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Abstract: This paper discusses about the range estimation using multiple model method for single sensor bearing 

only tracking (BOT) in 3D. For BOT, the ownship is assumed to take a manoeuvre to gain observability in range and 

target state. The unknown target range was divided into uniform sub-intervals and nonlinear filters like Extended and 

unscented Kalman filter (EKF and UKF) with Cartesian and modified spherical coordinates (MSC) were 

implemented. Comparative results indicate that, UKF in MSC performs better with high computational time. This 

paper introduces Adaptive nonlinear filter (ANF) to get better range estimate with reduced computational time 

without affecting the filter performance. It is accomplished by conjoining Cartesian EKF with UKF in MSC, 

adaptively during the stationary and manoeuvring ownship conditions. The performance comparison was analysed 

using root mean square error, bias error and computational time. Simulation results reveal that ANF shows better 

results with reduced computational time. 
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1. Introduction 

The bearing only tracking (BOT) is the most 

widely used target motion analysis (TMA) in radar, 

sonar, space surveillance and wireless sensor 

networks [1-3]. The objective of the paper is to 

estimate the target range using multiple model 

method and to estimate the target state. Poor 

observability and nonlinear measurement model 

makes BOT a difficult problem [4]. To deal with 

difficulties, the ownship takes a manoeuvre to gain 

observability in range and target state [5]. The 

selection of proper ownship manoeuvring pattern 

increases the observability, and thereby enhances 

the tracking performance [6, 7]. The observability 

requirements for bearing only tracking are discussed 

in [8]. For the highly nonlinear measurement model, 

nonlinear filtering algorithms are used to estimate 

the target state [9]. The nonlinear filtering 

algorithms are classified into two types, batch 

processing and recursive Bayesian approach [10]. 

This paper focuses on recursive Bayesian filtering 

approach like EKF and UKF.  

Commonly used nonlinear filtering algorithm for 

BOT is EKF in Cartesian coordinates [11]. But the 

EKF in Cartesian coordinate causes filter divergence 

and produces unstable and biased estimates [12]. 

The problem of filter divergence can be reduced by 

using EKF in MSC [13, 14]. The advantage of using 

MSC over Cartesian is that, it automatically allows 

decomposition into observable and unobservable 

components of the state estimate and prevents filter 

instability [15, 16]. Even though the single model 

nonlinear filters using MSC show good results, it 

leads to faulty estimates when initialized poorly and 

range cannot be inferred [17]. The most appropriate 

method is to use range parameterized multiple 

model method (RPMM), in which the unknown 

range is divided into uniform sub-intervals and 

nonlinear filters are used in each sub-interval, to 

identify the best range estimate [18,19]. In this paper 

the nonlinear filters like, EKF in Cartesian (CEKF), 

EKF in MSC (MSC-EKF), and UKF in Cartesian 

(CUKF), UKF in MSC (MSC-UKF), were used. 



Received:  August 8, 2017                                                                                                                                                 135 

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017          DOI: 10.22266/ijies2017.1231.15 

 

Among the filters used, MSC-UKF performs better 

with more computational time. Our aim is to reduce 

the computational time of MSC-UKF without 

affecting its performance. 

This paper proposes, ANF algorithm to obtain 

better tracking performance with reduced 

computational time. The novelty in this paper is, 

ANF is implemented according to the ownship 

stationary and manoeuvring conditions. The key 

idea of the implementation of proposed technique is 

explained below. The simulation results indicate that 

during the initial period when ownship is stationary 

the performance of all nonlinear filters are same and 

hence CEKF is implemented, since it has low 

computational time. When the ownship starts a 

manoeuvre to gain observability it is noticed that, 

the errors become more and performance of MSC-

UKF is better since it shows less errors compared to 

other nonlinear filters. Therefore, MSC-UKF is 

implemented during the manoeuvring portion of 

ownship. After the manoeuvre, again the ownship 

becomes stationary hence CEKF is implemented.  

Therefore CEKF and MSC-UKF are chosen 

adaptively based on the ownship stationary and 

manoeuvring conditions. Simulation results reveal 

that, ANF performs equally with MSC-UKF with 

lesser computational time. 

The outline of this paper is as follows. Section II 

describes the dynamic and measurement models of 

target and ownship in Cartesian coordinate. Section 

III defines dividing the range uncertainty region and 

explanations for nonlinear filters and proposed ANF. 

Section IV discusses the Posterior Cramer Rao 

lower bound (PCRLB). Section V describes 

simulation results and comparative analysis of 

nonlinear filters. Finally, Section VI describes 

conclusion and future work. 

2. Bearing only tracking  

This section deals with target and ownship 

geometry for BOT in 3D. 

 
Figure.1 Target and ownship geometry 

Fig. 1 represents the target and ownship geometry 

for BOT. Slant range (r) represents the distance 

between the target and ownship. The azimuth angle 

(β) is measured clockwise from north and the 

elevation angle (ε) is the angle between the ground 

range (ρ) and slant range (r). 

