0.82 0.92 1.00 1.10 1.26

CPLX 0.73 0.87 1.00 1.17 1.34 1.74

RUSE 0.95 1.00 1.07 1.15 1.24

SECU 0.90 0.94 1.00 1.19 1.36 1.88

Platform

factors

PLAT 1.00 1.11 1.29 1.63

PVOL 0.87 1.00 1.15 1.30

Personnel

factors

ACAP 1.42 1.19 1.00 0.85 0.71

PCAP 1.34 1.15 1.00 0.88 0.76

PCON 1.29 1.12 1.00 0.90 0.81

APEX 1.22 1.10 1.00 0.88 0.81

PLEX 1.19 1.09 1.00 0.91 0.85

LTEX 1.20 1.09 1.00 0.91 0.84

Project

factors

TOOL 1.17 1.09 1.00 0.90 0.78

SITE 1.22 1.09 1.00 0.93 0.86 0.80

PREC 6.20 4.96 3.72 2.48 1.24

FLEX 5.07 4.05 3.04 2.03 1.01

RESL 7.07 5.65 4.24 2.83 1.41

TEAM 5.48 4.38 3.29 2.19 1.10

PCUS 7.80 6.24 4.68 3.12 1.56

The defuzzification is the process of converting

from fuzzy sets to crisp sets. In this research, we use

the MATLAB tool for calculation. Furthermore, the

crisp output is calculated by using the Center of

Area (COA) method, as shown in Eq. (7) [1].

 COA=
∑ µ(𝑋).𝑋𝐵

𝑥=𝑎

∑ µ(𝑋)B
𝑥=𝑎

 (7)

In the proposed model, we use a triangular

membership function in formula (6) to obtain the

fuzzy set. The Adjusted COCOMO Factors (ACF)

calculated using formula (8). The μA(x)i is the

membership function of the fuzzy set Ai associated

with the cost driver xi. Eq. (9) shows the calculation

of velocity (V) using a triangular membership

function of fuzzy set associated with FR and DF

factors.

 𝐴𝐶𝐹 = ∑ 𝜇𝐴(𝑥)𝑖
19
𝐼=1 . 𝐸𝑀𝑖 (8)

 𝑉 = (∏ 𝜇𝐴(𝑥)𝑖
4
𝑖 . 𝐹𝑅𝑖). (∏ μ

A
(y)j

9
j . 𝐷𝐹𝑗) (9)

Square series has been proved to be the most

preferred series in agile estimation since it provides

realistic level of accuracy for complex and will-

defined project [30]. Consequently, we use a square

series (1, 4, and 9) for calculating the story point’s

intensity levels. The next step is calculating the

Iteration Story Points (ISP) through Eq. (10).

ISP = ∑ 𝑆𝑃𝑖
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑜𝑟𝑖𝑒𝑠
𝐼=1 + (0.1 × 𝐴𝐶𝐹) (10)

Received: February 15, 2018 212

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.22

Table 4. Velocity factors

Friction Factors (FR) S V HV XV

Team composition 1 .98 .95 .91

Process 1 .98 .94 .89

Environmental factors 1 .99 .98 .96

Team dynamic 1 .98 .91 .85

Dynamic Factors (DF) N H VH XH

Expected to team change 1 .98 .95 .91

Introduction to a new tools 1 .99 .97 .96

Vendor’s defect 1 .98 .94 .90

Team member’s responsibilities

outside the project
1 .99 .98 .98

Personal issues 1 .99 .99 .98

Expected delay in stakeholder

response
1 .99 .98 .96

Expected ambiguity in details 1 .98 .97 .95

Expected changes in environment 1 .99 .98 .97

Expected relocation 1 .99 .99 .98

In order to estimate actual project time (PT) based

on the amount of story points and agile team

velocity, as showing in Eq. (11).

𝑇 =
𝐼𝑆𝑃

𝑉
 ×

1

𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 𝑝𝑒𝑟 𝑚𝑜𝑛𝑡ℎ
 (11)

6. Experimental analysis

In this section, a sample of dataset which

extracted from COCOMONASA2 dataset will be

used. It was collected from six NASA centers and

covers a wide range of software domains,

development process, languages and complexity, as

well as fundamental differences in culture and

business practices between each center [21].

The study includes 10 projects, each project has

a cost drives, scale factors, project size in KLOC,

and estimated effort using EEEM model. The results

evaluated via Magnitude of Relative Error (MRE)

and Prediction Level (PRED) metrics. Eq. (12)

shows the MRE which is used to measure the error

contained in the estimated value regardless of

whether the error is positive or negative [28].

MREi=
|𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡𝑖− 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐸𝑓𝑓𝑜𝑟𝑡𝑖 |

𝐴𝑐𝑡𝑢𝑎𝑙 𝐸𝑓𝑓𝑜𝑟𝑡
 (12)

The PRED metric is the prediction at level L, as

shown in Eq. (13):

 PRED (L) =
𝐾

𝑁
 × 100 (13)

Where, k is the number of observations where MRE

is less than or equal to L, and N is the total number

of observation [31].

