
Received: September 30, 2017 83

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.09

Cloud Based RDF Security: A Secured Data Model for Cloud Computing

Clara Kanmani Arulanandu*1 SumaVasu Deva Murthy2 Guruprasad Nagraj3

1Department of Computer science and Engineering, Visvesvaraya Technological University, India

2Dayananda Sagar College of Engineering, India
3New Horizon College of Engineering, India

* Corresponding author’s Email: clarakanmani0623@yahoo.com

Abstract: In this paper, a new secured data model for cloud computing is proposed which uses partial resource

description framework (RDF) encryption and token based access control system in which sensitive data in an RDF

graph is encrypted and all other non-sensitive data are publicly lucid. The security process, the decryption process,

and query process are the three essential procedures in this framework. The consequence of the security process is

the encrypted data, encrypted metadata, and plain text fragments. The proposed technique permits the token based

access control system for the decryption procedure. The query process incorporates the map reduce framework is for

lessening the immense measure of employments. At long last, the query answer is sent to the user in light of the

access token list (AT-list) of the system administrator. Our test comes about demonstrate that, the performance of the

proposed technique is assessed in view of the precision, recall and execution time of the framework. Our proposed

approach is actualized using Java and keep running on Windows XP framework and the Lehigh University

Benchmark (LUBM) datasets are used for our examination. In the paper this new secured RDF data model is

deployed and tested using AWS elastic beanstalk.

Keywords: RDF graph, Partial encryption, Token based access control, SPARQL query, Map-reduce framework.

1. Introduction

Cloud computing assumes a noteworthy part in

the IT and data processing people group [1]. These

days the prominence of the cloud computing is

expanding quickly, because of this reason a

considerable measure of security challenges is

looked by the specialist co-ops [2, 3]. For retrieving

and understanding the data to both human and

machine, the data are displayed in an

institutionalized frame by utilizing the semantic web

innovations [4, 5]. The semantically annotated data

are consequently merged and assembled by the

semantic web vision operators. The imperfections in

the data upkeep process are explained by the

standardized semantic web advancements [6, 7].

The Resource Description Framework (RDF) is

the most capable standard of the semantic web

because of its expressive power, semantic

interoperability, and reusability. The prominence of

the RDF data shows [8] and the RDF schema

language (RDFS) [9] is expected to the adaptable

and extensible portrayal of data under the type of

triples (subjects, objects, and predicates). Creating

metadata for the web is the fundamental objective of

the RDF plan [10]. The mixture of many

interconnected networks and PCs is known as the

web, the vast majority of the presently best RDF

stockpiling arrangements is bound to a solitary node

[11, 12]. The large scale RDF querying is the most

critical part in the RDF data management, yet the

substance and the structure of the client aren't

effectively comprehended by the large scale RDF

[13, 14]. The RDF data security is the essential one,

in light of the fact that, in the RDF data management,

once in a while numerous security issues are

happening in the season of encryption and

decryption is finished [15, 16]. Numerous systems

are utilized to take care of the security issues in the

RDF data management.

Received: September 30, 2017 84

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.09

The RDF access control framework [17], RDF

Security based Framework [18], access control

model for securing RDF triples [19] etc., are

existing RDF access control methodologies. In any

case, the above existing RDF data management

procedures don't deal with a lot of data since all the

current works are actualized in Jena which isn't

productive to scale the colossal measure of data.

Along these lines, a SPIDER framework [20] was

utilized to deal with a lot of data; nevertheless the

access control component is inadequate in this

method.

Our progressed secured data model for cloud

computing is the blend of partial RDF encryption

and token based access control system. The need of

the partial RDF encryption technique is to re-

integrating the data into the RDF graph after

decryption and furthermore, it is used to deal with

all serialization format of the RDF graph not just the

XML serialization of RDF graphs. At first, the RDF

data is changed over into encrypted fragments

(sensitive data) and plain text fragment (non-

sensitive data). In the security process, the sensitive

data in the RDF graph is encrypted and the rest of

the data are publicly meaningful. Our proposed

procedure executed an authentication method, to be

specific token based access control system, the extra

security is offered by this framework. This system

also utilized for allocating AT for every security

level data as indicated by agents' need and security.

The rest of the paper is delineated in the area

underneath. The current research works are

portrayed in section 2. The proposed approach is

portrayed in section 3. The evaluation results and

the conclusions are delineated in sections 4 and 5.

2. Recent research work: a brief review

Numerous research works have previously

existed in literature which was based on the RDF

security based access control techniques and

schemes. Some of the works are reviewed here.

To deal with the issue of empty or too little

answers returned from RDF query Li Yan et al. [21]

have presented a query relaxation approach. In their

method, the algorithm of query relaxation isn't given,

so this technique does not bolster customary path

queries. For complex RDF analytics, Ibrahim

Abdelaziz et al. [22] has suggested a versatile

framework. The limitation of this work is, the

computational cost is high, in light of the fact that

the cost based optimizer isn't utilized with this

strategy. Zhiyuan Lin and Mahesh Tripunitara [23]

have presented a threat model, and watch that the

specialized test truly secluded from everything

information that might be uncovered by the structure

of an RDF graph. The main issue of this work is, if

any conjunction happens, the structure of the graph

released the information. The state-of-the-art of data

partitioning and secured data partitioning in the

multi cloud environment ideas are examined by

Hazila Hasan and Suriayati Chuprat [24].

