
Received: September 26, 2017 39

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.05

Parallel Queue Scheduling in Dynamic Cloud Environment Using Backfilling

Algorithm

Jayapandian Natarajan1*

1Christ University Faculty of Engineering, Bangalore, India

* Corresponding author Email: njayapandian@gmail.com

Abstract: Cloud Computing reshapes the entire computing paradigm. In general, cloud computing means

outsourcing available services and data storage in centralized scenario. In cloud computing task allocation is a major

problem because multiple numbers of tasks are allocated to multiple numbers of processors for simultaneous

processing. From the given list, tasks are queued according to the ascending order based on their duration. This paper

is designed to solve the Task Scheduling problem, by using our proposed effective new approach of Backfilling

algorithm. Depending upon the task duration, tasks are split into multiple threads for processing. Multiple thread

tasks are processed in the basic concept of “gang scheduling” technique. Here we implement new backfilling

algorithm concept to minimize the idle processing time of the processors. The existing Simple Backfilling Algorithm

(SBA) is used to minimize the ideal time processing. Whereas comparatively Dynamic Cloud Scheduling using

Backfilling Algorithm (DCBA) is designed to reduce the ideal time processing than SBA to carry out the process of

both LQueue and SQueue simultaneously. At the outset, DCBA reduces the average waiting time. As mentioned the

algorithm which is specified in the previous line that contains three level which represent the working speed of the

algorithm. The first and second level of DCBA algorithm is comparatively similar to the performance of SBA

algorithm. The maximum better performance was given in a queue size (q=1.5) by DCBA algorithm as compare to

SBA algorithm. The existing type (Gang Scheduling) consist of two approaches namely Adaptive First Come First

Serve (AFCFS) and Largest Job First Served (LJFS) that focus on non-parallel jobs with deadline. When compare to

existing gang scheduling algorithm and SBA algorithm the average waiting time of DCBA has slight improvement

in the loader level of the key. As the separation of the queue like LQ and SQ the waiting time and average waiting

time is reduced comparatively.

Keywords: Backfilling, Cloud computing, Task scheduling, Gang scheduling, Dynamic cloud, Largest queue,

Shortest queue, Thread, Grid computing, Load balancing.

1. Introduction

Cloud Computing is recently emerging

technology into the real world combination of

distributed and Grid Computing community. In

cloud computing, current implementation focuses

more on research problems. One of the primary

problems in cloud is task allocation that is to

allocate the task to perfect processor in dynamic

environment in server side. Cloud computing is not

a new technology; it is a new name of grid

combined with virtual machine. The grid focuses on

many scheduling problems which also occurrs in

online cloud computing scenario. The cloud

provides virtualized computing hardware in a

similar to the public utility, thus it is also termed as

Infrastructure-as-a Service (IaaS). So all hardware is

virtualized, the cloud gives the illusion of limitless

resources which can be made available to the user

on-demand and can be dynamically scaled up or

down, on the other hand computing refers to the

applications and software platforms being offered

through the cloud usually under the notation of a

service model, hence called Software-as-a Service

(SaaS) [1].

Received: September 26, 2017 40

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.05

The task scheduling task is a sequential activity

that uses a set of inputs to produce a set of outputs.

Processes in limited set are statically assigned to

processors, either at compile-time or at start-up.

Overhead of load balancing can be avoided using

some related algorithms. Grid computing techniques

can be broadly categorized as centralized or

decentralized, dynamic or the hybrid policies in the

latest trend [2]. Hadoop system takes the centralized

scheduler architecture. In static load balancing, all

the information is known in advance and tasks are

allocated according to the prior knowledge and will

not be affected by the system. Dynamic load

balancing Mechanism has to allocate tasks to the

processors dynamically as they arrive.

Redistribution of tasks has to take place when some

processors become overloaded [3]. The cloud

computing, each application of users will run on a

virtual operation system, the cloud systems

distributed resources among these virtual operation

systems. Every application is completely different

and is independent and has no link between each

other whatsoever, for example, some require more

CPU time to compute complex task, and some

others may need more memory to store the data.