Table 5 shows the sample of ISP for stories were

collected during the project construction under agile

methodology. Table 6 shows the iteration results for

each project. The accumulated effort was calculated

during the construction phase. For example, the first

project was constructed during five iterations, the

preliminary effort estimation is 104.97, the

accumulated effort is 85.82 and the MER is 0.22.

The MMER represents the average of MER for

all projects in dataset. Finally, the values of MER,

MEER, and PRED are calculated using the

COCOMONASA dataset, as shown in Table 6. As a

result, the MMER and PRED become 0.25 and

80.0% respectively. Moreover, the data set in this

study was calculated using the COCOMO II method,

story point method, and the proposed framework.

Table 5. ISP results

Story(#) SP ACF 0.1 * ACF ISP

1 34 115.20 11.52 45.52

2 13 48.11 4.81 17.81

3 8 127.50 12.75 20.75

4 5 128.90 12.89 17.89

5 8 122.00 12.20 20.20

6 21 114.33 11.43 32.43

7 8 98.18 9.82 17.82

8 8 121.23 12.12 20.12

9 21 127.16 12.72 33.72

10 34 135.13 13.51 47.51

Total 273.77

Working days/month 22.00

Velocity 0.87

Actual Effort 14.30

Table 6. Project iterations results

Project (#) Output from

EEEM

Output from

IEEM MER

 1 104.97 85.82 0.22

2 99.4 75.91 0.31

3 29.69 36.27 0.18

4 31.7 27.29 0.16

5 37.75 33.56 0.12

6 8.06 7.65 0.05

7 13.06 11.06 0.18

8 280.63 147.37 0.9

9 24.82 22.72 0.09

10 36.8 29.68 0.24

MMER 0.25

PRD(0.25) 80.00%

Received: February 15, 2018 213

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.22

7. Conclusion and future work

In this research a framework based on story

points and COCOMO cost drivers have been

proposed. These factors converted to fuzzy sets

based on their definition. The proposed model

consists of two phase’s preliminary and constructive

iteration phase. The early effort estimation phase

(EEEM) focuses on estimation before developing

phase to help the agile team to makes effort

judgments.

The IEEM model uses a fuzzy logic which

accepts five cost drivers, seven cost drivers, and size

of requirements in LOC. The Constructive iteration

phase calculates the effort based on iteration

velocity, the intensity levels using SP, and

COCOMO post design attributes. In addition, all

inputs converted to fuzzy sets using a triangular

membership function.

The rule base contains a set of conditional

statements that define the cost drivers, scaling

factors, LOC, DF, FR, product attributes, platform

attributes, personal attributes, and project attributes.

Consequently, the fuzzy sets are defuzzfied to crisp

values using COA method and then the effort is

estimated in each phase. The use of fuzzy logic in

the proposed model may increase the effort

estimation.

The researchers thought that the utilization of

story point with COCOMO factors may reduce the

risk of falling project in chaos by providing realistic

effort in constructive iteration phase. Moreover, the

use of the proposed model increases the value of

PRED from 70% to 80%. As a result, the accuracy

of effort estimation improved.

The ideas that are expected to be focused in the

future include:

 Using different membership function(s) and

comparing between the produced efforts.

 The proposed model can also be extended

utilizing Neuro-Fuzzy method.

 Improving the proposed framework by utilizing

a training algorithm like genetic algorithms

(GA) to tune the fuzzy sets parameters.

References

[1] A. Raslan, N. Darwish, and H. Hefny, “Towards

a Fuzzy based Framework for Effort Estimation

in Agile Software Development”, International

Journal of Computer Science and Information

Security, Vol.13, No.1, pp. 37-45, 2015.

[2] J. Hunt, Agile software construction, Springer,

ISBN-10: 1-85233-944-6, 2006.

[3] R. Morken, Coordination in Large-Scale Agile

Development, Master of Science in Informatics,

Norwegian University of Science and

Technology, 2014.

[4] H. Saeeda, F. Arif, N. Minhas, and M. Humayun,

“Agile Scalability for Large Scale Projects:

Lessons Learned”, Journal of Software, Vol.10,

No. 7, pp. 893-904, 2015.

[5] K. Dikert, M. Paasivaaraa, and C. Lassenius,

“Challenges and success factors for large-scale

agile transformations: A systematic literature

review”, The Journal of Systems and Software,

Vol. 119, pp. 87–108, 2016.

[6] K. Petersen and C. Wohlin, “A comparison of

issues and advantages in agile and incremental

development between state of the art and an

industrial case”, Journal of Systems and

Software, Vol. 82, No. 9, pp.1479-1490, 2009.

[7] N. Darwish, “Towards an Approach for

Evaluating the Implementation of Extreme

Programming Practices”, International Journal

of Computer Science and Information Security,

Vol. 9, No. 11, pp. 37-45, 2011.

[8] T. Chow and D. Cao, “A survey study of critical

success factors in agile software projects”,

Journal of Systems and Software, Vol. 81, pp.

961– 971, 2008.

[9] Z. Ani and S. Basri, “A case study of effort

estimation in agile software development using

use case points”, Sci. Int. (Lahore), Vol. 5, No. 4,

pp.1111-15, 2013.