2.1 Dynamic model and measurement model in 

Cartesian coordinates 

The dynamic model of the target (𝑥𝑘
𝑡 ) at time 𝑡𝑘 is 

assumed to follow nearly constant velocity (NCV) 

model and is defined as,  

 

 𝑥𝑘
𝑡 = 𝐹𝑘,𝑘−1𝑥𝑘−1

𝑡 +𝑤𝑘,𝑘−1                 (1) 

 

where the superscript t defines the dynamic model 

of the target.  𝐹𝑘,𝑘−1 represent the transition matrix 

and 𝑤𝑘,𝑘−1 is the zero mean, white Gaussian process 

noise [9]. 

The transition matrix is defined as [14], 

 

   𝐹𝑘,𝑘−1 = 

[
 
 
 
 
 
1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1]

 
 
 
 
 

                        (2) 

 

The dynamic model of the ownship follows the 

coordinated turn (CT) model and constant velocity 

(CV) model.  The CT model is used for ownship 

manoeuvre to observe the target state.  

The dynamic model of the ownship (𝑥𝑘
𝑜) at time 𝑡𝑘  

for CV is described as,  

 

 𝑥𝑘
𝑜 = 𝐹𝑘,𝑘−1𝑥𝑘−1

𝑜                                     (3) 

 

where 𝐹𝑘,𝑘−1  is the transition matrix as defined in 

Eq. (2). The superscript o defines the dynamic 

model of ownship [12].  

The linear dynamic model of the ownship for CT 

model is defined as, 

 

𝑥𝑘
𝑜 = 𝐹𝐶𝑇(T,𝜔) 𝑥𝑘−1

𝑜                             (4) 

 

where 𝐹𝐶𝑇is the transition matrix for CT model and 

is defined as [9,17],  
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𝐹𝐶𝑇 = 

[
 
 
 
 
 
 1 0 0
0 1 0
0 0 1

sin (𝜔,T)

𝜔

−[1−cos(𝜔,T)]

𝜔
0

[1−cos(𝜔,T)]

𝜔

sin (𝜔,T)

𝜔
0

0 0 T
0 0 0
0 0 0
0 0 0

cos (𝜔, T)  −sin (𝜔, T)    0
sin (𝜔, T)     cos (𝜔, T)    0

0 0    1]
 
 
 
 
 
 

   

                                                                                        (5) 

 

where  T  defines the time interval between each 

measurements and 𝜔 is the turn rate for CT model 

[16]. 

The relative state vector in Cartesian coordinates 

(𝑥𝑘
𝑐) is defined as,  

 

𝑥𝑘
𝑐 = 𝑥𝑘

𝑡 − 𝑥𝑘
𝑜                               (6) 

 

where 𝑥𝑘
𝑡  and 𝑥𝑘

𝑜  are the state vector of the target 

and ownship [5]. Adding and subtracting of 

𝐹𝑘,𝑘−1𝑥𝑘−1
𝑜  on the RHS of Eq. (6) gives, 

 

     𝑥𝑘
𝑐 = 𝐹𝑘,𝑘−1𝑥𝑘−1

𝑡 − 𝐹𝑘,𝑘−1𝑥𝑘−1
𝑜 +𝑤𝑘,𝑘−1 − 𝑥𝑘

𝑜 +

𝐹𝑘,𝑘−1𝑥𝑘−1
𝑜                                                              (7) 

  = 𝐹𝑘,𝑘−1(𝑥𝑘−1
𝑡 − 𝑥𝑘−1

𝑜 ) + 𝑤𝑘,𝑘−1 − (𝑥𝑘
𝑜 −

                                                   𝐹𝑘,𝑘−1𝑥𝑘−1
𝑜 )               (8) 

 

      𝑥𝑘
𝑐  =  𝐹𝑘,𝑘−1𝑥𝑘−1

𝑐 +𝑤𝑘,𝑘−1 − 𝑈𝑘,𝑘−1              (9)      

 

where 𝑈𝑘,𝑘−1  is the deterministic vector which 

accounts for the effect of mismatch between the 

ownship and target dynamic model [1,28]. The 

nonlinear measurement model in Cartesian 

coordinates (𝑧𝑘) at time 𝑡𝑘 is defined as, 

 

𝑧𝑘 = ℎ(𝑥𝑘
𝑐) + 𝑛𝑘                                           (10)  

 ℎ(𝑥𝑘
𝑐) =  [

𝜖𝑘
𝛽𝑘
]                                               (11)  

 

where ℎ  is the nonlinear measurement function. 

Here, 𝜖𝑘 and 𝛽𝑘 are the elevation and azimuth angle 

measurements and 𝑛𝑘  is the zero mean white 

Gaussian measurement noise [4]. 

3. Range parameterized multiple model 

(RPMM) method 

       In this paper, RPMM method is implemented to 

identify the unknown range between the target and 

ownship. The steps involved in RPMM are given 

below. 

1. The range uncertainty region was divided into 

𝑁𝑟  uniform sub-intervals as shown in Fig. 2, 

where each sub-interval defines each model. 

2. The mean and variance of range are estimated in 

each sub-interval by assuming that it follows 

uniform distribution. Using this, the initial state 

is predicted for the implementation of nonlinear 

filters in each model. 

3. Range is estimated using the predicted range 

from step 2 along with the measured ranges 

using nonlinear filters such as EKF-Cart, EKF-

MSC, UKF-Cart, UKF-MSC and ANF. 