Resources are sacrificed on activities performance in

each individual unit of service. In order to measure

direct costs of applications, every individual use of

resources (like CPU cost, memory cost and I/O cost)

must be measured. The direct data of each

individual resources cost has been measured, in the

accurate cost and profit analysis. Genetic algorithm

is very dynamic and also an effective scheduling

algorithm for scientific purpose. The resource

policies are managed and improved in rapid manner

in these algorithms [4]. Task allocation is major

problem in dynamic scheduling, these genetic

algorithm provide better solution for this problem

[5].

The section 2 discuss about the related works

that contains explanation and drawbacks of the

existing system. For example the ordinal

optimization uses the concept of bi-objective

method for job scheduling in scientific workflow

system. The main concept of this paper is being

discussed in section 3. The solution for the

described problem is explained. That is dynamic

cloud scheduling using backfilling algorithm split

the task into two queues. Such as largest Queue

(LQ) and Shortest Queue (SQ) to reduce the

execution time and waiting time of the task. The

result and discussion of this paper is showcased in

section 4 with appropriate graphs and stabilization.

2. Relates work

Cloud computing is a model for enabling

convenient, on-demand network access to a shared

pool of configurable computing resources that can

be rapidly provisioned and released with minimal

management effort or service provider interaction

[6]. In resource polling, cloud service providers

computing resources are polled together in an effort

to serve multiple consumers using the multi-tenancy,

with different physical and virtual resources

dynamically assigned and reassigned according to

consumer demand [6]. The hybrid scheduling

algorithm solves the load balancing problem and

reduces the overall execution time. The author use

genetic algorithm and fuzzy theory concept to

minimize the cost and time. In this paper the genetic

algorithm of average makespan uses MACO and

ACO algorithms to get appropriate values. The main

drawback of this genetic algorithm is that the

imbalance in average makespan value. [7]. The

author proposed scheduling algorithm named as

BaRRS (Balanced and file Reuse-Replication

Scheduling). These algorithms split the single job

into multiple sub jobs and balance the jobs by using

parallelization technique. In this BaRRS proposes

methodology the set of dependency pattern is

necessary for inheriting the diverse. The impact

feasibility of scheduling strategy is time overheated

for the scheduling process [8].

The concept of bi-objective method is job

scheduling in scientific workflow system by using

ordinal optimization. The main advantage of this

method is to reduce the overall scheduling time. The

realistic cloud computing platform is to reduce the

execution and scheduling time in dynamic

environment [9]. In backfilling scheduling generally

measured two things. First one is prediction

accuracy another one is to measure the scheduling

performance [10].

Cloud computing is a combination of hardware

and software infrastructure motivated by real

problems appearing in advanced research area. The

understanding of cloud is distributed over

computing that coordinates the organizational

resources sharing to high end computational

applications. The main aim of cloud computing is

resource virtualization. The cloud system consists of

two parts both gang and simple task, that requires

service. Then gang enters the system as cloud tasks,

while the local tasks are simply only one task, but

both tasks compete for the same resources. This part

the local tasks will be given higher importance. The

Cloud task that enters the system will first be

dispatched to a specific site by the cloud scheduler,

Received: September 26, 2017 41

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.05

and then in future it is allocated to a processor by

the local scheduler. The local task that enters the

system arrives directly at the local scheduler. Then

the cloud scheduler has its own queue where cloud

tasks are stored temporarily if specific conditions

are not met.

The cloud tasks enter the system as parallel

which means gangs; the local tasks are simple

sequential tasks that require only a single processor

for execution. In general gang consists of a number

of tasks that must be allocated to a different

processor. Suppose backfilling is not implemented a

large gang tasks are waiting for the resources to

become available will block smaller and faster tasks

being it that requires execution that type of causing

serve fragmentation in the system. This backfilling

technique allows task to begin and finish execution

before the gang, so this type of technique will

improve the system performance. Task scheduling is

a multisite system. The concept of backfilling

algorithm is to allow the shortest job in their

particular time interval; it doesn’t delay in the job

queue. This algorithm is to monitor the running time

of the jobs to control the violation. The cloud

computing scheduling algorithm named as SHARP

(Scheduling of jobs and Adaptive Resource

Provisioning). This algorithm should process single

task into multilevel processing. The main advantage

of this algorithm is to handle multiple resources in

dynamic environment. This SHARP performs the

jobs beyond their deadline for the satisfaction of the

customer which means that sometimes it violates the

rules provided by the end user [11].

