
Received: October 26, 2017 221

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.23

Cost Cognizant History Based Prioritization of Test Case for Regression Testing

Using Immune Algorithm

Megala Tulasiraman1* Vivekanandan Kalimuthu1

1Department of Computer Science and Engineering, Pondicherry Engineering College, India

* Corresponding author’s Email: megelaganesh@pec.edu

Abstract: Regression testing is one among the strongest testing criteria which ensure the quality of the software

under test. However, regression testing is too expensive due to execution of too many test cases .Test case

prioritization is one of the traditional techniques which improve the regression testing by proposing a test case order

that increases the rate of fault detection . In this paper, we propose a cost – cognizant history based test case

prioritization approach that utilizes the historical information of the test cases like cost, fault identified by the test

case and the severity of the identified fault for prioritization. Also an artificial immune system based, Clonal

selection algorithm is proposed to find an effective test case order from existing test suite. To evaluate the proposed

approach, controlled experiment were performed and the evaluation results indicates the test case order produced by

proposed approach shows improvement in terms of average percentage of fault detected per cost.

Keywords: Regression testing, Clonal selection algorithm, Cost-cognizant, Prioritization.

1. Introduction

Software testing is the most significant and

expensive activity throughout the software

development life cycle model (SDLC). In modern

software development, the software once developed

has an extended life continuing to different versions.

In each version new functionalities are added and

changed based on the user’s specification. As

software is undergoing frequent changes the change

induced in one functionality should not affect the

other part of the code to ensure this regression test is

performed. When an error occur in unmodified code

due to the modification in one part of the code we

call it regression error [1].The testing team performs

regression testing to detect the regression error and

to ensure the stability and quality of the software

under test.

There are several techniques to perform

regression testing one such technique is retest all. In

retest all technique all the test cases in test suite are

retested which is practically impossible due to time

constraint. Other techniques include selection,

minimization and test case prioritization. In test

suite selection and minimization the test suite is

reduced which results in decreased fault detection

capability due to discarding of test cases. Whereas

in prioritization the test cases are scheduled in an

order such that higher priority test cases are

executed earlier [2].Many existing technique have

been proposed to prioritize test cases based on

source code, the limitation of this method is, when

the tester is not able to obtain the source code

applying this method is difficult. Also some of the

existing method considers uniform value for test

case cost and fault severity [3] which is practically

impossible. During each regression testing

information about test cases are generated, these

information are not effectively utilized by existing

technique. In order to overcome the above stated

limitations the cost –cognizant test case

prioritization approach and history based

prioritization techniques was proposed.

Existing prioritization techniques used different

meta-heuristic algorithm like genetic algorithm, ant

colony and particle swarm optimization for

prioritizing test cases but none of the existing

Received: October 26, 2017 222

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.23

technique uses artificial Immune system based

algorithm for prioritization. Therefore in this paper

we introduce Clonal selection algorithm (CSA) an

artificial immune system based algorithm proposed

by zuben and castro [4]. The CSA have been widely

used in many applications such as pattern

reorganization, intruder detection system and also in

software testing activities such as test data

generation and structural testing. Since CSA have

been successfully applied in software testing

activities we make an attempt to employ clonal

selection algorithm in regression testing. Therefore

in this paper we propose cost-cognizant history

based prioritization of test cases using Clonal

selection algorithm (CC-CSA) which utilizes

historical information from the recent regression test

to order test cases. The main contribution of this

paper is as follow

(i)An immune system based prioritization

technique to prioritize test cases is proposed.

(ii)Effectively utilizes the historical information

of test cases created in latest regression testing.

The remaining section of the paper is structured

as follow: Section 2 describes the background of

Test case prioritization and gives a general overview

of Clonal Selection Algorithm and reviews the

related works in test case prioritization. Detailed

working of proposed methodology is presented in

Section 3. In section 4 the experimental results are

analysed. And section 5 presents the conclusion and

future work.

2. Background and related works

2.1 Test case prioritization

In test case prioritization approach the test cases

are sorted in an order such that faults are detected

earlier as possible. Initially the prioritization of test

case problem was proposed by rothermel.et.al [1]

Given:

 Ts, existing test suite selected for prioritization,

PTs the set of all permutation of Ts, and f, an

objective function from PTs to real numbers

 Problem: find Ts’ ϵ PTs such that

(∀T𝑠′′)(T′′ϵPTs)(T𝑠′′≠T𝑠′)[f (t𝑠′≥f(Ts′)] (1)

In test case prioritization, the important information

of test case such as cost of executing test case and

severity of fault are considered with a uniform value

during prioritization which is considered as a

shortcomings of existing technique. To overcome

this issue a cost cognizant test case prioritization

was proposed which takes different value for test

case cost and severity of fault detected.