Nevertheless, every one of the queries is not

appropriate for this model, so the data partitioning is

changing, because of this reason, the execution of

the framework will be decreased.

To deal with the extensive RDF graph, the

SPARQL query processing systems was proposed

by Lei Zou et al. [25]. But this approach may endure

bring down performance because of the troubles of

adjusting MapReduce to graph calculation. For the

effective and scalable distributed RDF data

management, the DiploCloud systems were

portrayed by Marcin Wylot and Philippe Cadre-

Mauroux [26]. The main drawback is, this approach

makes more inter-process traffic, given that related

triples, winds up being scattered on all machines.

In writing, not a lot of work is shown to handle

above issues and the inconveniences of the work

have influenced to do this examination work. Our

proposed architecture bolsters partial RDF

encryption and access control for vast data-sets by

including a token based access control system.

Rather than relegating access controls specifically to

clients or operators, our technique produces a token

is for particular access levels and allocate these

token to specialists. One of the upsides of utilizing

tokens is that they can be reused if the necessities

and security prerequisites for different specialists are

indistinguishable. Here, our method also increase

the recall level and reduce the execution time and

query processing time.

3. Proposed method

The fundamental point of our present work is to

plan and execute a secured RDF data management

in cloudy conditions. The colossal measure of RDF

data management is a testing undertaking in light of

their sheer size and heterogeneity. Our proposed

approach for secured data model for cloud

computing in terms of RDF data management first

requires a security scheme, keeping in mind the end

goal to encrypt the sensitive data of RDF graphs. On

the following stage, the decryption process is done

in light of the user query. In the last stride, an access

token (AT) list is made for every agent in light of

the user query. The proposed approach demonstrates

the three fundamental stages to be specific; security

process, the decryption process, and query process.

Received: September 30, 2017 85

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.09

 In security process, the RDF sensitive data is

encrypted to secure the sensitive data from the

uncertain condition.

 In decryption process, the encrypted data are

decrypt based on the user query.

 In query process, the access token list is

created to each agent for who is allowed to

use which data.

3.1 System model for proposed method

The proposed framework of secured data model

for cloud is displayed in Fig. 1. The important focus

of our proposed technique is to secure RDF sensitive

data from the unreliable condition. Dealing with the

extensive volume of RDF data is extremely

troublesome, so at first, we need to do the

encryption for the sensitive data previously

transferring it. For the decryption process, the user

presents the query request to the access control unit,

if the request of the user is conceivable the query is

rewritten to uphold at least one access control

policies. There are three sub segments in the map-

reduce framework. They are; input selector, plan

generator and job execution unit. The input selector

and the plan generator take the SPARQL query from

the query interface engine to choosing what number

of jobs are required. This data is passed to the job

execution unit which sends the correct job to the

public cloud. To land the best possible Position and

to get the applicable policies to enforce, the public

cloud is spoken with the access control unit. In the

meantime, the public cloud sends the demand to the

encryption container, it decrypts the RDF encrypted

data in light of the user query, at last, and it transfers

the decrypted data from the decryption

transformation unit to the user.

3.2 Framework for secured data model

The framework of the proposed data model for

cloud computing appears in Fig. 1. It incorporates

three procedures; (1) security process (2) decryption

process (3) query process. There are seven stages in

RDF data encryption, decryption and query process.

3.2.1. Security process

(a) Fragment Selection: An RDF dataset sets of

triples (s, p, o) from (U  B) U  (U  L  B)

where ‘s’ is the, rdf : subject ‘p’

is rdf: predicate

and ‘o’ is the rdf: object. Where U is the

arrangement of URIs (Uniform Resource Identifiers)

[5], the blank node identifiers are represented by 𝐵 ,

and L means the arrangement of RDF literals. Here,

User 1

User 2

…

Data Owner

Query Interface

Engine

Access Control

Unit

Map-Reduce

Framework

Public Cloud

Cryptosystem

Figure.1 System model for proposed method

the RDF triples are changed over into encryption

parts Mi (sensitive data) and plain text fragments Mj

(non sensitive data). The Choice should be possible,

for instance unequivocally specifying the sensitive

data.

The sensitive data of the RDF is encrypted by

using the advanced encryption algorithms like AES

[28], DES [29] and RSA [30].

(b) Encryption: In encryption, all Mi is serialized

and encrypted. The arrangement of client’s

information is encrypted by utilizing an arrangement

of session keys. In the encryption process, we can

consider a non-empty set of messages, encryption

functions f and g. The non-empty set of messages Mi

is given by,

𝑀𝑖 = { 𝑚1, 𝑚2, … 𝑚𝑛} (1)

The data

 mi  Mi is the encrypted fragments of

the encryption process. A new session key ki is

created for each data mi. The session key ki is used

to parameterize the symmetric function f for

encrypting the data Mi . So that,

𝑓𝑘1

−1(𝑓𝑘2 (𝑀𝑖)) = 𝑀𝑖 (2)

Where, k1, k2 is the session keys. For encrypting

mi  Mi symmetrically, we need some session keys

ki. The output is f(C, K) where; the part of ciphertext

is C and k  K is the key used to encrypt the data

Mi. After finishing the symmetrical encryption

process, the result is message cipher MCi.