The combination of optimization and scheduling

algorithm produce the better result. The main

advantage of this proposed method is that it

consumes only 30% energy has been consumed [12].

The hybrid cloud problems solve profit

maximization algorithm. The combined algorithm of

simulated annealing particle swarm optimization

algorithm is to solve cloud scheduling problem. The

main advantage of this technique is to solve private

cloud and hybrid cloud task scheduling problem.

This proposed methodology is in the theoretical

approach and it has not been implemented

practically. It doesn’t implement the realistic cloud

scheduling method [13]. Zhang and Zhou proposed

dynamic cloud scheduling algorithm based in Bayes

classifier principle and virtual machine concept. The

cloud tasks are dynamically allocated in Virtual

machine. But in this approach the energy

consumption for the two stage strategy is

comparatively maximum than the normal energy

usage [14].

3. Proposed method

The existing method, task is scheduled to

available free processors based on their task

parameters using scheduling algorithms. The

proposed method, the given task is scheduled to

available processors using dynamic cloud

scheduling with backfilling algorithm. It will give

significant improvement of results in execution time

when compared with existing results.

The proposed system, Fig. 1 the number of task

is scheduled in available free resources. The number

of task can be considered as M and the number of

processors is considered as N. Then find the

execution time for each task. Determining the

threads for each task and arrange the task in

descending order with two separate queues based on

their execution time. The largest execution time

tasks are entered into LQueue (Largest Queue) and

the shortest execution time tasks are entered into

SQueue(Shortest Queue). The current task from

each queue can be scheduled to available processors

using this Dynamic cloud scheduling Backfilling

Algorithm. Before starting the procedure calculates

maximum wait time for each task that is MWT.

 MWT =
∑ 𝑃 𝐸𝑡

𝑀𝑠
𝑡=1

𝑀𝑠
 (1)

In Eq. (1), Et=Processor Execution for task,

Ms=Served Task.

The overall task execution time is divided by the

number of served task and provides maximum

waiting time of task. Consider the CS (Cloud

Scheduler) to allocate the task to processors. The

Cloud Scheduler considers the Local Server

Scheduler (LSS) using two queue levels. For each

scheduler the mean inter-arrival time of CS, LQueue

and SQueue is exponentially distributed with mean

of 1/λ1 and for LQueue 1/λ2, 1/λ3 for SQueue and

1/λ4 for local in site1, 1/λ5 for local in site2 and

similarly 1/λ6 for local in site2 and 1/λ7 for locals in

site4. Where 1/λ1, 1/λ2, 1/λ3, 1/λ4, 1/λ5, 1/λ6, 1/λ7

are arrival rates for locals in site 1,2,3,4, and CS.

Received: September 26, 2017 42

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.05

Figure.1 Dynamic Cloud Scheduling Model

We assume that arrival rates in all sites are same

(λ2= λ3= λ) and that arrival rate of cloud task much

be lower than that of local tasks (λ1 << λ). The

service time of local task or CS task is also

exponentially distributed with a mean of 1/ µ1.The

LQueue task are again considered by mean of arrival

time λ4 and λ5 and then scheduled based on that

parameters. We assume here that (λ4= λ5= λ) and

arrival rate of λ2 is less (λ2 << λ) the service time of

local task is exponentially distributed with a mean of

1/ µ2. In similar way the SQueue tasks are

considered by mean of arrival time λ6 and λ7 and

then scheduled based on this execution time. We

assumed here that arrival time is same (λ6= λ7= λ)

and arrival time of λ3 is less (λ3= λ) than the service

time of local task is exponentially distributed with a

mean of 1/ µ3.