4. Initializing equal prior model probability in each 

sub-interval. 

5. The steps 2 and 3 are repeated for the entire 

observation pertaining to particular range to 

update the model probability using likelihood 

function in each sub-interval. As a result of 

recursion, the maximum probability occurs in 

the model which has true range of the target and 

low probability for other models. 

6. The final step is the fusion of estimates from all 

the models to obtain the optimized estimate. 

3.1 Division of range uncertainty region 

     The superior performance of the RPMM can be 

achieved by dividing the large range uncertainty 

region into uniform sub-intervals [19]. Since the 

range estimate is not known accurately during the 

initialization, considering the unknown range region 

lies between (𝑟𝑚𝑖𝑛 , 𝑟𝑚𝑎𝑥) and 𝑁𝑟  filters are used for 

tracking. 

Fig. 2 describes dividing the range uncertainty 

region into uniform sub-intervals as stated in step 1. 

The midpoint of each sub-interval is taken as the 

mean and is described as [20], 

 

�̅�𝑗 = 
∆𝑟

2
+ (𝑗 − 1)∆𝑟            𝑗 = 1,2, ……𝑁𝑟        (12) 

 

where  �̅�𝑗 defines the mean of the 𝑗𝑡ℎ sub-interval. 

 

∆𝑟= 
(𝑟𝑚𝑎𝑥− 𝑟𝑚𝑖𝑛)

𝑁𝑟
,   𝑟𝑗 = 𝑗∆𝑟   𝑗 = 1,2, ……𝑁𝑟    (13) 

 

Figure.2 Range interval division 

 



Received:  August 8, 2017                                                                                                                                                 137 

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017          DOI: 10.22266/ijies2017.1231.15 

 

Where 𝑟𝑗 defines the edges of each sub-interval as 

shown in Fig. 2. The variance of each sub-interval is 

defined as, 

 

𝜎𝑟
2 = 

∆𝑟
2

12
                                 (14) 

 

In each sub-interval the nonlinear filters are 

implemented to identify which sub-interval gives the 

best estimate of the range as stated in step 2 and 3. 

3.2 Initial state and covariance estimate of 

nonlinear filters in Cartesian and MSC 

        The initial state estimate ( 𝑥𝑘−1|𝑘−1,𝑗
𝑐 ) and 

covariance (𝑃𝑘−1|𝑘−1,𝑗
𝑐 ) at time 𝑡𝑘−1  for 𝑗𝑡ℎ  sub-

interval in Cartesian coordinates is given as, 

 

𝑥𝑘−1|𝑘−1,𝑗
𝑐 = 

[
 
 
 
 
𝑥
𝑦
𝑧
�̇�
�̇�
�̇�]
 
 
 
 

=  

[
 
 
 
 
 
 

�̅�𝑗  cos (𝜖)sin (𝛽)

�̅�𝑗  cos (𝜖)cos (𝛽)

�̅�𝑗  𝑠𝑖𝑛(𝜖)

𝑠𝑐𝑜𝑠(𝜖̇) sin(�̇�) − �̇�𝑜

𝑠𝑐𝑜𝑠(𝜖̇)𝑐𝑜𝑠(�̇�) − �̇�𝑜

𝑠𝑠𝑖𝑛(𝜖̇) − �̇�𝑜 ]
 
 
 
 
 
 

      (15) 

 

Where �̅�𝑗  defines the mean range for each sub-

interval as given in Eq. (12). 𝜖  and 𝛽   are the 

elevation and azimuth angle measurements and 

𝜖 ̇ and �̇�   are the elevation and azimuth velocity 

component [9]. 

 

      𝑃𝑘−1|𝑘−1,𝑗
𝑐 = 

[
 
 
 
 
 
 
𝑃𝑥𝑥 𝑃𝑥𝑦 𝑃𝑥𝑧
𝑃𝑦𝑥 𝑃𝑦𝑦 𝑃𝑦𝑧
𝑃𝑧𝑥 𝑃𝑧𝑦 𝑃𝑧𝑧

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝑃�̇��̇� 𝑃�̇��̇� 𝑃�̇��̇�
𝑃�̇��̇� 𝑃�̇��̇� 𝑃�̇��̇�
𝑃�̇��̇� 𝑃�̇��̇� 𝑃�̇��̇�]

 
 
 
 
 
 

       (16) 

 

The elements of the covariance matrix with detailed 

derivation are defined in [4, 16].  

Similarly for MSC, the initial state estimate 

(𝑥𝑘−1|𝑘−1,𝑗
𝑚𝑠𝑐 ) and covariance (𝑃𝑘−1|𝑘−1,𝑗

𝑚𝑠𝑐 ) at time 

𝑡𝑘−1  for 𝑗𝑡ℎ sub-interval are defined as [13, 14], 

 

𝑥𝑘−1|𝑘−1,𝑗
𝑚𝑠𝑐 = [ 𝜖  𝜖 ̇   𝛽   �̇�   �̇�    

1

�̅�𝑗
]′                        (17) 

 

Here �̇� =  
�̇�

𝑟
  is the range rate divided by range and 

the rest of the components are defined in Eq. (15). 