𝑀𝐶𝑖 = 𝑓𝑘(𝑀𝑖) (3)

Received: September 30, 2017 86

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.09

RDF Data

Encryption

Fragment

Encryption

Encryption

Container

Plain Text

Fragment

Encryption

Transformation

Encryption

Container

Encryption Container

Identification
Plain Text

Decryption
Decryption

Transformation

Public Cloud

Map-Reduce

Framework

Query Interface

Engine

Access Control

Unit

Data Owner

S
E

C
U

R
IT

Y
 P

R
O

C
E

S
S

D
E

C
R

Y
P

T
IO

N
 P

R
O

C
E

S
S

Q
U

E
R

Y
 P

R
O

C
E

S
S

Query

User

Admin

SPARQL query

Figure.2 Framework of proposed system

For encrypting the ki asymmetrically, it needs

some public keys. The non-empty set of public keys

is given by,

𝑃𝑢𝑏 = (𝑝𝑢𝑏1, 𝑝𝑢𝑏2, … 𝑝𝑢𝑏𝑛) (4)

The result of the key ciphers is,

𝐾𝑐𝑖 = 𝑘𝑐1, 𝑘𝑐2, … 𝑘𝑐𝑛 (5)

Where, k is the key used for encrypt the data and

ci is the chipertext. The data mi  Mi of the receiver

is represented by the pi  Pi. The encrypted result Ci

is the blend of encrypted data and encrypted

metadata which is put away in the encryption

container (EC). The encrypted metadata is the

gathering of MCi and Kc. At last consequence of the

encryption process is,

 𝐶𝑖 = ∑ (𝑀𝐶𝑖, 𝑘𝑐1, 𝑘𝑐2, … , 𝑘𝑐𝑛)𝑛
1=1 (6)

In the above equation, c1, c2,…cn is the key

ciphers. The relating encryption container

supplanted all Mi and the outcome is, the RDF graph

containing, encrypted data, encrypted metadata and

plain text fragment.

Received: September 30, 2017 87

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.09

RDF Encryption Fragment

Encryption Method

Encrypted Key

Encrypted Key

Cipher Data

Encryption Properties

Encryption Method

Key Information

Cipher Data

Encryption Properties

Reference List

Carried key Name

RDF graph

iM

)(iki MfMC 

),,(, 1 cncii kkMCC 

cnccci kkkK ,,, 21 

)(1

iki MCfM 

)(1

cipriv kgk 

1k

nk

Encrypted Data Encrypted Key

…...

Figure.3 Structure of encryption container

(c) Encryption Transformations: All these

encrypted data Ci and the plain text fragment Mj are

put away in the encryption transformation. All Ci

and Mj are isolated from the encryption container in

light of the RDF user query for decryption. The

comparing EC supplanted all the original data of

RDF, at long last the RDF graph containing MCi, Mi

and plain text data Mj . Here,

𝑘 = 𝑔−1𝑝𝑟𝑖𝑣 (𝐾𝑐𝑖) (7)

𝑀𝑖 = 𝑓𝑘
−1 (𝑀𝐶𝑖) (8)

Where k is the symmetric key, Kci

is the key

cipher and MCi is the message cipher f, g is the

encryption function.

(d) Encryption Container Identification: The

encryption container identification is utilized for

isolating the Mj fragments and the encrypted data Ci

for the decryption process. In this container, the

encryption container and encryption metadata are

recognized in light of the RDF query language.

3.2.2. Decryption process

(a) Decryption: In the decryption step, all the

EC’s data are decrypted in light of the user query

prerequisites. The parameter of the encrypted

metadata is utilized for decrypting the EC’s data.

The encryption container data are decrypted in light

of the receiver’s key parameter. The decryption

functions gf
-1 and f -1 parameterized with priv to

decrypting Ci for recovering the session key k to the

receiver. The agent handles some priv key pub1,

pub2 , … pubn key for decrypting the ECs.

The decryption crashes and burns, on the off

chance that a specialist does not have a proper key

for decryption. Here, the reconstructed RDF graph is

equivalent to the original RDF graph.

(b) Decryption Transformations: The decrypted data

Di and the plain text fragments are put away in the

encryption transformation unit. The corresponding

decrypted estimation of the ECs is reconstructed for

RDF graph. The DI will be the opposite of the Ci.

