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Abstract: The purpose of this paper is to ensure a tracking control of output state especially the active and reactive 

powers of doubly fed induction generator (DFIG) by using the approach of Parallel Distributed Compensation (PDC) 

of the fuzzy control type Takagie-Sugeno (T-S) which determines the control laws containing fuzzy tracking and return 

state. This tracking has been built to converge the output vectors of the DFIG to a desired state. In this work, the 

quadratic function of lyaponov and a linear matrix inequality (LMI) are used to obtain the gains of the tracking control 

and the controller.The simulations results of law control based on the tracking and controller gains allow the active 

and reactive powers obtained must follow the reference proposed.  
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1. Introduction 

      The doubly fed induction machine (DFIM) has 

been the subject of much research mainly in industry 

such as generator DFIG for wind energy application 

[1, 2] and motor for ventilation systems and pumps, 

since it features simple structure, high-energy 

efficiency, reliable operation and can operate variable 

speed. 

The dynamic model of the DFIG is not linear and 

that some states cannot be measured due to the lack 

of sensors which causes difficulties to control and 

know the evolution of this nonlinear system [3]. 

A lot of researches have been done on the 

modeling and control of DFIG [4-6] especially by the 

fuzzy model proposed by the approach Takagi-

Sugeno (T-S) [7, 8] and the Parallel Distributed 

Compensation (PDC) [9]. 

The Takagi-Sugeno (TS) fuzzy modeling use  the  

fuzzy IF-THEN rules for representing a local input-

output relations of a different class of non-linear 

systems model [7]. The objective is to represent the 

local dynamics of each rule by a linear system model. 

For assuring the global stability and tracking control 

of DFIG by the Takagi-Sugeno fuzzy model, we use 

a quadratic Lyapunov function to all subsystems 

founded by the variable transformation in to linear 

matrix inequalities LMIs [10, 11]. We obtain the 

controller and tracking gains for local fuzzy models 

by using the powerful computational Matlab LMI 

Toolbox. 

The tracking control has be seen in various 

industrial system [12, 13], the objective of this 

control is to design a tracking controller and to 

converge the output to the desired reference model 

without a tracking error. Compared with stability 

control design and stabilization problems, the 

tracking control problem is more difficult especially 

for nonlinear systems. 

In this present work, the approach based on fuzzy 

control Takagi- Sugeno is presented with Parallel 

Distributed Compensation (PDC) technique and is 

proposed to improve the performance of current 

tracking control and stability for dynamic model of 

nonlinear system the doubly fed Induction Generator 

(DFIG). 
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The main advantages of this control strategy over 

others is to improve the performance of DFIG by 

dimining the response time of the convergence of 

active and reactive powers to a desired value.  

This paper is structured as follows. In Section II, 

the dynamic state-space model of doubly fed 

induction generator and study of T-S fuzzy modelling 

with Fuzzy state tracking are presented and a 

description of LMI-based design procedures, finally 

we applicate the fuzzy TS method to the dynamic 

model of DFIG with the results obtained and 

simulation.  

2. Takagie – Sugeno  

2.1 Model Takagie Sugeno 

The state space of the Double Feed Induction 

Generator DFIG dynamics model [8-11] is expressed 

b following Eq.  (1): 
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Where  

 

s rL ,L ,M    : Stator, Rotor and Mutual inductance.                                                                                              

,sR Rr           : Stator and Rotor resistances.                                                                                                                   

s r,           : Stator and Rotor speed.                                                                                                                                                      

sq rqI ,I         : Stator and Rotor currents in axis q.                                                                                                                

sd rdI ,I         : Stator and Rotor currents in axis d.                                                                                                                               

x( t ),u( t )    : The state system and control vector                                                                                            
 iL  : The gains of the fuzzy observer  

iK  : The gains of the fuzzy regulator.                                                                           

r  
p  

Vs  

: The number of local models.                                                                                                                                             
: The Number of pole.                                                                                                                                                  

: Stator voltage magnitude. 