The communication between each site and

scheduler is solely on message passing. We consider

that it is contention free and therefore

communication time is negligible. However, when a

cloud task is dispatched to every site, extra

coordinator is needed and an overhead is added to

task’s service time. In this study, the local tasks

have priority over other and its waiting time has

been minimized. The goal is to provide a quality of

service for the locals that will not affect central

scheduler. The technique of dynamic backfilling is

also implemented to help to achieve this goal.

Proposed Algorithm: (Dynamic Cloud Scheduling

using Backfilling Algorithm [DCBA])

Step 1: Form two separate queues of tasks by

arranging in descending order based on their

execution time. The two queues named as LQueue

for Largest task and SQueue for Shortest task.

Step 2: Define maximum length of thread. Divide

the tasks into threads on this basis compute duration

of thread for each task.

Step 3: Start assigning the tasks in two queues

parallely, according to the position of task in the

queue and calculate the Average time required that

is Maximum Wait Time (MWT).

Step 4: To schedule the processors, check current

task in LQueue is sufficient. If Yes, schedule the

tasks. If number of available processor is

insufficient to schedule, move back to LQueue and

Received: September 26, 2017 43

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.05

task for that requires exactly the number of free

moving and bring this task to front of LQueue and

schedule it. When such a task is not found,

otherwise when MWT is crossed, move on to

SQueue. If current task in SQueue has sufficient free

processors, then schedule this task. Else if the

number of free processors is insufficient to the task,

move back to SQueue and look for task that require

exactly the number of free processors until MWT is

reached. When such a task is found, stop moving

and bring this task to front of SQueue and schedule

it. (If a task which fits exactly is not available, select

a suitable task that comes closest to this

requirement)

Step 5: For each processor, compute earliest

possible start time for next job arrange the tasks for

to free in ascending order based on this start times.

Step 6: Continue assigning tasks to free processors

until all tasks are scheduled, if there are any tasks

remaining, and then continue from step 3.

Step 7: The task with latest completion time in

LQueue adds with SQueue latest completion time

gives total processing time for all the jobs. Stop the

process.

4. Result and discussion

The queue scheduling model is simulated with

discrete event simulation models using the

independent replications methods [8]. Each result

presented is based on the average value from

simulation experiments with different parameters of

random numbers. The standard IEEE research works

has been implemented using 512 tasks allocated to

16 processors such as 8192 task per cycle. In our

work we assume that tasks entered in to scheduling

queue in the system are always limited and keeps a

standard rate. The arrival rate λ1 is static for all

experiments and consider that it is equal to 0.5,

which means that the mean inter-arrival time for the

number of tasks m is 1/ λ1=2. However, local task

arrival rate of scheduling can modify based on the

number of required tasks entered into scheduler and

size of the task considered for available resource

size. In the simulation experiments it is to be set

mean inter-arrival time for local scheduler to 1/

λ1=0.10, 0.143, 0.15 which correspond respectively

to arrival rate of the tasks λ=9.4, 7, 6.3.

The term µ which means processor Execution

time assume that 1/ µ=1, which implies µ=1. At the

end of execution these values were chosen and

studied for scheduling schemes under different load

performance. And while the task has been entered, it

can be scheduled based on its size in the different

queues, so the queue length has been considered at

different values such as q=0.25 for measuring

system performance in order to find lower level of

task. And assume q=1.0 for evaluate the system

performance at balanced level then q=1.5 has been

considered for, to study the behaviour of the system

under smaller tasks as workload.

The following results represent the difference

between performances and time, cost of two

algorithms based on various workloads and different

task size parameters. In Eq. (2-5) the performance of

scheduler results regarding Processor Execution

Time, Average Execution Time, and Average

Maximum Waiting Time, is PEt, AET, AMWT, and

ET for arrival of task λ. Finally table list the time-to-

execute efficiently for all arrival rates and task size

parameters.

