
Received: June 25, 2017 182

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.20

BOEM: A Model for Automating Detection and Evolution of Distributed

Ontologies in Multi-Agent Environment

Ashraf Soliman1* Akram Salah2 Hesham Hefny1

1Institute of Statistical Studies and Research, Department of Computer and Information Sciences,

Cairo University, Egypt
2Faculty of Computers and Information, Department of Computer Sciences, Cairo University, Egypt

* Corresponding author’s Email: ashrafcs2007@gmail.com

Abstract: Knowledge gives a strong support to autonomous agents in multi-agent systems and thus the evolution of

agent’s knowledge needs a great attention since it has a control on agents’ behaviors and has effect on their decisions

making. The problem is to allow agents to detect and decide whether they need more domain knowledge and allow

their knowledge to evolve consistently and automatically. This paper utilizes ontologies to represent the internal

knowledge of agents instead of utilizing them only as a shared conceptualization. Consequently, the paper proposes a

model of bottom-up instance-driven ontology evolution that allows the internal ontologies of agents to evolve

automatically and consistently in run time based on agents’ interactions. Experiments are designed and implemented

to evaluate our model in different situations. One of its results shows that an empty internal ontology of one agent

could evolve automatically in runtime by 88.3% through its interactions with other agents. Moreover, a comparison

between the proposed approach and literature review approaches is presented to compare between their different

features and techniques. This paper is considered a step forward to automate ontology evolution for agents in multi-

agent environment.

Keywords: Knowledge evolution, Multi-agent system, Knowledge distribution, JADE, FIPA, Protocol, JSON,

JAKSON.

1. Introduction

Ontologies are designed to provide a formal and

explicit representation of knowledge of a domain in

terms of concepts (or classes), relations between

these concepts and instances of these concepts [6].

The importance of ontologies is increasing especially

in multi-agent environments since they enable agents

to communicate, interact, and understand each other

[2, 6]. Moreover, they provide agents with

intelligence, reasoning, and support the main four

characteristics of agents which are autonomy, social

ability, reactivity, and proactiveness [24].

These ontologies need to evolve over time to

reflect changes in the domain. Ontology evolution

means modifying or upgrading the ontology when

there is a certain need for change or there comes a

change in the domain knowledge [1]. The current

ontology evolution techniques such as in [5-10, 19-

23] have several hidden weaknesses such as

automating ontology evolution and resolving

inconsistencies after applying new changes. The

automation is important because human intervention

is time consuming and error prone.

This paper proposes a bottom-up instance-driven

model for automating both change detection and

ontology evolution of agent’s internal knowledge

represented through agents’ interactions in runtime.

The paper sets a number of experiments to evaluate

the proposed model in different cases. One of its

results shows that the internal ontology of an agent

has evolved automatically and consistently in runtime

from scratch to 88.3%. The rest of paper is organized

as follows. Section 2 presents other research efforts

related to our work. Section 3 explains the proposed

ontology evolution model. Section 4 presents the

implementation of our model. Section 5 evaluates our

model through a number of experiments and a

Received: June 25, 2017 183

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.20

comparison with related work is presented. Finally,

section 6 is for conclusion and future work.

2. Related work

There are some efforts exploit multi-agent

systems as a mean to facilitate the process of ontology

evolution. For example, Zhang et al. in [20] uses

autonomous agents and Pi-Calculus to model changes

in ontologies. Autonomous agents are used to

represent ontology entities and Pi-Calculus is used to

describe and formalize agent actions and information

exchanging between agents. Sellami et al. in [9]

develop DYNAMO-MAS, an interactive tool based

on an adaptive multi-agent system (AMAS). It aims

to build and evolve ontologies from text. It only

suggests enriching the initial ontology with new

concepts, terms, or relations without any change in its

content. Then it is up to ontologists to manually

modify this content. Benomrane et al. in [19] present

an ontologist feedback tool, called OntoAMAS as an

extension of [9]. This extension allows ontologists to

modify or add new concepts or terms to the initial

ontology. Then the AMAS self-organizes and

produces an updated ontology with new proposals

which can be modified by ontologists again. Thus, it

works in an interactive and iterative way until a

satisfactory state of the ontology is achieved.