2.2 Clonal selection algorithm

Artificial immune system (AIS) is a new branch

inspired by the immunological principle. The AIS

aims to use the idea of immunology in various fields

of science and engineering. Clonal selection

algorithm is one of the AIS based algorithm which

inspires and mimics the process of Clonal selection

theory. The basic idea behind Clonal selection

theory is to protect the host system from foreign

particle such as viruses, bacteria and manmade

molecules called as Antigen. The immune system

produces antibody on identifying the antigen and

proliferate to defend the antigen. Zuben and Castro

[4] renamed Clonal selection theory to CLONALG

and applied it in various engineering problems. In

engineering problem the antigen represent element

of a problem or problem to be solved. And the

antibody represents the solution candidates. The two

main features of Clonal selection algorithm (CSA)

are hypermutation and cloning. CSA and genetic

algorithm works in similar way but they differ in

mechanism of generating new population. In CSA

new population is generated using hypermutation

operator as it does not support crossover operator

whereas in genetic algorithm recombination

operator such as crossover and mutation is applied

to generate new population. The general algorithm

for CSA is shown below.

 General Algorithm for CSA

 Begin

 Step 1: Randomly initialize population with set of

Antibodies A0, A1…..An

Step 2: Evaluate the affinity for each antibody

A0,.An

Step 3: Select antibody with higher affinity value

from population

Step 4: Clone the antibody based on the affinity

value

Step 5: Apply Hypermutation operator to create

new population

 Step 6: Clonal Selection: select superior antibody

based on affinity value

 Step 7: Termination: Repeat steps 3 to 6 until

termination condition met
 End

End

Received: October 26, 2017 223

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.23

2.3 Related works

Test case prioritization technique schedules the

test cases based on several objectives such as to

improve the rate of fault detection. In recent years

various prioritization techniques have been proposed

and widely used by the software industries to

improve their quality within the specified

time[5].Most of the prioritization technique uses the

information about source code to schedule the test

case such total statement coverage, total functional

coverage, modified statement coverage[6] and etc.

The main limitation of these techniques are

prioritization cannot be applied if the tester cannot

obtain complete code. In order to overcome the

limitation of code based prioritization cost cognizant

test case prioritization and history base test case

prioritization approaches were proposed. These

prioritization technique schedules the test case based

on software artefacts such as requirement covered,

volality, cost and severity of fault.

Zhang and Nie et al. [7] designed a prioritization

technique based on requirement priority and test

case cost in which prediction of test case cost before

execution is difficult. Kim et al [8] suggested a TCP

technique, which orders test case based on historical

value.however the technique is evaluated with

couple of smaller programs on a function-based

level concerning only a relatively low amount of

tests .Park et al. [9] contributed a historical value

based prioritization technique in which the test cases

are prioritized based on the historical value

generated. Yet the technique lacks in proving its

efficiency by comparing only with functional

coverage approach. Quet.al proposed prioritization

of test case for black box testing using runtime

information obtained. In recent study, a hybrid cost-

cognizant history based test case prioritization

technique [10] is designed which combines the cost-

cognizant test case prioritization and history based

test case prioritization. Very few prioritization

technique were proposed in cost-cognizant history

based test case prioritization. Yuchi et.al proposed a

history based cost-cognizant prioritization of test

case approach in which genetic algorithm is used to

produce the scheduled order the main drawback of

this technique is the number of iteration required to

produce optimal result increases the chromosome

size increase [11]. Recently many researchers have

also effectively applied meta-heuristic algorithm

such as genetic algorithm [12], ant Colony to search

an optimal order from existing test case.Hence in

this paper, a new methodology for test case

prioritization with clonal selection algorithm is

address above stated limitations.

Figure.1 Overview of Cost-Cognizant history based

Prioritization of Test Case approach using CSA

3. The proposed approach

In this section, the working of proposed

approach is explained. The objective of the proposed

approach is to find an effective test case order which

is able to detect the severe fault earlier using the

historical information of test cases. Since the

proposed problem is a NP-hard problem it is solved

using Clonal selection algorithm (CSA) a nature

inspired meta-heuristic algorithm. The proposed

approach works by taking the cost of executing test

case and severity of detected fault as input. The

historical information of each test case such cost of

test case, fault identified by the test case and the

severity of the detected fault are stored in historical

information repository. In test case repository the

generated optimal order for existing test suite is

saved for reusing in future regression testing. The

information about each test case is gathered from

previous testing activities. Once prioritization is

applied the proposed approaches inputs the

information about test case to Clonal selection

algorithm. The proposed CSA algorithm search for

an effective test case order from the existing test

suite using the information retrieved from the

repository. Finally a scheduled test case order which

is able to identify the severe fault earlier is

generated as output. The overview of proposed

approach is shown in Figure 1.