 

A Takagi-Sugeno fuzzy model for a dynamic 

system consists of a finite set of fuzzy IF ... THEN 

rules expressed as follow:    

Model rule i:       

  If 1z (t )  is 
i
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i

p 1F ((z (t ))  THEN 
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Before 
i

1F  (j=1, 2... p) the fuzzy membership 

function associated with the ith rule and jth parameter 

component 1 pz (t )...z (t )  are known premise 

variable. Where ih (z(t ))  is the normalized weight 

for each rule. 

 i.e., 
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And is given by 
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and                  
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2.2 Tracking control   

For each rule of a Takagie-Sugeno model, we use 

the concept of Parallel Distributed Compensation 

(PDC) to design fuzzy controllers to stabilize fuzzy 

system in the Eq. (3).  

The Stability analyse is based on the quadratic 

Lyapunov stability such as the following definition:  

 

Definition 1: 

 
The system in Eq. (1) is said to be quadratic ally 

stable if there exists a quadratic function: 

 

  TV( x( t )) x ( t ) P x( t )                      (7) 
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0
.

V( x( t ))  ,  0x( t )  .                         (9)  

  

If  V  exists, it is called a Lyapunov function. 

 

The objective of fuzzy tracking control is to 

achieve  
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By applying fuzzy control law u (t) [11], which is 

written in the following form: 

Controller Rule i: 
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Where ( )dx t : is the desired state vector. 
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The closed-loop model of Eq. (3) with the global 

control law Eq. (11) is represented as follows [11]: 
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We consider that e( t ) is the function error which 

is the difference between the state vector x( t )  of  T-

S fuzzy model Eq. (13) and the desired state vector

dx ( t ) , supposed constant, as: 

 

                         de( t ) x( t ) x ( t )                      (15)   

 

Combining the Eq. (13) and Eq. (15), the error 

dynamics   
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The error dynamics in Eq. (16) can be represented as 

follows: 
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Using the definition 1 in equation Eq. (18), we obtain: 
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The equilibrium of the system described by Eq. 

(18) is asymptotically stable in the large if there exists 

a common positive definite matrix P such as these 

two conditions: 
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While applying to Eq. (24) and Eq. (25) the Schur’s 

Lemma, we obtain the following equations Eq. (26) 

and Eq. (27), respectively as: 
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2.3 Linear matrix inequality (LMI)  

The LMI conditions are used to find the feedback 

gains Ki and the tracking gains Ni. In order to 

simplify the resolution of the LMIs, we consider the 

variables change by introducing matrices X, U and V 

with appropriate dimensions: 
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The Conditions in Eq. (26) and Eq. (27) can be 

easily transformed into LMIs as follows: 
 

 

A 0

0

i i i i i i i iA X BU (*) X BU BV

(*) X X

(*) (*) X

    
 

  
  

    (29)      

For 1 2 3( i , , ,...,r )                

 
 0

2 2

0

i j i j j iA A X B U B U
(*)

(*) X X

(*) (*) X

    
 
 
  
 

 
 
 

   (30) 

For (1 )i j r                                           

With       

 i j i j j i i j j iA A X B U B U B V B V          (31)       

3. Simulation results  

The proposed approach in this work will be used 

for calculating the control laws of the three-phase 1.5 

Mw Doubly fed induction Generator having the 

following characteristics as shown in table 1: 
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Table 1. Doubly fed induction Generator 1.5 MW (DFIG) 

Parameters 

Quantity Units and values 

𝑅𝑠 0.026 Ohm 

𝑅𝑟 0.029 Ohm 

Ls 87 μH 

Lr 87 μH 

M 2.5 μH 

Vs 690V 

P 2 

 

 
Figure.1 Simulation results of Irq-ref 

 

 
Figure.2 Simulation results of Ird_ref 

 

As results, the simulations results obtained in 

terms of active and reactive power (Ps and Qs) must 

follow the results of the desired reference ones which 

are linked with the currents Irq and Ird by Eq. (1). The 

Figures 1 and 2 represent the proposed results the 

reference current. These results give us the best 

method to know exactly the good performances of the 

active and reactive power. 