3.2.3. Cryptosystem for RDF fragments encryption

The cryptosystem utilized some cryptographic

algorithm for an RDF data security benefit. They

are; (1) key generation, (2) encryption and (3)

decryption. Experimentally, a design or

cryptosystem is portrayed as a tuple is (P, C, K, ,
D), where, ‘P’ is known as the plain content space

and the segments of ‘P’ is known as plaintexts, ‘C’

is known as the cipher text space and its parts is

known as the cipher texts, key space is connoted as

‘K’ and its components is known as key. The set of

encryption and decryption functions are

characterized by,

𝜀 = {𝐸𝑘 ∶ 𝑘 ∈ 𝐾 } (9)

𝐷 = {𝐷𝑘: 𝑘 ∈ 𝐾 } (10)

The component of the above function is known

as the encryption component (𝜀) and decryption

component (D). The encryption, decryption

components is given by,

𝐸𝑘: 𝑃 → 𝐶 (11)

𝐷𝑘: 𝑃 → 𝐶 (12)

Here, if the cryptosystem is symmetric ke = kd, if the

cryptosystem is asymmetric ke ≠ kd.

3.2.4. Query process

In this last stride, the decryption is done in view

of the users require. The query process incorporates

users, query interface engine, access control unit and

map reduce framework. The user sends the RDF

query language to the admin through the query

interface engine, the admin chooses if the users

query request is conceivable or not on the off chance

that it is conceivable and sends the input signal to

the user. A lot of dataset is changed over into the

little dataset by utilizing MapReduce framework, it

likewise used for adjusting the SPARQL query of

the user.

Received: September 30, 2017 88

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.09

(a) SPARQL Query: SPARQL is the standard

World Wide Web Consortium (W3C) proposal for

querying RDF graph.

In the query process, the triple pattern (s, p, o) is

generalized from the (U  B  V) (U  V)  (U 

L  B  V), where the set of factors are represented

as 𝑉 . The subset of SPARQL query is the BGP

(Basic Graph Pattern) queries of SPARQL. For

instance, the client requests the verse's lyrics, which

are shown in Museums situated in Newyork. The

syntax of this query process is written as,

SELECT ? v1 … ? vm WHERE {tp1 … tpn}

SELECT ?q ?r

WHERE {

 ?p : type : poetry

 ?p : poem ? q

 ?q : exhibited ? z

 ?z : location : newyork }

Here, tp1 … tpn is the triple pattern and ? v1 … ?

vm is the arrangement of variable got from the triple

pattern. The variable ?p is the gathering of initial

two triple patterns. The initial two triple patterns are

joined on factor ?p, the second and third variables

are ?q and the last two on variable ?r . The last three

triple patterns shape a way sub query.

(b) Map-Reduce Framework: The MapsReduce

structure used to diminish the immense measure of

jobs (i.e., changed over a great deal of Jobs into a

little measure of the job). Here, each job has two

phases, they are mapped and reduce. The key values

have gone about as the commitment of the map

process and the yield values are assembled in the

reduction phase. In the event that any

correspondence is happening between the maps and

reduce stage, the speed and straightforwardness of

the entire procedure are deficient. The Map-Reduce

framework has three fundamental segments. They

are input selector, plan generator and join executer.

The rewritten SPARQL query of the query

interface engine is given to the input selector and

plan generator to choose what number of jobs are

needed from the input file. This information is

passed to the job executer unit. For runs the job

legitimately some applicable policies are required.

To land those policies the job executer component

communicates with the access control unit. At that

point the query answer is sent from the public cloud

to the user.

(c) Access Control Unit: Our proposed technique

executes a token-based access control system. Here,

the Access Token (AT) is dispensed by the admin of

the framework for every security relevant data as per

AGENTS' needs and security level. On the off-

chance that at least one AT is assigned to a similar

agent, the contention happens in the system. The

time stamp based conflict identification and

resolution algorithm is utilized for maintaining a

strategic distance from the conflict happened in the

system.

Access Token Assignment and Policies: The

access of the security relevant data is accumulated

from the AT. In view of the timestamp

distinguishing, the admin assigned at least one AT's

to the given agent, this number of AT's are known as

the AT-list. In this procedure every agent has a

different AT-list. In the event that any amendment is

happening in the AT-list, the admin remedy them.

The underlying AT-list and the timestamp are put

away in the TempAT (impermanent variable). The

conflict happened in the new AT-list is recognized

before submitting the revision. In the last yield of

the agent's ATs, each set of triples accumulated

access from the AT, this the ATs result set. Here,

the outcome set of the ATs are communicated as,

𝑍 = 𝑍1, 𝑍2, … , 𝑍𝑛 (13)

Then the AT-list of the agents are expressed as,

𝐴𝑇 = 𝐴𝑇1, 𝐴𝑇2, … , 𝐴𝑇𝑛 (14)

 Then the triple set of the agent is expressed as,

𝐴𝑇𝑇 = 𝑍1 ∪ 𝑍2 ∪ … ∪ 𝑍𝑛 (15)

For changing the SPARQL inquiry, the Map-Reduce

framework utilizes a few policies. Query rewriting,

embedded enforcement and post processing

enforcement are the three primary enforcement

policies. By utilizing the Map-Reduce, the policies

are enforced at the season of data choice in

embedded enforcement; they chose data are

enforced amid the introduction of data to users. For

diminishing quantity of jobs, the embedded

enforcement reliably outflanks post processing

enforcement.