Other researchers have realized the important role

of instances and the bottom-up approach in ontology

evolution either for automating the detection of

changes or for update instances descriptions in a new

version of an ontology. For example, in [21],

principles, rules, and algorithms are presented to

reexamine and suggest instance descriptions to

ontologists after migrating instances to the latest

version of an ontology. Also, it provides flexible

interactive techniques for updating the available

descriptions after ontologists accept or reject such

recommendations. Xie et al. in [10] exploit instances

to automate changes detection in an ontology and

provide ontologists with proper recommendations for

ontology evolution. This detection method is based

on analyzing new extracted instances from related

databases with current instances in the ontology. This

analysis enables the system to detect changes in

conceptualization and recommend ontologists with

merge concepts, split concept, or extract super

concept. Santoso et al. in [23] provide a bottom-up

approach for change detection. It uses the difference

between the ontology metadata and the related

database metadata as a trigger for change detection.

So, its detection algorithm is based on detecting new

components in related databases such as classes,

instances, properties, or axioms to be added into the

current ontology. This approach focuses on

automating changes detection but does not present a

solution for ontology evolution.

Another kind of efforts attempts to support

ontology engineers on maintaining consistency after

ontology evolution. For example, Touhami et al. in

[6] propose an ontology evolution activity that assists

ontologists for carrying out the ontology changes. It

lists all possible changes to ontologists, identifies all

consistency constraints to be checked after applying

each change. Then a kit of additional changes

associated with each change is applied automatically

to keep the consistency state if the required change

from ontologists violates one or more of the

predefined consistency constraints. These additional

changes work in iterative way as long as one of

applied changes either additional or required leads to

inconsistency state. Javed et al. in [5] present a

layered change operator framework for ontology

evolution that allows ontology engineers to deal with

generic changes at level one and level two and other

users (such as domain experts, content managers) to

deal with domain-specific changes at level three. It

also presents a layered change log model that works

in line with the given layered change operator.

There are other approaches depend on various

sources as a background knowledge towards

automating change detection for ontology evolution.

For example, Maree and Belkhatir in [22] propose an

automatic framework for enriching ontologies

depending on the Web as background knowledge. It

combines semantic relatedness measures, automatic

pattern acquisition techniques, named entity

extraction algorithm (GATE), and NLP techniques to

extract missing knowledge from the Web. Zablith et

al. in [7, 8] present an ontology evolution framework,

called Evolva, that uses structured and unstructured

sources as background knowledge to reduce or even

eliminate user involvement in exploring new

concepts to add to an ontology. Additionally, it uses

external sources such as WordNet and Semantic Web

ontologies to discover relations between new

concepts and others already exist in the ontology.

Although most of these tasks are performed

automatically, it needs ontologists’ approval and

waits their selection of applying these changes in the

base ontology or in a new version.

Most of these approaches attempt to automate

some steps of ontology evolution but it needs

ontologists either to trigger the evolution process or

to give approval about evolution results. Our

approach is an attempt for automating both change

detection and ontology evolution in run time. It is

based on the main agents’ characteristics of

autonomy, social ability, reactiveness, and

Received: June 25, 2017 184

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.20

proactiveness to detect and apply that evolution.

Moreover, it depends on instances and background

knowledge to automate change detection.

3. The proposed model: bottom-up

ontology evolution model (BOEM)

This model is proposed to enable ontologies in

multi-agent environment of a specific domain to

evolve automatically and seamlessly without

intervention of ontologists. The basic idea of this

proposed model stands upon considering ontologies

as a formal representation of agent’s internal

knowledge. Furthermore, agents completely depend

on their internal ontologies to interact with their

environment. At the same time these internal

ontologies have a chance to evolve automatically

over time through their agents’ interactions. As

shown in Fig. 1, the model consists of three aspects:

(1) the knowledge distribution model, (2) the

detection process, and (3) the evolution process. All

of these three aspects of the model are explained in

detail in the following sections.

3.1 Knowledge distribution model

This section discusses our proposed model of

knowledge distribution in multi-agent environment

that has previously published in [4]. As shown in Fig.