 

𝑃𝑘−1|𝑘−1,𝑗
𝑚𝑠𝑐 = diag [𝜎𝜖

2   𝜎�̇�
2   𝜎𝛽

2   𝜎
�̇�
2   𝜎

�̇�
2   𝜎1

�̅�𝑗

2 ]′ (18) 

 

Similarly, Eq. (18) defines the variances for the 

components defined in Eq. (17). 

3.3 Nonlinear filters in Cartesian coordinates 

EKF and UKF are the most widely used 

nonlinear filters for BOT. Both apply the standard 

Kalman filter methodology, considering the 

nonlinear measurements [24].  

3.3.1. EKF 

EKF uses the Taylor’s series approximation to 

linearize the nonlinear measurement model [29]. 

The predicted state estimate ( 𝑥𝑘|𝑘−1,𝑗
𝑐 ) and 

covariance (𝑃𝑘|𝑘−1,𝑗
𝑐 ) is given by, 

 

𝑥𝑘|𝑘−1,𝑗
𝑐 = 𝐹𝑘,𝑘−1�̂�𝑘−1|𝑘−1,𝑗

𝑐 − 𝑈𝑘,𝑘−1               (19) 

𝑃𝑘|𝑘−1,𝑗
𝑐 =  𝐹𝑘,𝑘−1𝑃𝑘−1|𝑘−1,𝑗

𝑐 𝐹𝑘,𝑘−1
′ + 𝑄𝑘,𝑘−1     (20) 

 

Where 𝑗 = 1,2,…… . , 𝑁𝑟  defines the number of sub-

intervals. 𝑥𝑘−1|𝑘−1,𝑗
𝑐  and 𝑃𝑘−1|𝑘−1,𝑗

𝑐  are the initial 

state estimate and covariance as defined in Eq. (15) 

and Eq. (16). 

The nonlinear predicted measurement (�̂�𝑘|𝑘−1,𝑗) 

is given by, 

 

�̂�𝑘|𝑘−1,𝑗  ≈  ℎ𝑘(�̂�𝑘|𝑘−1,𝑗
𝑐 )                                      (21) 

𝐻𝑘 = 
𝜕ℎ𝑘(𝑥𝑘)

𝜕𝑥𝑘
|𝑥𝑘  =  �̂�𝑘|𝑘−1,𝑗

𝑐                                 (22) 

 

Where 𝐻𝑘  is the jacobian of the nonlinear 

measurement function ℎ𝑘. 

The innovation and its covariance are given by 

[24], 

 

𝜗𝑘,𝑗 =  𝑧𝑘,𝑗 −  �̂�𝑘|𝑘−1,𝑗                                         (23) 

𝑆𝑘,𝑗 = 𝐻𝑘𝑃𝑘|𝑘−1,𝑗
𝑐 𝐻𝑘

′ + 𝑅𝑘                                 (24) 

 

The gain matrix is given by, 

 

𝐾𝑘,𝑗 =  𝑃𝑘|𝑘−1,𝑗
𝑐  𝐻𝑘

′  [𝐻𝑘𝑃𝑘|𝑘−1,𝑗
𝑐 𝐻𝑘

′ + 𝑅𝑘]           (25) 

 

The updated state estimate ( 𝑥𝑘|𝑘,𝑗
𝑐 ) and its 

covariance (𝑃𝑘|𝑘,𝑗
𝑐 ) are given by, 

 

𝑥𝑘|𝑘,𝑗
𝑐 = 𝑥𝑘|𝑘−1,𝑗

𝑐 + 𝐾𝑘,𝑗(𝑧𝑘 − �̂�𝑘|𝑘−1,𝑗)             (26) 

𝑃𝑘|𝑘,𝑗
𝑐 = [𝐼 − 𝐾𝑘,𝑗𝐻𝑘] 𝑃𝑘|𝑘−1,𝑗

𝑐                              (27) 
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3.3.2. UKF 

The high degree of nonlinearity degrades the 

performance of EKF and the derivation of Jacobian 

matrices leads to difficulties in implementation, in 

such cases UKF is used. It uses the deterministic 

sigma point calculation to linearize the nonlinear 

measurement model [22, 27].  

The initial state estimate and covariance is same 

as Eq. (15) and Eq. (16). The predicted state 

estimate (𝑥𝑘|𝑘−1,𝑗
𝑐 ) is given by,  

 

𝑥𝑘|𝑘−1,𝑗
𝑐 = ∑ 𝑊𝑚

𝑖 𝑥𝑘|𝑘−1,𝑗
𝑐,𝑖2𝑛

𝑖=0             (28) 

 

where  𝑊𝑚
𝑖  is the weighted sample mean and is 

defined in Eq. (30) and Eq. (31) and 𝑥𝑘|𝑘−1,𝑗
𝑐,𝑖

 is the 

predicted sigma points [29]. 