 
Figure.3 Simulation results of active power Ps-ref 

 

 
Figure.4 Simulation results of active power Ps-ref 

 

It is observed by the Figs. 1 and 2 of the reference 

currents Irq and Ird, respectively, that we have the 

three different cases of the each current function 

operating in three ranges of responding time.  

As mentioned above that the reference active and 

reactive power, and the reference currents are linked 

by Eq. (1). So, the results of these powers are 

represented in the following Figs. 3 and 4. 

As we can see from the Figs. 5 and 6, it is well 

observed that the results of the active and reactive 

power fed by the stator of the MADA follow the 

proposed results of the reference power for the three 

ranges of the responding time, Finally, we conclude 

that the current Irq doing the tracking control of the 

active power, and the direct Irq component doing the 

tracking control of the reactive power.  

Using the LMI approach and the conditions of 

quadratic stability for calculate the feedback control  

and the tracking control gains of the fuzzy control law 

Eq. (11) gives the followings result: 
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Figure.5 Simulation results of active power Ps and Ps-ref 

 

 
Figure.6 Simulation results of active power Qs and Qs-ref 

 

The quadratic Lyapunov matrix P: 

 

0,0263 3,532e-10 1,766e-08 8,125e-09

3,532e-10 0,0263 3,290e-09 1,512e-08

1,766e-08 3,290e-09 0,0263 4,520e-10

8,125e-09 1,512e-08 4,520e-10 0,0263

P

 
 
 
 
 
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Gains value Ki: 
 

-15,288 814,41 -346,53      6993,5

-886,55 -15,337 -7087,8     -351,09
1

-50,355 2751 -0,5162 26,634

-2786,9 -50,973 -319,90     -14,689

K

 
 
 
 
 
    
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-15,292 605,81 -346,52     14614

-613,78    -15,3691 -14806    -351,08 
2

-50,355     1882,8 -0,5157    16,878

-1907,5    -50,974 -613,77   -14,685
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K
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 
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Gains value Ni: 
 

1,8661      -819             23,221     -6996,6

888,95 2,0417 7086,1 23,520
1

2,9976      -2749,9      -0,0893     -7,1239

2785,8 3,0800 285,27      0,8396

N
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3
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1,8639      -819,00 23,221     -6996,6

888,95 2,0006 7086,1 23,522
4

2,9976      -2749,9      -0,0890      -7,1241

2785,8 3,0783 285,27 0,8449

N
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Comparing our result of the active and reactive 

powers of DFIG 1.5 MW showing in Figures 5 and 6, 
respectively, by another obtained by method A Fuzzy 

Sliding Mode [5]. It’s noted that the response time is 

more important than one referenced in [5], following 

Table 2 shows the comparison between the two 

methods: 

 

Notation: 

 
TA (*) A A    

 

Table 2. The comparison 

 A  Fuzzy 

Takagie-Sugeno 

method 

A Fuzzy Sliding 

Mode  method 

Response 

time (sec) 

0.2 < t <0.25 0.4 < t < 0.6 

 

T

A BA B

(*) C B C

  
     

     

4. Conclusion 

In this work, a fuzzy Takagie-Sugeno control 

based on parallel distributed compensation PDC 

approach of output vector state of DFIG is studied 

and developed. Firstly, the nonlinear model of DFIG 

is transformed into a T-S fuzzy representation. After 

that, the approach PDC have been used to construct 

the LMI based design procedures for fuzzy controller.  