1, the knowledge distribution model is the basic

component of our proposed bottom-up ontology

evolution model. It proposes a domain as a set of

agents and each one of these agents has its own

internal ontology that formally represents agent’s

knowledge. Consequently, the domain’s knowledge

is distributed on agents’ internal ontologies. As

shown in Fig. 2, some types of these agents have

deeper knowledge about the domain and thus these

types of agents are considered sources of domain’s

knowledge. Other agents in the domain depend on

these types of agents to gain more necessary

knowledge and to overcome difficulties in their

interactions. So, the model calls these types of agents

that have deeper domain knowledge knowledge-

source agents and also calls the other types of agents

individual agents.

When there is more than one knowledge-source

agent in a domain, the knowledge of each one of these

agents will represent a specific aspect of the domain.

Therefore, the knowledge KSm of a knowledge-source

agent Sm cannot intersect with the knowledge KSn of

another knowledge-source agent Sn. Thus the

relationship between knowledge-source agents can be

represented as follows:

𝐾𝑆𝑚 ∩ 𝐾𝑆𝑛 = ∅ (1)

Figure.1 Aspects of the bottom-up ontology evolution

model

Figure.2 The dependency relationship between agents of

a domain

So the question is how we can reach to the entire

knowledge of a domain. The answer that is proposed

by this paper is that the entire domain’s knowledge

can be reached by gathering the knowledge of each

knowledge-source agent in the domain. So, a

domain’s knowledge KD is union of all knowledge-

source agents’ knowledge KSi. This answer can be

represented as follows:

 KD = ∪ KSi (2)

With regard to individual agents, an individual agent

has knowledge that is derived from knowledge-

source agents. Unlike knowledge-source agents,

individual agents’ knowledge may be intersected or

equal. Notice that the knowledge of individual agents

is unlikely to be conflicted since all of them are

derived from specific knowledge sources of the

domain, i.e., the knowledge-source agents’

j

i=1

Received: June 25, 2017 185

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.20

knowledge. So, the relationship between individual

agents and knowledge-source agents can be

represented as follows:

 𝐾𝐼 ⊆ 𝐾𝑆 (3)

Where KI is knowledge of an individual agent and KS

is knowledge of a knowledge-source agent.

Moreover, as shown in Fig. 3, the model proposes

that the entire knowledge of a domain is implicitly

shared as a virtual ontology. This virtual ontology is

explicitly represented by and distributed on several

sub ontologies owned by the knowledge-source

agents. Therefore, an individual agent interacts only

with knowledge-source agents to get more and

necessary domain knowledge that enable it to

overcome difficulties while it interacts with another

individual agent.

3.2 Detection Process

The detection process is mainly based on the

proposed knowledge distribution model in section 3.1,

as well as, it focuses only on detecting the need of

individual agents’ internal ontologies to evolve.

This process starts when the knowledge of an

individual agent B, which is represented by its

internal ontology OB, cannot answer a query Q from

another individual agent A about an instance in the

domain. Therefore, the individual agent B

Figure.3 Domain's knowledge as a virtual ontology

distributed on agents’ internal ontologies

and automatically sends a detection query QD to all

knowledge-source agents. This detection query QD is

a request for checking the existence of a given

instance. The detection process ends with one of the

following possibilities according to the reply of the

knowledge-source agents:

1) If the individual agent B does not receive a reply

with confirm message to its detection query QD
from any knowledge-source agents in the domain,

it means that the instance is not known in the

domain at all. So, the individual agent B will reply

the individual agent A with disconfirm message

and detects that its internal ontology OB does not

have a need to evolve.
2) If the individual agent B receives a reply with

confirm message to its detection query QD from

at least one knowledge-source agent in the

domain, it means that the instance is known in

the domain. So, the individual agent B will reply

the individual agent A with confirm message and

detects that its internal ontology OB has a need

to evolve.

3.3 Evolution Process

When the detection process of an individual agent

ends with detecting that there is missing knowledge

(i.e., missing instance) in its internal ontology, the

individual agent starts the evolution process

immediately and automatically by opening an

evolution channel with the knowledge-source agent

that has the missing instance. The evolution channel

is opened by sending the proposed evolution query

QE as a request to the knowledge-source agent from

the individual agent to get not only the missing

instance but also to get its class hierarchy.