 WT =
𝑀𝑊𝑇

𝑃𝐸𝑇
 (2)

 ET =
1

𝑀
 ∑ 𝑡𝑚

𝑚
𝑖=1 (3)

 AET =
∑ 𝑃(𝑡𝑗)𝐸𝑗

𝑚

𝑖=1

∑ 𝑃(𝑡𝑗)
𝑚

𝑗=1

 (4)

 PET = ∑ 𝑃(𝑡𝑗

𝑛

𝑖=0
) (5)

The comparison of execution time given by two

different scheduling algorithms for the queue size

q=0.5, 1.0 and 1.5 respectively.

Table 1. Notations used in Performance Metrics

Notations Abbreviations

Ms Machine

PET Processor Execution Time

AMWT Average Maximum Waiting Time

MWT Maximum Waiting Time

ET Execution Time per Task

AET Average Execution Time

AWET Average Weighted Execution Time

AWT Average Waiting Time

AMWT Average Maximum Waiting Time

T j=1 to m Task

λ Arrival rates of Tasks

µ Mean Processor Execution time

Received: September 26, 2017 44

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.05

Figure. 2 AET Comparisons of SBA&DCBA for Q=0.5

Figure. 3 AWET Comparison of SBA&DCBA for Q=0.5

Figure. 4 AET Comparison of SBA&DCBA for Q=1.0

Figure. 5 AWET Comparison of SBA&DCBA for Q=1.0

Figure. 6 AET Comparison of SBA&DCBA for Q=1.5

Figure. 7 AWET Comparison of SBA&DCBA for Q=1.5

Received: September 26, 2017 45

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.05

Table 2. Comparison of AET vs AWET

Queue Time
Arrival

Rate

SBA

(%)

DCBA

(%)

Q=0.5 AET

6.3 62 55

7 89 78

9.4 145 126

Q=0.5 AWET

6.3 76 48

7 132 118

9.4 148 120

Q=1.0 AET

7.4 94 78

8.2 123 107

10.5 129 122

Q=1.0 AWET

7.4 82 71

8.2 128 118

10.5 142 135

Q=1.5 AET

9.6 73 46

10.4 116 72

12.8 127 102

Q=1.5 AWET

9.6 80 52

10.4 120 106

12.8 146 123

Figure. 8 AWT Comparison of SBA&DCBA for Q=0.5

Figure. 9 AMWT Comparison of SBA&DCBA for Q=0.5

Figure. 10 AWT Comparison of SBA&DCBA for Q=1.0

Figure. 11 AMWT Comparison of SBA&DCBA for

Q=1.0

Figure. 12 AWT Comparison of SBA&DCBA for Q=1.5

Figure. 13 AMWT Comparison of SBA&DCBA for

Q=1.5

Received: September 26, 2017 46

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.05

The Fig. 2, Fig. 3 and Table 2 shows the system

performance comparison with new improved

algorithm for the minimum queue level as q=0.5 for

the minimum queue level, the task enters also less so

it both these output are nearly similar. The Fig. 4

and Fig. 5 middle level as q=1.0 will slow

improvement from existing method of scheduling in

Fig. 6 and Fig. 7 higher level of q=1.5, when higher

load are entered to the queue the average waiting

time is not at highest level and which will provide

better result with SBA. At minimum queue size

(q=0.5), both algorithms SBA & DCBA have

minimum execution time and at average queue size

(q=1) these algorithm have similar execution time

but DCBA has less execution time compare to SBA.

At maximum queue size (q=1.5), DCBA is better

performance providing algorithm compare with

SBA algorithm.

The average maximum waiting time can be

calculated and compared with existing method in

different queue levels. Fig. 8, Fig. 9 and Table 3 is

the lower load on the queue with size 0.5 as

considered and compared with DCBA for slightly

improvement in all levels of load on the queue. Fig.

10 and Fig. 11 queue size is 1.0 with the comparison

of average waiting time comparison. The Fig. 12

and Fig. 13 queue size is 1.5 with SBA and DCBA

comparison.