3.3.3. Sigma point calculation 

For n dimensional state vector, 2n+1 sigma 

points are generated. The BOT considered in this 

paper, has n=6, hence 13 sigma points are generated 

based on the following conditions [17], 

 

𝑥𝑘−1|𝑘−1,𝑗
𝑐,𝑖

 = 

{
 
 

 
 

𝑥𝑘−1|𝑘−1,𝑗
𝑐                                  𝑖 = 0 

𝑥𝑘−1|𝑘−1,𝑗
𝑐 + (√(𝑛 + 𝜆)𝑃𝑘−1|𝑘−1,𝑗

𝑐 )𝑖,   𝑖 =  1,2,…𝑛

𝑥𝑘−1|𝑘−1,𝑗
𝑐 − (√(𝑛 + 𝜆)𝑃𝑘−1|𝑘−1,𝑗

𝑐 )𝑖,  𝑖 =  1,2,… .2𝑛

 

                 (29) 

 

where i refers to the number of sigma points and j 

refers to the number of sub-intervals. 

3.3.4. Weight vector calculation 

The weight vector for mean ( 𝑊𝑚
𝑖 ) and 

covariance (𝑊𝑐
𝑖) is given by [9, 22], 

 

𝑊𝑚
0 = 

𝜆

(𝑛+𝜆)
      𝑖 = 0,                                        (30) 

𝑊𝑚
𝑖 = 𝑊𝑐

𝑖 = 
1

2(𝑛+𝜆)
     𝑖 = 1,2, … . . ,2𝑛            (31) 

 

where  𝜆 is the scaling parameter and is defined as, 

 

𝜆 =  𝛼2(𝑛 + 𝜅) − 𝑛                                           (32) 

 

where  𝛼 and 𝜅  are constants. The value of  𝛼  is 

chosen between 1𝑒−4 ≤ 𝛼 ≤ 1 and 𝜅 is set to zero 

[27]. Once the predicted state is calculated based on 

Eq. (28), the rest of filter equations follow the same 

procedure as Cartesian EKF given in Eq. (23) to Eq. 

(27) based on the nonlinear predicted measurement 

defined in Eq. (21). 

3.4 Nonlinear filters in MSC and LSC 

For the nonlinear filter EKF using Cartesian 

coordinates, the target position and velocity is 

unobservable, if there is no change in the relative 

velocity [13, 17]. The linearization of nonlinear 

measurement model for CEKF depends on the 

partial derivative of the Jacobian matrix with respect 

to the state vector defined in Eq. (22). This process 

leads to biased estimates and filter divergence due to 

poor observability [4, 5]. To reduce this difficulty, 

the modified spherical coordinates (MSC) was 

proposed by [13]. This coordinate is widely used 

and much suitable for AOT, because first four 

components of state vector defined in Eq. (17) 

directly involves the azimuth and elevation angle 

measurements and its derivatives and is always 

observable [28,29]. The range information is 

obtained upon ownship manoeuvre, the 

unobservability in range before the ownship 

manoeuvre does not degrade the performance, 

because range information can be obtained from 

first four components [25]. Thus, nonlinear filters 

using MSC reduces the filter divergence and 

produces stable and unbiased estimates [5]. 

3.4.1. State vector and measurement process in 

MSC 

The relative state vector in MSC (𝑥𝑘
𝑚𝑠𝑐) is given 

by, 

𝑥𝑘
𝑚𝑠𝑐 = [𝜖   𝜖̇   𝛽   𝜔   �̇�     

1

𝑟
]′            (33) 

 

where 𝜔 = �̇� cos(𝜀) , �̇� =  
�̇�

𝑟
 , 𝜖  and 𝛽  are the 

elevation and azimuth angle measurements. 

The measurement model in MSC is linear, since 

bearing and azimuth are components of MSC and is 

defined as [3, 4], 

 

𝑧𝑘 = 𝐻𝑘𝑥𝑘
𝑚𝑠𝑐 + 𝑛𝑘                         (34) 

 

where  𝐻𝑘 is the linear measurement matrix  and  𝑛𝑘 

is the zero mean white Gaussian measurement noise. 

3.4.2. EKF in MSC 

The filtering using MSC, involves the nonlinear 

dynamic model and linear measurement model [3]. 

The linearization of nonlinear dynamic model makes 

the process difficult, since it requires complex 

differential manipulations and it is not easy to obtain 
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equal representation as in Cartesian coordinates [15]. 

Due to this difficulty, the alternate method is to use 

the conversion matrix in the predicted state estimate 

[4, 28]. The details regarding the conversion matrix 

and its equations are given in [21]. The initial state 

estimate and covariance at time 𝑡𝑘−1  is defined in 

Eq. (17) and Eq. (18). The initial state is converted 

to Cartesian and it is predicted to time 𝑡𝑘 and again 

it is converted back to MSC using a conversion 

matrix as stated in Eq. (35) to use it in a nonlinear 

filter. The equation for predicted state is given 

below. 

The predicted state estimate (𝑥𝑘|𝑘−1,𝑗
𝑚𝑠𝑐 ) at time 𝑡𝑘 

is defined as [16], 

 

𝑥𝑘|𝑘−1,𝑗
𝑚𝑠𝑐 = 𝑓𝑐

𝑚𝑠𝑐[𝐹𝑘,𝑘−1�̂�𝑘−1|𝑘−1,𝑗
𝑐 − 𝑈𝑘,𝑘−1]     (35) 

 

The rest of the filter equations are defined in [21]. 