So, the individual agent sends the first evolution

query QE1 to the knowledge-source agent to request

the direct class of the new instance. If the received

instance’s class is not in the individual agent’s

internal ontology, the individual agent will send the

second evolution query QE2 to the knowledge-source

agent to request the first direct superclass of the

received instance’s class. If the received superclass

also is not in its internal ontology, the individual

agent will send the third evolution query QE3 to

request the second direct superclass of the received

instance’s class. Thus, the individual agent will send

sequence of evolution queries QEn until it finds one of

instance’s superclasses in its internal ontology or gets

all superclasses of the received instance’s class.

Therefore, the evolution process finishes when the

new instance and all its class hierarchy are populated

in the internal ontology of the individual agent.

Virtual Ontology for the

Entire Knowledge of a

Domain

Explicit Sub Ontologies

of Knowledge-source

Agents

Explicit Sub

Ontologies of

Individual Agents

Received: June 25, 2017 186

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.20

As explained, the proposed evolution model

adopts and applies the evolution bottom-up strategy

for ontology evolution. This strategy starts firstly

with populating missing instances in the internal

ontologies of individual agents then the evolution

moves up from populating the instances’ direct

classes to populate all superclasses of instances’ class

hierarchy. By this way, the proposed evolution model

enables the internal ontology of an individual agent

to evolve by populating any new instances from

knowledge-source agents with their important

semantics. This result keeps the evolution of the

internal ontologies of individual agents away from

inconsistencies and conflicts. Another significant

result is that the proposed evolution model provides

an automatic and seamless ontology evolution of

individual agents’ internal ontologies.

4. Implementation

The proposed bottom-up ontology evolution model is

implemented with JADE [14] as a multi-agent

environment that provides all requirements for agent

management. It also enables agents to interact

through ACL messages based on FIPA standards [15,

16]. The model also implements internal ontologies

of agents by OWL-DL ontology language [18] and

using Jena Library as ontology API [17]. The

proposed detection query QD and evolution query QE

are also implemented based on object serialization.

Therefore as shown in Fig. 4, a Java class called

IsInstance is created to make a detection query

object; another two Java classes called ClassOf and

SuperClassOf are created to make the two types of

evolution query objects.

Figure.4 Classes of detection query and evolution query

objects

Figure.5 The protocol of detection and evolution process

based on FIPA standards

All these query objects are serialized into JSON

[12] string format and deserialized into their proper

objects with support of JSON API called JAKSON

[13]. The serialized object of a detection query QD is

serialized as the following example:

{“nameOfQuery”: “IsInstance”, “instanceName”:

“Book_1”}

The serialized objects of an evolution query QE are

serialized as the following example:

{“nameOfQuery”: “ClassOf”, “instanceName”:

“Book_1”}

{“nameOfQuery”: “SuperClassOf”, “className”:

“Book”}

As shown in Fig. 5, the detection query serialized

object is sent in ACL message with QUERY-IF

communicative act and the reply will be with ACL

message with CONFIRM or DISCONFIRM

communicative act. The evolution query object is

sent in ACL message with QUERY-REF

communicative act and the reply will be with ACL

message INFORM communicative act contains either

the class name of the new instance or the superclass

name of the instance’s class.

5. Evaluation

5.1 Experiments

This section is for evaluating the proposed

evolution model by using public ontologies as source

ontologies for knowledge-source agents. A

lightweight public ontology is chosen from Protégé

ontology library [25] for our experiment. This

ontology is Library Management System Ontology

Received: June 25, 2017 187

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.20

(LMSO) that includes all major class-subclass

hierarchy, properties, characteristics, restrictions and

instances of a Library Management System of any

Educational Organization [11]. The LMSO describes

the library domain based on four main classes,

LibraryMember, LibraryPersonnel, LibraryResource,

and LibraryService. Each one of these classes has its

own class-subclass hierarchy with its instances. The

whole class-subclass hierarchy of LMSO consists of

32 classes, 60 instances, 28 subclass relations, 18

object properties, and 1 data property (139 entities).