3.1 Proposed cost cognizant history based

prioritization of test cases using clonal selection

algorithm (CC-CSA)

The proposed CC-CSA algorithm schedules the

test cases from the given test suite T, utilizing the

historical information of test cases. In CSA the

Received: October 26, 2017 224

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.23

antigen represents the objective of the problem and

antibody represents the candidate solutions.

Therefore in our proposed approach the antigens

represent the best order to be searched out from

existing test suite and antibody represent the each

test case in the test suite. Algorithm for proposed

CC-CSA approach is given below. The algorithm

start by initializing the antibody Abi. Since random

initialization is the most vital approach for

initializing the population in proposed approach

antibody is generated using random initialization.

Algorithm for CC-CSA

//After fetching the information test case cost tc,

fault identified fi, and severity of identified fault fsv

from historical information repository//

Input:

 Test suite: TS

Size of the population: PS

 Total Number of generation: N

Mutation Strategy: MS

Output:

 Prioritized Order: Scheduled test order with highest

affinity value in final generation

Begin

 Step 1: Randomly initialize the population P1

 P1→ generate population (tc, fi ,fsv)

Step 2: Determine the affinity value for each

individual in population Pi and sort them

from higher to lower

 Affinity→ Evaluate affinity (Pi,tc,fi,fsv)

Step 3: Select antibody (test case) with highest fitness

value

Step 4: Clone antibody (test case) with highest affinity

value

 Parent→ Parent c

Step 5: Apply hypermutation operator (to create new

population)

 Parent c→Mutation (Parent c, MS)

Step 6: Repeat step 2 to step 5 until termination

condition met

Return scheduled Test Order

End

3.1.1. Encoding

Antibodies can be represented using different

encoding schemes for example decimal encoding,

binary encoding and permutation encoding. In

Figure.2 Representation of antibody

proposed approach permutation encoding is chosen

for representing the antibody. In permutation

encoding the antibody represents a sequence of test

cases id which represents the execution order. For

example figure.2 represents a sample antibodies

were antibody A represents the execution order T6-

T5-T4-T1-T3-T2 and antibody B represent an

execution order T6-T4-T2-T1-T3-T5.

3.1.2. Affinity function

After initializing the population the affinity

value of each test case is determined using the

affinity function. The affinity of each antibody in

the population is evaluated based on tc cost of test

case, fi fault identified by the test case and fsv

severity of fault as shown in step 2 of algorithm CC-

CSA. Since the main objective of proposed

approach is to schedule the test case in an order that

identifies the severe fault earlier considering the cost

of test case. The Average percentage of fault

detected considering test case cost value for a test

case is taken as the affinity value. If the program

contains f faults and n test cases the affinity function

is defined as follow.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
∑ [𝑓𝑠𝑖×(∑ 𝑡𝑐𝑗−(1

2⁄)𝑡𝑇𝐹𝑖
𝑛
𝑗=𝑇𝐹𝑖

)]
𝑓
𝑖=1

∑ 𝑡𝑐𝑗
𝑛
𝑗=1 ×∑ 𝑓𝑠𝑖

𝑚
𝑖=1

 (2)

In Eq.(3) fsi denotes fault severity of test case i,tcj

denotes the cost of the jth test case and Tfi is the first

case that detect the fault i . The test case which

identifies the severe fault earlier will have the

highest affinity value. Selection process is applied

on initial population set to select set of antibodies

from initial population for cloning process as shown

in step 3 of CC-CSA algorithm. Roulette wheel

selection is used for selecting the test cases

therefore the test cases are sorted from highest value

to lowest value in order to calculate the selection

probability of each test cases. Selection probability

for each antibody (test cases) is calculated as follow

𝑆𝑘 =
𝑓𝑖𝑡𝑘

∑ 𝑓𝑖𝑡𝑖
 𝑝𝑠
 𝑖=1

 (3)

Received: October 26, 2017 225

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.23

Sk denotes the selection probability and fitk represent

the affinity value and ps denotes population size.