3.4.3. UKF in MSC 

The initial state estimate and covariance of 

UKF-MSC follows Eq. (17) and Eq. (18). The UKF 

in MSC follows the same steps as UKF-Cart, except 

it uses Eq. (17) for sigma point calculation. As 

stated earlier for EKF-MSC in Eq. (35), the UKF-

MSC also uses the conversion matrix in the 

predicted state estimate with the weight vector 

defined in Eq. (30) and Eq. (31). The rest, follows 

the same procedure as UKF in Cartesian. 

3.5 Adaptive nonlinear filter (ANF) 

The proposed algorithm was introduced to 

reduce the computational time of the filtering 

process. As discussed earlier in section 1, the 

comparative results indicate that MSC-UKF has less 

error compared to other filters at the time of 

ownship manoeuvre. It is also noticed that, MSC-

UKF performs better with high computational time, 

because of sigma point calculation and conversion 

matrix in the predicted state estimate. Our aim is to 

achieve the better performance with low 

computational time. Hence, ANF is proposed to 

achieve the better performance with low 

computational time. The steps involved in ANF are 

given below.  

ANF is implemented, based on the stationary 

and manoeuvring conditions of the ownship as 

shown in Fig. 3. 

In each sub-interval, during the initial period 

when the ownship is stationary CEKF is 

implemented using the filter equations described in 

subsection 3.3.1. 

When the ownship starts a manoeuvre as shown in 

Fig. 3, MSC-UKF is implemented as described in 

subsection 3.4.3 by considering the current updated 

state estimate and covariance of CEKF as its initial 

state estimate and covariance. 

After gaining the observability of target state, 

again the ownship becomes stationary during this 

time period CEKF is implemented as described in 

subsection 3.3.1 with current updated state estimate 

and covariance of UKF-MSC as the initial state 

estimate and covariance for CEKF. 

The steps 3 and 4 are repeated recursively in 

each sub-interval based on the ownship stationary 

and manoeuvring conditions. 

Thus the simulation results indicate that, 

adaptive combination of CEKF and MSC-UKF 

effectively reduces the computational time and 

achieves the performance similar to MSC-UKF. 

3.6 Model probability calculation 

As stated earlier in step 4 of section 3, the prior 

model probability 𝑃(𝑗|𝑍𝑘−1) in each sub-interval is 

defined as,  

 

 𝑃(𝑗|𝑍𝑘−1) =  
1

𝑁𝑟
                              (36) 

 

where  𝑃(𝑗|𝑍𝑘−1) is the probability of model j being 

correct among the models considered, given the 

measurements up to time 𝑡𝑘−1 [20].  

As stated in step 5 of section 3, the model 

probability at time 𝑡𝑘 is computed recursively using 

Baye’s rule and is defined as [1], 

 

𝑃(𝑗|𝑍𝑘)  ∝ 𝑃(𝑧𝑘|𝑗, 𝑍𝑘−1)𝑃(𝑗|𝑍𝑘−1)  
                                                    𝑗 = 1,2,…𝑁𝑟        (37) 

 

where 𝑃(𝑗|𝑍𝑘) =  𝑤𝑘,𝑗  is the model probability or 

weight of the 𝑗𝑡ℎ filter.  𝑃(𝑗|𝑍𝑘−1) in the R.H.S of 

Eq. (37)  is the prior model probability as described 

in Eq. (36) and 𝑃(𝑧𝑘|𝑗, 𝑍𝑘−1) defines the likelihood 

of model j at time 𝑡𝑘 given the measurements up to 

time 𝑡𝑘−1. Each time the likelihood is used to update 

the model probability and is defined as [2,17], 

 

𝑃(𝑧𝑘|𝑗, 𝑍𝑘−1) =  ℵ (𝑧𝑘 − �̂�𝑘|𝑘−1;  02×1, 𝑆𝑘,𝑗)      (38) 

                              =  ℵ (𝜗𝑘,𝑗;  02×1, 𝑆𝑘,𝑗)             (39) 

 

here, 𝜗𝑘,𝑗  and 𝑆𝑘,𝑗  are the innovation and its 

covariance of the nonlinear filter from Eq. (23) and 

Eq. (24) matched to model j.  

Each sub-interval has the state estimate and 

covariance obtained by the 𝑗𝑡ℎ  filter. As stated in 

step 6 of section 3, the best estimate is obtained by 
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combining the model probability with the state 

estimate and covariance of all the sub-intervals. The 

combined state estimate and covariance are given by 

[9], 

 

𝑥𝑘|𝑘 = ∑ 𝑤𝑘,𝑗 𝑥𝑘|𝑘,𝑗
𝑁𝑟
𝑗=1                                       (40) 

𝑃𝑘|𝑘 =  ∑ 𝑤𝑘,𝑗 [𝑃𝑘|𝑘,𝑗
𝑁𝑟
𝑗=1 + (𝑥𝑘|𝑘,𝑗 − 𝑥𝑘|𝑘)(�̂�𝑘|𝑘,𝑗 −

 𝑥𝑘|𝑘)′]                                                                 (41) 

4. Posterior Cramer Rao lower bound 

(PCRLB) 