The experiment consists of three agents, Clerk

agent, Librarian agent, and Visitor agent. The role of

each agent is shown as follows:

• The Librarian agent plays the role of the

knowledge-source agent that has all knowledge

about the domain. Therefore the public ontology

LMOS is assigned to it as its internal ontology.

Also it is responsible for replying to all queries

from the Clerk agent about the domain.

• The Clerk agent is an individual agent and it is

responsible for answering queries from the Visitor

agent. The experiment stands up specifically to

evaluate the evolution of the Clerk agent’s internal

ontology through its interactions with Visitor and

Librarian agents.

• The Visitor agent is an individual agent that plays

the role of library’s visitors. It is designed to test

the evolution process of the Clerk agent’s

ontology by sending queries to the Clerk agent

that would trigger the evolution process of its

internal ontology.

As shown in Table 1, there are eight experiments

to evaluate the evolution of the Clerk agent’s

ontology. The Clerk and the Visitor agent are mainly

the interacting agents but the Clerk agent may need

to consult the Librarian agent. For this case, Table 1

in the column of interacting agents shows whether

Librarian agent is involved as consultant to the Clerk

agent in the experiment or not. The Results column in

Table 1 states that whether the settings of the

experiment trigger the evolution process of the Clerk

agent’s ontology or not. In addition, it shows the

status of Clerk agent’s ontology after the experiment,

evolved or not and why.

In Table 1, it is observed that the Clerk ontology

only evolved in two experiments, number 1 and 3.

This evolution is restricted in both experiments since

the queried instances do not exist in the Clerk

ontology but they already exist in the Librarian

ontology. It is also observed that the Librarian agent

is involved in all the Clerk agent interactions, as

knowledge-source agent, except in three experiments

number 5, 6, and 8. This is because, in these three

experiments, the queried instances already exist in the

Clerk ontology so the Clerk agent does not need to

consult and involve the Librarian agent.

As shown in Table 2, the empty ontology of the

Clerk agent evolved after experiment No.1 and

became containing a class-subclass hierarchy of 25

classes, 60 instances, and 21 subclass relations (106

entities). This means that the empty Clerk ontology

became containing 88.3 % of the source ontology

LMSO. Note that all instances and their class-

subclass hierarchy are added except 7 classes because

they do not have any instances. Thus this result

explains why our approach is called instance driven

approach. In experiment No. 3, the Clerk ontology is

not empty this time but has 41 entities before starting

the interaction, then after interaction the number of

its entities became 106 entities with evolution

percentage 54.2%.

The evolution percentages of the Clerk ontology

in both experiments number 1 and 3 in Table 2 is

computed according to the proposed ontology

evolution measurement. This proposed evolution

measurement is shown in the following equation:

Evolution = (|(EI) After| - |(EI) Before |) /| ES | (4)

Where EI is the entities set of the individual

agent’s ontology, Clerk ontology. ES is the entities set

of the knowledge-source agent’s ontology, Librarian

ontology. |(EI)After| is the count of the entities set EI

after interaction. |(EI)Before| is the count of the entities

set EI before interaction. |ES| is the count of the

entities set ES.

Since the paper focuses on the automatic

evolution based on instances and their class-subclass

hierarchy, the basis of the proposed evolution

measurement is based on the class-subclass hierarchy

of LMSO that consists of 32 classes, 60 instances and

28 subclass relations (120 entities). So, the evolution

of experiment No. 1 is computed based on Eq. (4) as

follows:

 Evolution = (106 - 0) / 120 × 100 = 88.3 %

Similarly, the evolution of experiment No. 3 is

computed based on Eq. (4) as follows:

 Evolution = (106 - 41) / 120 × 100 = 54.2 %

According to additional experiments, it has found that

upper ontologies such as SUMO are not relevant to

evaluate our model. In addition, public ontologies

that use classes instead of instances to represent

individuals in a domain are also not relevant. Both

types of ontologies are irrelevant because our

Received: June 25, 2017 188

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.20

Table 1. Evaluation Experiments

Experiment

No.
Description

Clerk Ontology

Status

Before

Experiment

Interacting

Agents

Results

(Clerk Ontology Status

After Experiment)

1

The Visitor agent asks the Clerk agent

about all instances in the ontology of

the Librarian agent. The Clerk agent

has no knowledge;

it has an empty

ontology.