3.1.3. Cloning

After selecting the test cases, cloning process is

applied as shown in step 4 of CC-CSA algorithm.

Cloning is the process of replicating the antibodies

with higher affinity value. The number of copies

created for each antibody is determined using the Eq.

(4).

)
.

(
1 i

M
roundNc

n

i


 

 (4)

In Eq.(4), the NC represents the total clone generated

for each antibody, β is a multiplying factor and M is

total number of antibodies in population and

function round(.) is used to round off the function

value to nearest integer. For example consider

M=50 and β=1, then the antibody with highest

affinity will produce 50 clone and second highest

with 25 and so on. The test cases are cloned based

on the affinity value.

3.1.4. Hyper –mutation

In Clonal selection algorithm the next generation

population is generated by hyper mutation process.

The cloned antibodies are hyper mutated to produce

offspring. In this context offspring represent

different test case order. In hypermutation the copy

of antibodies are mutated based on the affinity value.

For antibody with higher affinity value, low

mutation rate is applied and high mutation rate is

applied for antibody with lower affinity value. In

Single point mutation it is not possible to achieve

hyper mutation therefore a mixed mutation strategy

[13, 14] is applied. Figure 3 shows an example of

hypermutation strategy.

Figure.3 Example of mutation

Table 1. Characteristics of selected application

Version LOC No. of. Faults No. of. Test

Cases

1 11,450 8 300

2 10,278 7 300

3 9876 5 300

4 8770 7 300

5 6550 4 300

In mixed mutation offspring are generated based

on the affinity value. For antibody with lower

affinity value two stage mutation is applied and for

antibody with higher affinity single stage mutation

is applied. In two stage mutation, inverse mutation is

applied followed by pairwise mutation therefore to

creates offspring far away from parent. In Inverse

mutation two antibodies are randomly selected and

sub string within the points are reversed followed by

pair wise mutation. In single stage mutation pair

wise mutation is applied to produces offspring

slightly different from parent antibody by changing

the position of two selected antibody. The next

generation is generated only through mutation

operation. Step 2 to step 5 in proposed algorithm are

followed until maximum generation is reached

which produce an optimal test case order as output.

3.2 Historical information about test cases

In this section the historical information about

test cases is discussed. The information include test

case cost and severity of faults.

Test case cost: test case cost is the resource required

for executing the test case. The resource is time

required to execute the test case.

 3.2.1. Severity of fault

 In the proposed approach the severity of fault is

assigned a value between scaling of 4 to 1.The

highest severity value of 4 is given to most severe

fault which lead to the failure of product and the

product cannot be used until the fault is fixed.

Severity value of 3 is given to moderate fault which

does not affect the working of the product but

should be fixed in later releases. The severity value

of 3 is assigned to lower level fault which does not

affect the working of product and the fault can be

fixed in later version and severity value 1 is

assigned to least level fault.

4. Experimental setup

To evaluate the performance of the proposed

approach, a hospital management application

developed by version square private.ltd is used.

Hospital management provides function to perform

Received: October 26, 2017 226

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.23

typical task such as billing, providing appointments,

managing patient records and etc. The application is

developed using Java programming language.

The characteristics of the application are

mentioned in Table 1.A single test suite is used for

testing all five sequential versions and the faults are

seeded by hand. The cost of test case is considered

as the execution time and the severity of each fault

is created based on the functions criticality. The

parameter used by the proposed approach is shown

in Table 2.

In order to evaluate the proposed technique, four

other techniques are chosen from existing test case

prioritization technique for comparison and each

technique is presented below.

a) Random prioritization: In random test case

prioritization technique the test cases are randomly

ordered [1].

b) Prioritization based on total functional

coverage: In this technique the test case are ordered

based on the functional coverage. Test case which

covers the maximum number of functions is given

the higher priority [11].

c) Prioritization using genetic algorithm: In GA

based prioritization the test case are ordered by

genetic algorithm based on the known information

of the test cases [10]. The parameter used by this

technique is shown in table 3.

d) Cost Cognizant prioritization of test cases

based on Total functional coverage: Cost

Cognizant test case prioritization based on

functional coverage is an improvement over total

functional coverage prioritization. In this technique

each test case is awarded a value based on

functional covered, severity of fault exposed and

cost of executing the test case. The test case

prioritized based on award value [13].

To validate the proposed approach average

percentage of fault detected with respective to cost

is taken as the evaluation metric. Since in our

experiment, the proposed approach CC-CSA and the

existing approaches such as random, optimal

technique generates different test case order during

each execution 500 prioritization were created for

each method and the average of these prioritization

is taken for experimental study.