      The posterior Cramer Rao lower bound 

(PCRLB) refers to the bound on the best achievable 

accuracy and useful method of checking the 

performance of an unbiased estimator [30]. The 

unbiased estimator 𝑥𝑘|𝑘  from Eq. (40) of the target 

state 𝑥𝑘 , with the sequence of measurements 𝑍𝑘 =
{𝑧1, 𝑧2, …… , 𝑧𝑛}.  The unbiased estimator has the 

covariance matrix 𝑃𝑘|𝑘  represented in Eq. (41) and it 

has the lower bound represented as, 

 

𝑃𝑘|𝑘 = 𝐸 [(𝑥𝑘|𝑘 − 𝑥𝑘)(𝑥𝑘|𝑘 − 𝑥𝑘)
′
] ≥  𝐽𝑘

−1   (42) 

 

where 𝐽𝑘  refers to the fisher information matrix 

(FIM) and its inverse is referred to as PCRLB. The 

difference between  𝑃𝑘|𝑘 − 𝐽𝑘
−1 is the positive semi 

definite matrix. The recursive formula for FIM was 

given by [44, 23]. 

For the nonlinear filtering problem, considering 

linear dynamic model, additive Gaussian noise and 

measurement process the recursive formula reduces 

to [22], 

 

𝐽𝑘+1 = 𝑄𝑘
−1 +𝐻𝑘+1

𝑇 𝑅𝑘+1
−1 𝐻𝑘+1 −𝑄𝑘

−1𝐹𝑘(𝐽𝑘 +
                  𝐹𝑘

𝑇𝑄𝑘
−1𝐹𝑘)

−1𝐹𝑘
𝑇𝑄𝑘

−1                 (43) 

 

Using matrix inversion lemma Eq. (43) can be 

written as, 

 

𝐽𝑘+1 = (𝑄𝑘 + 𝐹𝑘𝐽𝑘
−1𝐹𝑘

𝑇)−1 + [𝐻𝑘+1
𝑇 𝑅𝑘+1

−1 𝐻𝑘+1] (44) 

 

The detailed derivations of the FIM are given in [17, 

30]. 

5. Results and discussion 

     In this section, the performance analysis of all the 

nonlinear filters using range parameterized multiple 

model (RPMM) method are compared. The target 

and ownship geometry are given in Fig. 3. The 

target is assumed to follow nearly constant velocity 

 

 
Figure.3 Target and ownship geometry 

 

 (NCV) model. Since the ownship takes a 

manoeuvre to observe the state of the target, it 

follows constant velocity (CV) and coordinated turn 

(CT) models [16]. The ownship is assumed to move 

at the height of 10 km and the initial target height is 

assumed to be 9 km. The measurement error 

standard deviations were assumed to be 0.015 radian 

for bearing and elevation measurements with the 

measurement sampling interval of 1.0s. 

The initial true range of the target is assumed to 

be 138 km at the line of sight (LOS) of 45 deg and 

the elevation angle was assumed to be 5 deg.  The 

speed of the target and ownship is assumed to be 

297(m/s). Initially for RPMM, the unknown range 

region [ 𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥 ] was chosen between [5km, 

250km] and it is divided into 𝑁𝑟 = 10 uniform sub-

intervals. In each sub-interval 0.1 equal weights 

(model probability) was assumed as stated in Eq. 

(36). The simulations were repeated for 100 Monte 

Carlo runs. 

Table.1 represents the average values of model 

probabilities defined in Eq. (37), using different 

nonlinear filters for the mean range defined in each 

sub-interval as shown in Fig.2. For all filters the 

highest probability corresponds to 139.75 km, which 

is much closer to the true range of 138 km. For other 

range values the probability is very low, this 

indicates that all the filters, including ANF show the 

correct range estimate. 

Simulations were also analysed for increased 

number of sub-intervals, but it is noticed that, even 

with increased sub-intervals the accuracy of results 

remains same with increased computational time. 

Hence we have restricted ourselves with 10 sub-

intervals. The performance of the RPMM is 

 



Received:  August 8, 2017                                                                                                                                                 141 

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017          DOI: 10.22266/ijies2017.1231.15 

 

Table 1. Model probabilities for different nonlinear filters 
           Filter 

Range 

CEKF MSC-EKF CUKF MSC-UKF ANF 

17.25km 0.0500 0.0051 0.0479 0.0001 0.0370 

41.75km 0.2372 0.0074 0.0578 0.0041 0.0082 

66.25km 0.3093 0.0272 0.0754 0.0211 0.0052 

90.75km 0.2282 0.0523 0.0846 0.1387 0.0197 

115.25km 0.1140 0.0792 0.0925 0.1477 0.1142 

139.75km 0.9843 0.9937 0.9865 0.9927 0.9916 

164.25km 0.0134 0.1391 0.1146 0.0665 0.1043 

188.75km 0.0037 0.1694 0.1278 0.0538 0.0627 

213.25km 0.0177 0.1961 0.1415 0.0463 0.0646 

237.75km 0.0096 0.2160 0.1553 0.0262 0.0484 

 

 
Figure.4 RMS position error 

 

evaluated using RMSE compared with the PCRLB, 

bias error and computational time.  