4. Evaluation results and discussions

4.1 Experimental configuration

Our approach is actualized utilizing Java and run

on a Windows XP system and the datasets of our

investigation is taken from the Lehigh University

Benchmark (LUBM). There are 14 standard queries

Received: September 30, 2017 89

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.09

in the LUBM dataset. The LUBM dataset is

generally utilized for testing scalability and

impedance. A portion of the queries requires a

derivation to reply. The created dataset is the RDF

triples. In our proposed system, we execute a

propelled partial encryption and token based access

control system for RDF data management. In query

rewriting, embedded enforcement, and post

processing enforcement is the principal approaches

in our proposed technique. Here, the embedded

enforcement approach is contrasted and the post

processing enforcement approach for the

examination. The LUBM10, LUBM100,

LUBM1000, LUBM2000, LUBM5000,

LUBM10000 and LUBM15000 data sets are utilized

for our examinations.

4.2 Security analysis

The security of our proposed approach is

assessed by the satisfaction of the security ensure.

The attacks, data leakage, conflict, modification, and

privacy of users are specified in this segsment. Our

proposed approach is intended to handle all these

security issues productively.

4.2.1. Security level defaults

The admin allowed AT for every Agent, in some

cases the conceded AT is a weight, because of this

reason the default security level is allocated to every

data in the framework for taking care of the AT

trouble issue. Our proposed strategy executes a

token based access control system for settling the

security level defaults. In our proposed strategy each

one of the data in the system has one default security

level. Here, all the security level data (sensitive

data) of the individual is secured in private by

denying. This shields operators from influencing

inductions about any individual to whom they to

have not been surrendered unequivocal assent. In

any case, if an operator is yielded explicit access to

a particular sort or property, the specialist is

moreover permitted default access to the sub types

or sub-properties of that sort or property.

For instance, we can accept that the predicate

document is interest that lists elements that a

person’s interest. Accept encourage that interest of

Tom (person) is playing and 1 is an access token of

ATTs (1, Subject , URI, Tom) and (1, interest,

Predicate, _). Of course, agent 𝐷𝑎𝑛𝑖 having just

AT 1 can’t discover that Kim is in Tom’s interest -

list since Kim’s data type is persons. Be that as it

may, if 𝐷𝑎𝑛𝑖 likewise has AT 2 depicted by ATT (2,

object, URI, Kim), then Dani will have the capacity

to see Kim in Tom’s interest –list.

4.2.2. Subset and subtype conflicts

A conflict emerges when the accompanying

three conditions happen: (1) An agent has two AT's

1 and 2, (2) the result set of AT 2 is an appropriate

subset of AT 1, and (3) the timestamp of AT 1 is

sooner than the timestamp of AT 2. In this situation,

the latter, more particular AT supersedes the

previous, so AT 1 is disposed of from the AT-list to

determine the conflict. Such conflicts emerge in two

assortments, which we term subset conflicts and

subtype conflicts.

If the timestamp of AT 1 is sooner than the

timestamp of AT 2, the subset conflict occurred. In

the subtype conflict approach, the dataset is most

subjects, predicates or both. Let as consider, in ATT

the AT 1 is characterized by (1, Subject, URI, Tom)

and AT 2 is characterized by (2, Subject, URI, Tom)

and (2, Predicate, interest, _). At that place the

conflict will occur because the set AT 2 is a subset

of AT 1. Here, the time stamp of AT 1 is sooner

than AT 2. To avoid this type of conflict the set AT

1 is removed from the AT-list. If the set AT 2 is the

subset of AT 1, the subtype conflict may occur. The

dataset is mostly subjects, objects, or both. Here,

Subset (AT 1, AT 2) is a function that returns true if

the result set of AT 1 is a proper subset of the result

set of AT 2, and Subject Sub Type (AT 1, AT 2)

returns true if the subject of AT 1 is a subtype of the

subject of AT 2. Similarly, Object Subtype (AT 1,

AT 2), decides sub typing relations for objects

instead of subjects.

4.2.3. Brute force attack

The security level data are assaulted by different

unauthorized interceptors amid the season of data

exchanged to cloud over an internet network. To

dispose of this attack, our approach utilized the

partial encryption technique; this encryption will

encrypt the security level data. Here, the number of

keys is used for the partial encryption method. The

encrypted data are stored in the private cloud; the

remaining non-sensitive data are publicly readable.

Our proposed methodology used more bits and key

bits for the partial encryption, but the existing SSL

encryption method used only 40 bits for the

encryption. At this time, our partial encryption

method makes the brute force attack mostly useless.

Our proposed method uses the partial encryption

and token based access control system for the RDF

data security. This method does not support to the

other attackers to view the secured level data. Hence

this approach not only secures the data, it also gives

Received: September 30, 2017 90

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.09

Table 1. Functionality analysis

Functions Partial

Encry

ption

metho

d [31]

State

of art

metho

d [30]

Crypto

graphi

c

method

[29]

Propos

ed

Metho

d

Identification No Yes Yes Yes

Authorization Yes No Yes Yes

Confidentiality No Yes No Yes

Integrity No Yes No Yes

Partial

Encryption

No Yes Yes Yes

Token Based

Access Control

Yes No Yes Yes

promise to the customer, and the data is secured at

the time of transferring.