As it shows from the experimental results the

DCBA method improved performance of the

scheduling system under all situations.

Table 3. Comparison of AWT vs AMWT

Queue Time
Arrival

Rate

SBA

(%)

DCBA

(%)

Q=0.5 AWT

6.3 58 48

7 73 62

9.4 122 113

Q=0.5 AMWT

6.3 74 52

7 104 96

9.4 133 117

Q=1.0 AWT

7.4 74 72

8.2 121 116

10.5 138 131

Q=1.0 AMWT

7.4 50 44

8.2 108 100

10.5 135 126

Q=1.5 AWT

9.6 68 36

10.4 102 61

12.8 122 84

Q=1.5 AMWT

9.6 73 44

10.4 115 78

12.8 128 93

Table 4. Comparison of Waiting Time (min)

Arrival

Rates

AFCFS

(min)

LJFS

(min)

SBA

(min)

DCBA

(min)

λ =6.3 69 56 66 50

λ=7 89 84 88.5 79

λ=9.4 131 121 127.5 115

This is because DCBA uses two separate queues

and scheduling allocation each queue alternatively,

so the average waiting time can be reduced. The

above table 4 shows the comparison of waiting time

for task scheduling; it will be done based on size of

the task. The task has been entered into separate

queue that is largest task entered into LQueue and

smallest task entered into SQueue such that each

queue is allocated alternatively for scheduling and

executing the task, so that the waiting time and

average waiting time can be reduced comparatively.

The waiting time for the process in backfilling

algorithm is more efficient than the waiting time for

same process in gang scheduling algorithm. The

gang scheduling algorithm adaptive first come first

serve prefers to schedule smaller job that can be

easily scheduled, whereas the largest job first served

prefers largest job in the scheduling cycle and

performs more efficiently than adaptive first come

first serve. For example the arrival rate of the

process be (λ =7). The waiting time in AFCFS is 89

minutes, for the same process the waiting time in

LJFS is 84 minutes [15]. The waiting time for the

same process in the backfilling scheduling algorithm

is much more efficient that is if the job is smaller

than the waiting time of the DCBA SQ is 88.5

minutes. If the process is larger it will be handled by

DCBA LQ and the waiting time is 79 minutes. Thus

the proposed backfilling scheduling algorithm is

much efficient and reduces the waiting time of the

process as compare to the gang scheduling

algorithm.

The analogy between response time and the cost

for the system should be maintained in a better level,

so as to make the cleared to be cost associative. The

comparison between lease time and response time

for the virtual machine is given by metric called cost

efficiency.

 CE= 𝑉𝐿𝑇+𝑉𝑅𝑇 (6)

Where

CE - Cost Efficiency, LT - Lease Time and

RT - Response Time.

Received: September 26, 2017 47

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.05

Eq. (6) VLT refers to the variation in LT between

the stimulation experiments and VRT is a variation

between the response time. The negative value in

CE denotes that AFCFS act better than LJFS in cost

wise.

5. Conclusion

This proposed method explored the commonly

used scheduling algorithm that is SBA and DCBA in

cloud computing. The experimental model

implemented based on existing cloud computing

implementations. Multiple task sizes were

considered in our implementation with dynamic and

real time cloud environment. Experimental work

carried out under various workloads and task size

parameters. Both algorithms proved that they can be

efficiently applied in a dynamic cloud environment.

While both of these algorithms provide similar

performance for balanced workloads and it also

gives better performance when the workload gets

heavier. For different task sizes the system will

provide better level of performance. When the task

size is large and the workload is also heavy the

system provides better time performance efficiency

than simple BA. This cloud study is extended in

several ways. While considering the heterogeneous

not only for homogeneous it’s also an important for

cloud environment. This method also assumed all

cloud tasks in future work requiring immediate

source that cloud be implemented. In future, the

use of task scheduling along with various workloads

and task sizes must be considered to better fit in

cloud computing implementation. Thus the proposed

dynamic cloud scheduling using backfilling

algorithm produces comparatively less waiting time

for the task that are provided by the client. Then the

gang scheduling algorithm which has adaptive first

come first serve and largest job first served approach

for scheduling.