Main:

Visitor Agent

Clerk Agent

Involved:

Librarian Agent

Evolved

The Clerk ontology

evolved by all instances

and their class hierarchy.

2

The Visitor agent asks the Clerk agent

about an instance does not exist in the

ontology of the Librarian agent.

Main:

Visitor Agent

Clerk Agent

Involved:

Librarian Agent

No evolution

Since the instance is

unknown in the

Librarian ontology and

so in the domain.

3

The Visitor agent asks the Clerk agent

about all instances in the ontology of

the Librarian agent.

The Clerk agent

has some

knowledge.

It has ontology

contains only the

LibraryMember

class-subclass

hierarchy. That

includes 41 entities

(8 classes, 26

instances, 7

subclass relations)

Main:

Visitor Agent

Clerk Agent

Involved:

Librarian Agent

Evolved

The Clerk ontology

evolved by all its

missing instances and

their class hierarchy.

4

The Visitor agent asks the Clerk agent

about an instance does not exist in the

ontology of the Librarian agent.

Main:

Visitor Agent

Clerk Agent

Involved:

Librarian Agent

No evolution

Since the instance is

unknown in the

Librarian ontology and

so in the domain.

5

The Visitor agent asks the Clerk agent

about instances known in Clerk’s

ontology.

Main:

Visitor Agent

Clerk Agent

Not Involved:

Librarian Agent

No evolution

Since the queried

instances already exist in

the Clerk ontology.

6

The Visitor agent asks the Clerk agent

about all instances in the ontology of

the Librarian agent.

The Clerk agent

has the same

ontology of the

Librarian agent.

Main:

Visitor Agent

Clerk Agent

Not Involved:

Librarian Agent

No evolution

Since the queried

instances already exist in

the Clerk ontology.

7

The Visitor agent asks the Clerk agent

about an instance does not exist in the

ontology of the Librarian agent.

Main:

Visitor Agent

Clerk Agent

Involved:

Librarian Agent

No evolution

Since the instance is

unknown in the

Librarian ontology and

so in the domain.

8

The Visitor agent asks the Clerk agent

about instances known in Clerk’s

ontology.

Main:

Visitor Agent

Clerk Agent

Not Involved:

Librarian Agent

No evolution

Since the queried

instances already exist in

the Clerk ontology.

Received: June 25, 2017 189

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.20

Table 2. The evolution results

Experiment

No.

Count of

entities in

LMSO

Count of entities in Clerk ontology

Evolution

Results

Before After

Class instance
subclass

relation
Total Class instance

subclass

relation
Total

1 120 0 0 0 0 25 60 21 106 88.3%

3 120 8 26 7 41 25 60 21 106 54.2%

automatic evolution model is mainly driven by

instances and these types missed them. These

findings are not considered limitations but they

violate requirements of our model.

5.1 Comparative analysis

In this section, Table 3 summarizes and shows a

comparison of our proposed approach with the

previous presented approaches for ontologies

evolution. There are three categories of comparison

criteria. The first category is evolution type that has

the following criteria:

• Automatic: It determines whether in the given

approach ontology evolution is performed without

intervention of ontologists.

• Runtime: It means that ontologies evolve while

they are used for communication between agents

or for replying queries to users. Otherwise, the

evolution is considered at design time.

The second category is evolution techniques which

has the following criteria:

• Instance: it determines whether the approach

depends on instances to perform an evolution.

• Agent: it determines whether the approach

depends on multi-agent systems to perform an

evolution.

• Background knowledge: it determines whether

the approach depends on background knowledge

such as ontologies, lexicons, or databases to

perform an evolution.

• Others: it means that there are other techniques

different than the techniques of instance, multi-

agent systems, and background knowledge the

given approach depends on it to perform an

evolution.

The third category is consistency that checks whether

the given approach maintain the consistency after

evolution is performed.