Secondly, the stability conditions are expressed in 

terms of Linear Matrix Inequalities LMI’s. Finally, a 

design algorithm of fuzzy control system containing 

fuzzy regulator and fuzzy tracking is obtained. The 

simulation results are provided to improve the time 

response of obtained powers compared to the others 

researches. 

Future work will focus on using of the proposed 

method in this work in order to apply in the system 

which contains wind turbine with DFIG for maximize 

the production of electrical energy and use of other 

types of controllers, such as H infinity.  

References 

[1] H. Polinder, F. Van der Pijl, G. De Vilder, and P. 

Tavner, “Comparison of direct-drive and geared 

generator concepts for wind turbines", IEEE 

Trans. Energy Convers., Vol. 21, No. 3, pp. 725-

733, 2006. 

[2] A. Naamane and N. Msirdi, “Doubly Feed 

Induction Generator Control for an Urban Wind 

Turbine”, International Renewable Energy 

Congress IREC, pp. 208-214, 2010. 

[3] J. Ekanayake, L. Holdsworth, X. Wu, and N. 

Jenkins, “Dynamic modelling of doubly fed 

induction generator wind turbines”, IEEE 

transactions on power systems, Vol. 18, No 2, p. 

803-809, 2003. 

[4] F.Abdelmalki and N. Ouaaline, “TS Fuzzy 

observer and controller of Doubly-Fed Induction 

Generator”, International Journal of Power 

Electronics and Drive Systems, Vol.7, No.3, pp. 

617–624, 2016. 



Received:  August 25, 2017                                                                                                                                                120 

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018           DOI: 10.22266/ijies2018.0228.12 

 

[5] O. Belounis and H. Labar, “Fuzzy Sliding Mode 

Controller of DFIG for Wind Energy 

Conversion”, International Journal of Intelligent 

Engineering and Systems, Vol.10, No.3, pp. 

163–172, 2017. 

[6] M. Nadour, A. Essadki, and T. Nasser, 

“Comparative Analysis between PI & 

Backstepping Control Strategies of DFIG Driven 

by Wind Turbine”, International Journal of 

Renewable Energy Research, Vol. 7, No. 3, pp. 

1307–1316, 2017. 

[7] T. Takagi and M. Sugeno, “Fuzzy identification 

of systems and its applications to modeling and 

control”, IEEE Transactions on Systems, Man 

and Cybernetics, Vol. 1, No. 1, p. 116–132, 1985 

C. J. Lopez-Toribio and R. J. Patton, “Takagi-

Sugeno fuzzy fault tolerant control for a non-

linear system,” In: Proc. of the 38th IEEE 

Conference on Decision and Control, pp. 4368-

4373, 1999. 

[8] K. Tanaka and M. Sugeno, “Stability analysis and 

design of fuzzy control systems”, Fuzzy Sets 

Syst., Vol. 45, No.2, pp. 135-156, 1992. 

[9] J. Park, J. Kim, and D. Park, “LMI-based design 

of stabilizing fuzzy controllers for nonlinear 

systems described by Takagi-Sugeno fuzzy 

model”, Fuzzy Sets Syst., Vol.122, pp.73-82, 

2001. 

[10] A. Abdelkrim, C. GhorbeL, and M. BENREJEB, 

“LMI-based tracking control for takagi-sugeno 

fuzzy model”, International Journal of Control 

& Automation, Vol. 3, No 2. 2010. 

[11] S. Tong, L. Zhang, and Y.  Li,” Observed-based 

adaptive fuzzy decentralized tracking control for 

switched uncertain nonlinear large-scale systems 

with dead zones”, IEEE Transactions on 

Systems, Man, and Cybernetics: Systems, Vol. 

46, No 1, p. 37-47, 2016. 

[12] H. Li, L. Wang, H. Du, and A. Boulkroune”, 

Adaptive fuzzy backstepping tracking control 

for strict-feedback systems with input 

delay”, IEEE Transactions on Fuzzy Systems, 

Vol. 25, No 3, p. 642-652, 2017. 

 

 

 