References

[1] S.H.H. Madni, M.S.A. Latiff, and Y. Coulibaly,

“Recent advancements in resource allocation

techniques for cloud computing environment: a

systematic review”, Cluster Computing, Vol.20,

No.3, pp. 2489 - 2533, 2016.

[2] J. Yu and R. Buyya, “A taxonomy of scientific

workflow systems for grid computing”, Journal

of Grid Computing, Vol.34, No.3, pp. 44 - 49,

2005.

[3] G. Cybenko, “Dynamic load balancing for

distributed memory multiprocessors”, Journal of

parallel and distributed computing, Vol.7, No.2,

pp. 279 - 301, 1989.

[4] V. Di Martino and M. Mililotti, “Scheduling in

a grid computing environment using genetic

algorithms”, In: Proc. of 3rd Workshop on

Parallel and Distributed Scientific and

Engineering Computing with Application, Ft.

Lauderdale, FL, USA, pp.235-240, 2002.

[5] Z. Zheng, R. Wang, H. Zhong, and X. Zhang,

“An approach for cloud resource scheduling

based on Parallel Genetic Algorithm”, In: Proc.

of 3rd International Conf. On Computer

Research and Development, Shanghai, China,

pp.444-447, 2011.

[6] P. Mell and T.Grance, Draft NIST working

definition of cloud computing, NIST.2011.

[7] S. Javanmardi, M. Shojafar, D. Amendola, N.

Cordeschi, H. Liu, and A. Abraham, “Hybrid

job scheduling algorithm for cloud computing

environment”, In: Proc. of 3rd International

Conf. On Innovations in Bio-Inspired

Computing and Applications, pp.43-52, 2014.

[8] I. Casas, J. Taheri, R. Ranjan, L. Wang, and

A.Y. Zomaya, “A balanced scheduler with data

reuse and replication for scientific workflows in

cloud computing systems”, Future Generation

Computer Systems, Vol.74, No.1, pp. 168-178,

2017.

[9] F. Zhang, J. Cao, K. Li, S.U. Khan, and K.

Hwang, “Multi-objective scheduling of many

tasks in cloud platforms”, Future Generation

Computer Systems, Vol.37, No.1, pp. 309-320,

2014.

[10] D. Tsafrir, Y. Etsion, and D.G. Feitelson,

“Backfilling using system-generated predictions

rather than user runtime estimates”, IEEE

Transactions on Parallel and Distributed

Systems, Vol.18, No.6, pp. 789-803, 2007.

[11] D. Komarasamy and V. Muthuswamy,

“ScHeduling of jobs and Adaptive Resource

Provisioning (SHARP) approach in cloud

computing”, Cluster Computing, pp. 01-14,

2017, https://doi.org/10.1007/s10586-017-0976-

3

[12] N. Jayapandian, A. M. J. Md. Zubair Rahman,

and J. Gayathri, “The Online Control

Framework on Computational Optimization of

Resource Provisioning in Cloud Environment”,

Indian Journal of Science and Technology,

Vol.8, No.23, pp. 1-5, 2015.

[13] H. Yuan, J. Bi, W. Tan, and B.H. Li,

“Temporal task scheduling with constrained

service delay for profit maximization in hybrid

clouds”, IEEE Transactions on Automation

Science and Engineering, Vol.14, No.1, pp.

337-348, 2017.

Received: September 26, 2017 48

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.05

[14] P. Zhang and M. Zhou, “Dynamic Cloud Task

Scheduling Based on a Two-Stage Strategy”,

IEEE Transactions on Automation Science and

Engineering, Vol.PP, No.99, pp. 1-12, 2017.

[15] I.A. Moschakis and H.D. Karatza,

“Performance and cost evaluation of Gang

Scheduling in a Cloud Computing system with

job migrations and starvation handling”, In:

Proc. of IEEE International Symp. On

Computers and Communications, Kerkyra,

Greece, pp. 418-423, 2011.