Table 2. Parameter used by CC-CSA

Parameter Value

Size of Population 200

Total number of

generation

500

Mutation Operator Inverse and Pairwise

Mutation

Stopping Criteria Maximum generation

reached

Program coverage

Weight

100

Test Adequacy criteria Functional Coverage

Table 3. Parameter used by genetic algorithm

Parameter Value

Size of Population 200

Total number of

Generation

400

Crossover Rate 1

Mutation Rate 0.7

Program coverage

Weight

100

Test Adequacy criteria Functional Coverage

Table 4. APFDc value of prioritization techniques

Version V1 V2 V3 V4 V5 Mean

Random 70.03 71.22 83 78.4 71.06 74.74

Tot-Fun 79.67 68.8 73.68 80.34 68.4 74.17

Optimal

(GA)
96 90.39 95.2 97.06 96 94.93

CC-tot-

fun
76.53 90.47 91.63 92.86 85.61 87.42

CC-CSA 88.9 94.24 96.76 97.03 98.87 95.16

5. Analysis of experimental result

In this section, the experimental result obtained

during the evaluation of the proposed approach is

presented. To validate the proposed approach

average percentage of fault detected with respective

to cost (APFDc) value of each technique is

presented in Table 4.

As seen from table 4 the mean value of CC-CSA

is higher than the random technique because of

intelligent prioritization of CC_CSA. In random

technique test cases are scheduled blindly whereas

in CC-CSA the test case are scheduled based on

previous history. Thus it shows 20.4% improvement

over random technique and from figure 6 it is

evident that the proposed approach outperforms than

random ordering technique for all five version. The

optimal technique also achieves better APFDc value

than random technique. The random technique

performs better in comparison with functional

coverage technique and has 0.57% improvement but

the difference is not significant.

Received: October 26, 2017 227

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.23

Figure.4 The Comparison of APFDc value of

CC-CSA and Random

Figure.5 APFDc value of Functional coverage and CC-

CSA

Figure.6 APFDc value of CC-CSA and Optimal (GA)

The total functional coverage method identifies

maximum fault by scheduling the test case based on

functional coverage criteria but fails to detect the

most severe fault earlier. In contrast the CC-CSA

order test case based on ability to find most severe

fault. By comparing the proposed approach with

total functional coverage the CC-CSA identifies

severe fault earlier for all five version and shows

Figure.7 APFDc of all existing prioritization approach

with CC-CSA

7.74 % improvement. Both the tot-fun and CC-tot-

fun belongs to functional coverage based technique

and the cc-tot-fun performs better than tot-fun for

most version and is graphically represented in Fig. 7.

Both the Optimal and CC-CSA are meta-

heuristic algorithm which finds an order by

searching the existing test suite. Due to the high

degree of parallelism and guided mutation of clonal

selection algorithm it perform better than GA. From

observing figure 8, the optimal (GA) technique has

higher performance in version 1 and 3 and CC-CSA

have outperformed better in version 2, 4 and

5.Considering table 4, the proposed CC-CSA

approach has higher performance than all other

existing approaches considered.

6. Conclusion

In this paper, we presented a Clonal selection

algorithm based cost cognizant test case

prioritization technique which uses the historical

information of test cases for scheduling the test

cases in an order that has great effectiveness in

detecting severe faults early. The proposed system is

evaluated using an industrial application with

multiple versions. The result of this study

demonstrated that newly proposed CC-CSA perform

better than the random, optimal, and total-function

and cost-cognizant total function approach in terms

of APFDc. Even though Clonal selection algorithm

is employed for first time in test case prioritization,

from the experimental results it is evident that

Clonal selection algorithm performs better by

searching an order from existing test suite earlier

than genetic algorithm for most cases. The two

major contribution of this research is firstly, the

historical information of the test cases is effectively

used for prioritization. Secondly, Clonal selection

algorithm is introduced in prioritization technique.

With proposed approach, software industry can

manage the regression testing activities and

Received: October 26, 2017 228

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.23

prioritize test case without the source code. Further

in this work, the proposed approach effectiveness

can be improved by fine tuning the parameters of

Clonal selection algorithm. Therefore are future

study will be considering different mutation and

cloning strategies to increase the effectiveness of

proposed approach.

References

[1] G. Rothermel, U.C. Chu, and M. Harrold, “Test

case prioritization”, IEEE Transactions on

Software Engineering, Vol. 27, No. 10, pp.