Table 3. Comparison between evolution approaches and our approach

Approaches

Evolution Type Evolution Techniques

Consistency

Automatic Runtime Instance Agent
Background

Knowledge
Others

Our Approach       

Zhang et al. [20]       

Sellami et al. [12]       

Benomrane et al. [19]
semi-

automatic
     

Tzitzikas et al. [21]
semi-

automatic
     

Touhami et al. [6]
semi-

automatic
     

Javed et al. [5]      

Maree and Belkhatir [22]       

Xie et al. [10]
semi-

automatic
     

Zablith et al. [7, 8]
semi-

automatic
     



Received: June 25, 2017 190

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.20

The main advantage of our approach is that it

attempts to be closer from how humans’ knowledge

evolves and how the need to evolve their knowledge

is detected. To achieve that goal, our approach

combines between automatic and runtime for both

change detection and ontology evolution with

keeping ontologies in consistent state after evolution.

On the one hand, it depends on interactions between

individual agents about instances to detect its need to

evolution. On the other hand, it depends on the

interaction between individual agents and

knowledge-source agents, i.e., background

knowledge, to perform the desired evolution.

Although the proposed approach is presented to allow

internal ontologies of agents to evolve, it also can be

used to allow distributed ontologies to evolve by

agents.

6. Conclusion

This paper focuses on how to enable agent’s

knowledge represented by an ontology to evolve

automatically and consistently without user

intervention in runtime. So, it proposes a model of

bottom-up instance-driven ontology evolution to

allow an agent’s ontology to evolve in run time

through agent’s interactions with other agents. This

evolution model consists of three phases: (1)

knowledge distribution model, (2) detection process,

and (3) evolution process. The first phase is the

knowledge distribution model that defines two types

of agents; one of them is knowledge-source agents

that are considered the source of domain knowledge.

The second type is individual agents that interact with

knowledge-source agents to obtain its missing

knowledge. The second phase is the detection process

which is triggered automatically through an

interaction between individual agents. Specifically,

when an individual agent receives a query about an

undefined instance in its ontology but it is already

defined in one of knowledge-source agents’

ontologies. The third and last phase is the evolution

process which starts automatically after detection

process. In this phase, an individual agent opens an

evolution channel with the knowledge-source agent

that has the missing knowledge. Through this channel,

the individual agent’s ontology evolves and its

knowledge upgrades by adding the undefined

instances and their class hierarchies to its internal

ontology. Experiments are designed and

implemented to evaluate our approach using a light-

weight public ontology. One of its results shows the

ability of our model to allow the internal ontology of

an individual agent to evolve with 88.3% from

scratch. Moreover, a comparison with other evolution

approaches is shown in Table 3.

The limitation of our model is that it depends only

on the class-subclass relations and instance relations

to describe the semantics of instances. So, our model

can be enhanced by enabling individual ontologies to

evolve with more semantics about instances such as

involving axioms and properties to these semantics.

Also in the future we plan to extend our model with

an ontology maintenance process to keep semantics

of instances in individual ontologies up to date with

any changes related to them in the source ontologies.

References

[1] A. M. Khattak, R. Batool, Z. Pervez, A. M. Khan,

and S. Lee, “Ontology Evolution and

Challenges”, Journal of Information Science

and Engineering, Vol.29, pp.851-871, 2013.

[2] F. P. Pai, I. C. Hsu, and Y. C. Chung,

“Semantic Web Technology for Agent

Interoperability: A Proposed Infrastructure”,

Applied Intelligence, Vol.44, No.1, pp.1–16,

2016.
[3] G. Weichhart and Y. Naudet, “Ontology of

Enterprise Interoperability Extended for

Complex Adaptive Systems”, Lecture Notes in

Computer Science, Vol. 8842, Springer, Berlin,

Heidelberg, 2014.

[4] A. Soliman, A. Salah, and H. Hefny, “Modeling

Distribution and Exchanging Domain

Knowledge in Multi-agent Environment”,

International Journal of Computer Sciences and

Computer Security, Vol.15, No.4, pp.1-13, 2017.

[5] M. Javed, Y. M. Abgaz, and C. J. Pahl,

“Ontology Change Management and

Identification of Change Patterns”, Journal on

Data Semantics, Vol.2, No.2, pp.119–143, 2013.

[6] R. Touhami, P. Buche, J. Dibie, and L. Ibanescu,

“Ontology Evolution for Experimental Data in

Food”, Communications in Computer and

Information Science, Vol.544, pp.393-404, 2015.