4.3 Functionality analysis

In RDF data management, our proposed method

implements an efficient partial RDF encryption for

overcomes all the possible issues occurred at the

time of transferring the data to the cloud. This

method secures all the data from the risks associated.

The comparison of functional analysis of the

proposed method is compared with the other

security based method shown in Table 1.

Our technique has the functions, for example,

identification, authorization, confidentiality,

integrity, partial encryption, token based access

control functions. Along these lines, the present

model demonstrates that the closeness of most

practical security inconveniences by giving

functions and to allow the security issues are

sufficient in this method.

4.4 Performance analysis

The performance of our proposed approach is

evaluated based on the precision, recall and

execution time of the system. In the RDF data

management, the query process is based on the

SPARQL query. In the appraisal of execution time,

the RDF query language is used to determine the

precision and recall of the system. The precision and

recall is computed depends on the number of triples

in the query answer and number of triples in the

dataset. Recall is the ratio of number of triples in

query should have been returned divided by the total

number of results that triples in the dataset.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 𝑖𝑛 𝑞𝑢𝑒𝑟𝑦 𝑎𝑛𝑠𝑤𝑒𝑟

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 𝑖𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 (16)

The recall of each query is shown in the Fig. 4.

Figure.4 Recall comparison of our proposed method with

other existing method

Figure.5 LUBM execution time

Here, our proposed method is compared with

existing SSRA, SRA1, and SRA2 methods [35]. In

query Q1, Q2, Q3, and Q4, the recall of our

proposed method is 0.7, 0.8, 0.7 and 0.8 respectively.

But the existing SSRA method recall values are 0.9,

0.9, 1 and 0.9 respectively. The recall of SRA1 is

0.8, 0.7, 0.7 and 0.6.

The recall of SRA2 is 0.7, 0.7, 0.6 and 0.7

respectively. Our proposed method has less recall

than the existing method.

The total execution time of each query is shown

in the Fig. 5. Here, our proposed method is

compared with existing SHARD [34] and the Kaon2

[33] method. In query Q1, Q2, Q3, and Q4, the

execution time of our proposed method is

122.568(s), 115.277 (s), 215.478 (s) and 199.755 (s)

respectively. But the existing SHARD execution

time is 316.2278 (s), 1584.893 (s), 1000 (s) and

501.1872 (s). The execution time of Kaon2 method

is 201.54 (s), 201.54 (s), 1424.502 (s) and 1375.12

(s). Our proposed method has a better execution

time than the existing method.

4.5 Query processing

The query processing time of our proposed

Received: September 30, 2017 91

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.09

Figure.6 Query processing time

strategy is contrasted and the current techniques, for

example, Balanced RDF Graph Portioning (BRGP)

[36], Hash Partitioning Algorithm, METIS, a mix of

METIS and Multilevel Label Propagation [36]

(MLP+METIS) algorithm. This query processing

time appears in Fig. 6. There are 14 benchmark

LUBM queries Q1-Q14. The LUBM queries

consolidate subject and subject-joins. Since there is

no network correspondence the queries are executed

with the handling nodes in light of the way that the

best detachment between two nodes is only two. The

test result exhibits that our proposed system has the

better preparing time in 14 LUBM queries in

differentiated and the four existing partitioning

techniques. Differentiated and the graph partitioning

technique, the query preparing time is high in the

hash partitioning system. Our proposed procedure

has remarkably extended the efficiency of the query

procedure. In any case, the other existing strategy

has the better execution time, yet it stores the

duplicates triples.

The attacks, data leakage, conflict, modification,

and privacy of users are managed by our technique

such as identification, authorization, confidentiality,

integrity, partial encryption, token based access

control functions. Due to these above techniques, our

proposed method has better recall, execution time and

query processing time when compared with the existing

works [31, 32].

5. Conclusion

The access control system for RDF data

administration has executed in segment 2. Be that as

it may, the current audit strategies are not

appropriate for scaling the extensive data sets. Step

by step, the volume of the RDF data in the cloud is

expanding quickly. To address these issues the RDF

data is secured by the cloud PCs. By and by, the

cloud computers do not completely comprehend the

above issue. Along these lines, we need to propose

the token based access control system and partially

encryption strategy for dealing with the RDF data.

At first, the RDF sensitive data is encrypted to

secure the sensitive data from the unverifiable

condition and afterward the access token gifts to

every client in view of their level of authorization.

For reversing the SPARQL query, the MapReduce

framework utilizes query rewriting, embedded

enforcement and post processing enforcement

policies.

The execution of our proposed secured data

show for cloud computing is assessed in light of the

precision, recall and execution time of the

framework or more perception in the earlier area

demonstrates that it is enhanced contrast and

existing data models. In the paper this new

secured RDF data model is deployed and tested

using AWS elastic beanstalk. For future work, we

will enhance the SPARQL query ideas for

controlling the query procedure. For consolidating

the SPARQL query and graph analytical in a similar

query we will consider the cross optimization

algorithm. To assess the numerous algorithms

simultaneously, we will execute the multiple query

optimization systems.