929–948, 2001.

[2] H. Srikanth, “Requirement based test case

prioritization”, In: Proc. of Student Research

Forum in 12th ACM SIGSOFT Internationa1

Symposium on the Foundations of Software

Engineering, Newport Beach, California, 2004.

[3] S. Elbaum, G. Malishevsky, and G. Rothermel,

“Incorporating varying test costs and fault

severities into test case prioritization”, In: Proc.

of the 23rd International Conf. On Software

Engineering, Ontario, Canada, pp. 329–338,

2001

[4] L. N. De Castro and F. J. Von Zuben,

“Learning and Optimization Using the Clonal

Selection Principle”, IEEE Transactions on

Evolutionary Computation, Vol. 6, No. 3, pp.

239-251, 2002.

[5] S. Elbaum, G. Malishevsky, and G. Rothermel,

“Test case prioritization: A family of empirical

studies”, IEEE Transaction on Software

Engineering, Vol.28, No.2, pp.159-182, 2002.

[6] X. Zhang, C. Nie, B. Xu, and B. Qu, “Test case

prioritization based on varying testing

requirement priorities and test case costs”, In:

Proc. of the 7thInternational Conf. on Quality

Software (QSIC'07), pp.15–24, 2007.

[7] J.M. Kim and A. Porter, “A history-based test

Prioritization technique for regression testing in

resource constrained environments”, In: Proc.

of the 24th International Conf. on Software

Engineering, pp.119-129, 2002.

[8] H. Park, H. Ryu, and J. Baik, “Historical value-

based approach for cost-cognizant test case

prioritization to improve the effectiveness of

regression testing”, In: Proc. of the 2nd

International Conf. on Secure System

Integration and Reliability Improvement,

Yokohama, Japan, pp. 39–46, 2008

[9] C.T. Lin, C.D. Chen, C.S. Tsai, and G.M.

Kapfhammer, “History-based test case

prioritization with software version awareness”,

In: Proc. of the 18th International Conference

on Engineering of Complex Computer Systems,

pp.171-172, 2013.

[10] Y.C. Huang, K.L. Peng, and C.Y. Huang, “A

history-based cost-cognizant test case

prioritization technique in regression testing”,

Journal of Systems and Software, Vol. 85, No.

3, pp.626–637, 2012.

[11] S. Elbaum, A. Malishevsky, and G. Rothermel,

“Prioritizing test cases for regression testing”,

In: Proc. of the ACM International Symposium

on Software Testing and Analysis, pp. 102–112,

2000.

[12] R. Krishnamoorthi, and S.A.S.A. Mary, “Factor

oriented requirement coverage based system

test case prioritization of new and regression

test cases”, International journal of Software

Technology, Vol.51, No.4, pp. 799–808, 2009.

[13] G. Malishevsky, J.R. Ruthruff,

G. Rothermel, and S. Elbaum, “Cost-cognizant

Test Case Prioritization”, Technical Report TR-

UNL-CSE-2006-0004 University of Nebraska-

Lincoln, 2006.

[14] B.H. Ulutas and S. Kulturel-Konak, “Assessing

hypermutation operators of a clonal selection

algorithm for the unequal area facility layout

problem”, Engineering Optimization, Vol. 45,

No. 3, pp.375–395, 2013.

[15] T. Megala and K. Vivekanandan, “Clonal

Selection Algorithm with Adaptive Lévy

Mutation Operator”, In: ICIA-16 Proc. of ACM

International Conf. on Informatics and

Analytics, pp.43-50, 2016.

[16] K.R. Walcott, M.L. Soffa, G.M. Kapfhammer,

and R.S. Roos, “Time-aware test suite

prioritization”, In: Proc. of the ACM

International Symposium on Software Testing

and Analysis, pp. 1–12, 2006.

[17] M.J. Arafeen, “Test case prioritization using

requirements based clustering”, In: Proc. of the

6th IEEE International Conference on Software

Testing, Verification and Validation, pp. 312–

321, 2013.

[18] Z. Sultan, R. Abbas, S. Nazir, and S.Asim,

“Analytical Review on Test Cases Prioritization

Techniques: An Empirical Study”,

International Journal of Advanced Computer

Science and Applications, Vol.8, No.2, pp. 293-

302, 2017.

[19] V. Cutello, G. Nicosia, and M. Povene, “Real

coded clonal selection algorithm for

unconstrained global optimization using a

hybrid inversely proportional hypermutation

operator”, In: Proc. of the ACM on applied

computing, France, pp.950–954, 2006.