[7] F. Zablith, M. Sabou, M. d’Aquin, and E. Motta,

“Ontology Evolution with Evolva”, In: Proc. of

International Conf. on The Semantic Web:

Research and Applications, Springer, Berlin,

Heidelberg, pp.908–912, 2009.

[8] F. Zablith, M. Sabou, M. d'Aquin, and E. Motta,

“Using background knowledge for ontology

evolution”, In: Proc. of International Conf. On

Ontology Dynamics, Karlsruhe, Germany, 2008.

[9] Z. Sellami, V. Camps, and N. Aussenac-Gilles,

“DYNAMO-MAS: A Multi-Agent System for

Ontology Evolution from Text”, Journal on

Data Semantics, Vol.2, No.2, pp.145–161, 2013.

Received: June 25, 2017 191

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.20

[10] C. Xie, L. Jiang, and H. Cai, “Instance-Driven

Ontology Evolution Mechanism towards

Enterprise Data Management”, In: Proc. of

International Conf. On e-Business Engineering,

Beijing, China, pp. 24-30, 2011.

[11] A. Banu, S. S. Fatima, and K. U. R. Khan,

“Building OWL Ontology: LMSO-Library

Management System Ontology”, Advances in

Computing and Information Technology, Vol.

178, Springer, Berlin, Heidelberg, 2013.

[12] JavaScript Object Notation (JSON) website.

[Online]. http://www.json.org/. Accessed:

November 25, 2016.

[13] Jackson JSON API website. [Online]. Available:

https://github.com/FasterXML/jackson-

docs/wiki/JacksonHome. Accessed: November

25, 2016

[14] Java Agent Development Framework (JADE)

Website. [Online]. Available:

http://jade.tilab.com. Accessed: November 25,

2016.

[15] FIPA Query Interaction Protocol. FIPA Std.

SC00027, 03/12/2002, Document No.

SC00027H. [Online]. Available:

http://www.fipa.org/specs/fipa00027/SC00027

H.pdf. Accessed: November 25, 2016.

[16] FIPA communicative act library specification.

FIPA Std. SC00037, 03/12/2002, Document No.

SC00037J. [Online]. Available:

http://www.fipa.org/specs/fipa00037/.

Accessed: November 25, 2016.

[17] Apache Jena Website. [Online]:

https://jena.apache.org/.

[18] P. F. Patel-Schneider, P. Hayes, and I. Horrocks,

“OWL Web Ontology Language Semantics and

Abstract Syntax”, Technical report, W3C, W3C

Recommendation, 2004.

[19] S. Benomrane, Z. Sellami, M. B. Ayed, “An

ontologist feedback driven ontology evolution

with an adaptive multi-agent system”, Advanced

Engineering Informatics, Vol.30, No.3, pp.337-

353, 2016.

[20] R. Zhang, D. Guo, W. Gao, L. Liu, “Modeling

ontology evolution via Pi-Calculus”,

Information Sciences, Vol.346, No. C, pp.286-

301, 2016.

[21] Y. Tzitzikas, M. Kampouraki, A. Analyti,

“Curating the Specificity of Ontological

Descriptions under Ontology Evolution”,

Journal on Data Semantics, Vol.3, No.2, pp.75-

106, 2014.

[22] M. Maree and M. Belkhatir, “Coupling

Semantic and Statistical Techniques for

Dynamically Enriching Web Ontologies”,

Journal of Intelligent Information Systems,

Vol.40, No.3, pp.455-478, 2013.

[23] H. Santoso, S. Haw, and C. Lee, “Change

Detection in Ontology Versioning: A Bottom-

Up Approach by Incorporating Ontology

Metadata Vocabulary”, In: Proc. of

International Conf. On Database Theory and

Application, Bio-Science and Bio-Technology,

pp.37-46, 2010.

[24] G. Beydoun and G. Low, “Centering Ontologies

in Agent Oriented Software Engineering

Processes”, Journal of Complex and Intelligent

Systems, Vol.2, No.3, pp.235–242, 2016.

[25] Protégé Ontology Library website. [Online].

Available:

https://protegewiki.stanford.edu/wiki/Protege_

Ontology_Library.