References

[1] R. Moreno-Vozmediano, R. Montero, E. Huedo

and I. Llorente, "Cross-Site Virtual Network in

Received: September 30, 2017 92

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.09

Cloud and Fog Computing", IEEE Cloud

Computing, vol. 4, No. 2, pp. 46-53, 2017.

[2] P. Li, J. Li, Z. Huang, C. Gao, W. Chen, and K.

Chen, "Privacy-preserving outsourced

classification in cloud computing", Cluster

Computing, pp. 1-10, 2017.

[3] K. Arvind and R. Manimegalai, "Secure data

classification using superior naive classifier in

agent based mobile cloud computing", Cluster

Computing, vol. 20, No. 2, pp. 1535-1542, 2017.

[4] J. Aikat, A. Akella, J. Chase, A. Juels, M. Reiter,

T. Ristenpart, V. Sekar, and M. Swift,

"Rethinking Security in the Era of Cloud

Computing", IEEE Security & Privacy, Vol. 15,

No. 3, pp. 60-69, 2017.

[5] Q. Cao, D. Schniederjans, and M. Schniederjans,

"Establishing the use of cloud computing in

supply chain management", Operations

Management Research, Vol. 10, No. 1-2, pp. 47-

63, 2017.

[6] A. Salem, J. Shaffer, R. Kublik, L.

Wuertemberger, and D. Satko, "Microstructure-

Informed Cloud Computing for Interoperability

of Materials Databases and Computational

Models: Microtextured Regions in Ti Alloys",

Integrating Materials and Manufacturing

Innovation, Vol. 6, No. 1, pp. 111-126, 2017.

[7] R. Ferreira da Silva, R. Filgueira, I. Pietri, M.

Jiang, R. Sakellariou, and E. Deelman, "A

characterization of workflow management

systems for extreme-scale applications", Future

Generation Computer Systems, Vol. 75, No. 10,

pp. 228-238, 2017.

[8] H. Lin, J. Hu, Y. Tian, L. Yang, and L. Xu,

"Toward better data veracity in mobile cloud

computing: A context-aware and incentive-

based reputation mechanism", Information

Sciences, Vol. 387, No. 1, pp. 238-253, 2017.

[9] L. Yan, R. Ma, D. Li, and J. Cheng, "RDF

approximate queries based on semantic

similarity", Computing, Vol. 99, No. 5, pp. 481-

491, 2017.

[10] A. Oudani, M. Bahaj, and I. Cherti, "Creating

an RDF Graph from a Relational Database

Using SPARQL", Journal of Software, Vol. 10,

No. 4, pp. 384-391, 2015.

[11] I. Santana-Perez, R. Ferreira da Silva, M.

Rynge, E. Deelman, M. Pérez-Hernández, and

O. Corcho, "Reproducibility of execution

environments in computational science using

Semantics and Clouds", Future Generation

Computer Systems, Vol. 67, No. 2, pp. 354-367,

2017.

[12] S. Habib, S. Ries, M. Mühlhäuser, and P.

Varikkattu, "Towards a trust management

system for cloud computing marketplaces:

using CAIQ as a trust information source",

Security and Communication Networks, Vol. 7,

No. 11, pp. 2185-2200, 2013.

[13] A. Frankel, G. Iaccarino, and A. Mani, "Optical

depth in particle-laden turbulent flows", Journal

of Quantitative Spectroscopy and Radiative

Transfer, Vol. 201, No. 16, pp. 10-16, 2017.

[14] J. Li, Y. Liu, and J. Zhong, "3D DWT-DCT

and Logistic MAP Based Robust Watermarking

for Medical Volume Data", The Open

Biomedical Engineering Journal, Vol. 8, No. 1,

pp. 131-141, 2014.

[15] P. Singh and B. Raman, "Reversible data

hiding for rightful ownership assertion of

images in encrypted domain over cloud", AEU -

International Journal of Electronics and

Communications, Vol. 76, No. 6, pp. 18-35,

2017.

[16] Y. Verginadis, A. Michalas, P. Gouvas, G.

Schiefer, G. Hübsch, and I. Paraskakis,

"PaaSword: A Holistic Data Privacy and

Security by Design Framework for Cloud

Services", Journal of Grid Computing, Vol. 15,

No. 2, pp. 219-234, 2017.

[17] J. Kim, "Efficient Authorization Conflict

Detection Considering RIF Inference in RDF

Access Control", The Journal of Korean

Institute of Information Technology, Vol. 12,

No. 5, pp. 197-198, 2014.

[18] A. Jain and C. Farkas, "Secure resource

description framework", In: Proc. of the

eleventh ACM symposium on Access control

models and technologies - SACMAT '06, Lake

Tahoe, California, USA, pp. 121-129, 2006.