The RMSE is the measure of filter performance 

and is defined as [29], 

 

𝑅𝑀𝑆𝐸 = √
1

𝑀
 ∑ ‖𝑥𝑘,𝑚 − 𝑥𝑘|𝑘,𝑚‖

2𝑀
𝑚=1           (45) 

 

where 𝑥𝑘,𝑚 is the true state and 𝑥𝑘|𝑘,𝑚 is the updated 

state from Eq. (40) in the 𝑚𝑡ℎ Monte Carlo run and  

M is the number of Monte Carlo runs. 

Fig. 4 and 5 denotes the RMS position and 

velocity errors for the RPMM using different 

nonlinear filters compared with the PCRLB. It is 

noticed that, large errors during the initial period of 

tracking are due the deficiency of a priori 

knowledge of the initial target range. As the 

measurements are increased, the error becomes less 

and filters gradually attain PCRLB.  

As stated earlier in subsection 3.5 it is observed 

 

 
Figure.5 RMS velocity error 

 

Table 2. RMS position and velocity error 

Filter Position 

RMSE(km) 

Velocity RMSE 

(m/s) 

CEKF 9.5968 55.6369 

MSC-EKF 7.6863 53.2776 

CUKF 8.1647 55.1431 

MSC-UKF 5.3817 35.3292 

ANF 5.7757 39.9700 

 

from Fig. 4 and 5 that, ANF follows MSC-UKF 

during the ownship manoeuvre and CEKF during 

ownship stationary. The comparison between the 

nonlinear filters indicates that, MSC-UKF and ANF 

shows less RMS errors compared to other nonlinear 

filters during the ownship manoeuvre and the errors 

are nearly same for all the nonlinear filters during 

the ownship stationary. 

Table.2 indicates the numerical values for RMS 

position and velocity errors for all the nonlinear 

filters. The RMS error values are less for MSC-UKF 

and ANF, compared to other filters. The error values 
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Table 3. Position and velocity bias error 

Filter Position bias (km) Velocity bias 

(m/s) 

CEKF [3.4925 1.2626 -

0.0841] 

[14.3935  25.2601  

-0.1082] 

MSC-

EKF 

[2.8516  2.0788  -

0.0506] 

[13.2217  13.8392  

-0.6407] 

CUKF [2.4181 1.6511  -

0.0470] 

[11.3681  6.5588  

-0.5320] 

MSC-

UKF 

[1.5712  1.3337  -

0.0318] 

[3.1338 11.9442  -

0.4806] 

ANF [1.6460  1.3672  -

0.0370] 

[5.9141  15.6686  

-0.4914] 

 
Table 4. Computational time 

Filters Computational 

time(sec) 

CEKF 0.7750 

MSC-EKF 1.3556 

CUKF 1.4113 

MSC-UKF 8.6920 

ANF 7.0772 

 

for MSC-UKF and ANF are nearly same which   

indicates that, performance of ANF is similar to 

MSC-UKF. 

The second parameter used to analyse the 

performance of nonlinear filters is bias error and is 

defined as [9], 

 

�̅�𝑘 = 
1

𝑀
 ∑ 𝑒𝑘,𝑚

𝑀
𝑚=1                      (46) 

 

Where 𝑒𝑘,𝑚 = 𝑥𝑘,𝑚 − 𝑥𝑘|𝑘,𝑚, is the error as defined 

in Eq. (45). 

Table. 3 represent the numerical results for 

position and velocity bias errors along X, Y and Z 

axis for all the nonlinear filters. Since there is no 

movement of target along Z axis, the bias error is 

very small.  Among the filters used, the position and 

velocity bias errors for MSC-UKF and ANF are 

comparatively low than other nonlinear filters. The 

comparison between MSC-UKF and ANF indicates 

that, the error values are nearly same and ANF 

performs similar to MSC-UKF. 

The computational time for all the filters are 

given in Table 4. It is calculated using tic, toc 

function in matlab programming which was 

executed on Pentium(R) Dual-core CPU T4300 at 

2.10GHZ with 3GB RAM. From Table 4. MSC-

UKF has high computational time than other filters. 

This is due to the sigma point conversion from MSC 

to Cartesian and vice versa in the predicted state. It 

is noticed that, the computational time of the 

proposed technique ANF is less compared to MSC-

UKF. This is due to the adaptive combination of 

CEKF and MSC-UKF. This reveals that ANF is 

efficient in terms of computational time and 

effective in terms of achieving better performance 

similar to MSC-UKF. The computational time for 

CEKF, MSC-EKF and CUKF are low, but 

performances are not better than MSC-UKF and 

ANF. 

6. Conclusion and future work 

In this paper, ANF is introduced to achieve 

better performance with lesser computational time. 

The simulation results indicate that multiple model 

approach is effective, because it divides the large 

range uncertainty region into uniform sub-intervals. 

The simulation results reveal that, MSC-UKF and 

ANF performs better than other nonlinear filters 

used. The comparison between the MSC-UKF and 

ANF illustrates that, ANF performs similar to MSC-

UKF interms of RMS error and bias error and 

efficient interms of computational time. In future, 

ANF can also be applied for target manoeuvring 

scenarios. Since ANF involves two nonlinear filters, 

the switching between the filters and the initial 

estimates given to one filter to the other may also 

lead to incorrect estimates this should be taken care 

in future.  
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