[10] S. Ambler, “Agile Software Development at

Scale”, In: Proc. of Second IFIP TC 2 Central

and East European Conference on Software

Engineering Techniques, 2007.

[11] M. Fowler, “Test Driven Development”,

http://martinfowler.com/bliki/TestDrivenDevel

opment.html , visited on 2018.

[12] T. Verhoeff, “Programming Methods (2IP15):

Test-Driven Development”,

https://www.win.tue.nl/~wstomv/edu/2ip15/do

wnloads/Series_07/slides_14.pdf, visited on

2018.

[13] C. Kumar, A. Kumari, and R. Perumal, “An

Optimized Agile Estimation Plan Using

Harmony Search Algorithm”, International

Journal of Engineering and Technology, Vol. 6,

No. 5, pp. 1994-2001, 2014.

[14] S. Bhandari and P. Kakkar, “Soft computing

based technique for accurate effort estimation:

A survey”, International Journal of

Engineering Sciences, Vol. 9, pp.14-22, 2013.

[15] M. Cohn , Agile Estimating and Planning, 1st

Edition, Prentice Hall, Pearson Education,

ISBN-13: 978-0131479418, 2006.

https://www.scribd.com/doc/256743761/Towards-a-Fuzzy-based-Framework-for-Effort-Estimation-in-Agile-Software-Development
http://martinfowler.com/bliki/TestDrivenDevelopment.html
http://martinfowler.com/bliki/TestDrivenDevelopment.html
http://www.amazon.com/Mike-Cohn/e/B001H6MN56/ref=dp_byline_cont_book_1

Received: February 15, 2018 214

International Journal of Intelligent Engineering and Systems, Vol.11, No.3, 2018 DOI: 10.22266/ijies2018.0630.22

[16] P. Fitsilis and V. Damasiotis, “Software

Project’s Complexity Measurement: A Case

Study”, Journal of Software Engineering and

Applications, Vol. 8, pp. 549-556, 2015.

[17] W. Hayes, S. Miller, M. Lapham, E. Wrubel,

and T. Chick, Agile Metrics: Progress

Monitoring of Agile Contractors, Software

Engineering Institute, Mellon University, 2014.

[18] B. Boehm, C. Abts, and S. Chulani, “Software

development cost estimation approaches –A

survey”, In: Proc. of Annals of Software

Engineering, Vol. 10, pp. 177–205, 2000.

[19] S. Shekhar and U. Kumar, “Review of Various

Software Cost Estimation Techniques”,

International Journal of Computer Applications,

Vol. 141, No. 11, pp.31-34, 2016.

[20] M. Ganesh, Introduction to Fuzzy Sets and

Fuzzy Logic, Prentice-Hall, 2006.

[21] A. Hamdy, “Fuzzy Logic for Enhancing the

Sensitivity of COCOMO Cost Model”, Journal

of Emerging Trends in Computing and

Information Sciences, Vol.3, No.9, pp. 1292-

1297, 2012.

[22] A. Hamdy, “Genetic Fuzzy System for

Enhancing Software Estimation Models”,

International Journal of Modeling and

Optimization, Vol. 4, No. 3, pp. 227-232, 2014.

[23] C. Kreß, O. Hummel, and M. Huq, “Scaling

Agile Estimation Methods with a Parametric

Cost Model”, In: Proc. of the Ninth

International Conference on Software

Engineering Advances, 2014.

[24] A. Mohammed, and N. Darwish, “A Proposed

Fuzzy based Framework for Calculating

Success Metrics of Agile Software Projects”,

International Journal of Computer Applications,

Vol. 137, No. 8, pp.17-22, 2016.

[25] W. Rosa and C. Wallshein, Software Effort

Estimation Models for Contract Cost Proposal

Evaluation, ICEAA Professional Development

& Training Workshop, 2017.

[26] S. Kuan, “Factors on Software Effort

Estimation”, International Journal of Software

Engineering & Applications, Vol.8, No.1,

pp.23-32, 2017.

[27] A. Kinra, “A Fuzzy Based Model for Software

Quality Estimation Using Risk Parameter

Assessment”, International Journal of

Computer Science and Mobile Computing, Vol.

3, No. 3, pp.807 – 814, 2014.

[28] E. Manalif, Fuzzy Expert-cocomo Rrisk

Assessment and Effort Contingency Model in

Software Project Management, Master of

engineering science, University of Western

Ontario London, Ontario, Canada, 2013.

[29] D. Cohen, M Lindvall, and P. Costa, “An

Introduction to Agile Methods”, Advances in

Computers, Elsevier, Vol. 62, 2004.

[30] S. Bhalerao and M. Ingle, “Incorporating Vital

Factors in Agile Estimation Through

Algorithmic Method”, International Journal of

Computer Science and Applications, Vol. 6, No.

1, pp. 85 – 97, 2009.

[31] I. Attarzadeh and S. Ow, “Soft Computing

Approach for Software Cost Estimation”,

International Journal. Of Software Engineering,

Vol. 3, No. 1, pp. 3-12, 2010.