[19] J. KIM and S. PARK, "RDFacl: A Secure

Access Control Model Based on RDF Triple",

IEICE Transactions on Information and

Systems, Vol. 92-, No. 1, pp. 41-50, 2009.

[20] H. Choi, J. Son, Y. Cho, M. Sung, and Y.

Chung, "SPIDER", In: Proc. of the 18th ACM

conference on Information and knowledge

management - CIKM '09, Hong Kong, China,

pp. 20187-2088, 2009.

[21] L. Yan, R. Ma, D. Li, and J. Cheng, "RDF

approximate queries based on semantic

similarity", Computing, Vol. 99, No. 5, pp. 481-

491, 2017.

[22] I. Abdelaziz, M. Al-Harbi, S. Salihoglu, and P.

Kalnis, "Combining Vertex-centric Graph

Processing with SPARQL for Large-scale RDF

Data Analytics", IEEE Transactions on Parallel

and Distributed Systems, Vol. PP, No. 99, pp.

1-1, 2017.

Received: September 30, 2017 93

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018 DOI: 10.22266/ijies2018.0228.09

[23] Z. Lin and M. Tripunitara, "Graph

Automorphism-Based, Semantics-Preserving

Security for the Resource Description

Framework (RDF)", In: Proc. of the Seventh

ACM on Conference on Data and Application

Security and Privacy - CODASPY '17,

Scottsdale, Arizona, USA, pp. 337-348, 2017.

[24] H. Hasan and S. Chuprat, "Secured data

partitioning in multi cloud environment", In:

Proc.of the 4th World Congress on Information

and Communication Technologies (WICT 2014),

Bandar Hilir, Malaysia, pp. 146-151, 2014.

[25] P. Peng, L. Zou, M. Özsu, L. Chen, and D.

Zhao, "Processing SPARQL queries over

distributed RDF graphs", The VLDB Journal,

vol. 25, No. 2, pp. 243-268, 2016.

[26] M. Wylot and P. Cudre-Mauroux,

"DiploCloud: Efficient and Scalable

Management of RDF Data in the Cloud", IEEE

Transactions on Knowledge and Data

Engineering, Vol. 28, No. 3, pp. 659-674, 2016.

[27] A. Adeshina and R. Hashim, "Computational

Approach for Securing Radiology-Diagnostic

Data in Connected Health Network using High-

Performance GPU-Accelerated AES",

Interdisciplinary Sciences: Computational Life

Sciences, Vol. 9, No. 1, pp. 140-152, 2016.

[28] I. Bhargavi, D. Veeraiah, and T. Maruthi

Padmaja, "Securing BIG DATA: A

Comparative Study Across RSA, AES, DES,

EC and ECDH", In: Proc. of the Computer

Communication, Networking and Internet

Security, Springer, Singapore, pp. 355-362,

2017.

[29] P. Patil, P. Narayankar, D.G. Narayan, and S.M.

Meena, "A Comprehensive Evaluation of

Cryptographic Algorithms: DES, 3DES, AES,

RSA and Blowfish", Procedia Computer

Science, Vol. 78, No. 1, pp. 617-624, 2016.

[30] S. Cebiric, F. Goasdoue, and I. Manolescu,

"Query-oriented summarization of RDF graphs",

In: Proc. of the 41st International Conference

on Very Large Data Bases, Kohala Coast,

Hawaii, pp. 2012-2015, 2015.

[31] M. Giereth, "On Partial Encryption of RDF-

Graphs", In: Proc. of the 4th International

Semantic Web Conference, Galway, Ireland, pp.

308-322, 2005.

[32] K. Arindam, H. Mohammad Farhan, K. Latifur,

H.W. Kevin, and T. Bhavani, "A token-based

access control system for RDF data in the

clouds", In: Proc. of the Second International

Conference on Cloud Computing Technology

and Science, Indianapolis, IN, USA, pp. 104-

111, 2010.

[33] R. Punnoose, A. Crainiceanu, and D. Rapp,

"SPARQL in the cloud using Rya", Information

Systems, Vol. 48, No.2, pp. 181-195, 2015.

[34] K. Rohloff and R. Schantz, "High-performance,

massively scalable distributed systems using the

MapReduce software framework", In: Proc. Of

the Programming support innovations for

emerging distributed applications, Reno,

Nevada, pp. 4, 2010.

[35] C. Lee, S. Park, D. Lee, J. Lee, O. Jeong, and S.

Lee, "A comparison of ontology reasoning

systems using query sequences", In: Proc. of

the 2nd international conference on Ubiquitous

information management and communication -

ICUIMC '08, Suwon, Korea, pp. 543-546, 2008.

[36] Y. Leng, C. Zhikui, F. Zhong, X. Li, Y. Hu,

and C. Yang, "BRGP: a balanced RDF graph

partitioning algorithm for cloud storage",

Concurrency and Computation: Practice and

Experience, Vol. 29, No. 14, p. 3896, 2016.

[37] U. Raghavan, R. Albert, and S. Kumara, "Near

linear time algorithm to detect community

structures in large-scale networks", Physical

Review, Vol. 76, No. 3, p. 036106, 2007.

