
Received: February 17, 2017 1

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.01

Fault Prone Analysis of Software Systems Using Rough Fuzzy C- means

Clustering

Neha Singh1 Agrawal Kalpesh1 Swathi Jamjala Narayanan1*

1School of Computer Science and Engineering, VIT University, Vellore, India

* Corresponding author’s Email: jnswathi@vit.ac.in

Abstract: Prediction of fault proneness of modules in software is one of the ways to ensure the achievement of

software quality and reliability. Software delivered cannot not always be bug free, the more the number of bug the

more the dis-satisfaction among client due to degradation in software quality and reliability. Though we have few

models for detecting software fault prone modules, the intend of our work is to increase the reliability of the software

by using an approach named Rough Fuzzy c-means (RFCM) clustering algorithm to analyse the fault proneness of

the software modules under test. This helps in an efficient analysis of the modules having an ambiguous behaviour

using rough set boundary which is not possible using traditional clustering methods. A dataset from PROMISE

software engineering repository has been taken for the experimental analysis. The results were promising enough to

determine software modules which fall in the boundary region of ambiguity emphasizing the software team to focus

on those modules to achieve higher reliable system.

Keywords: Fault proneness, C- means, FCM, RFCM, Clustering, Ambiguous faults, Boundary region, Rough set.

1. Introduction

All Faults in software systems continue to be a

major problem. Many software systems are

delivered to users/client with excessive faults. This

is despite a huge amount of development effort

going into fault reduction in terms of quality control

and testing. It has long been recognized that seeking

out fault-prone parts of the system and targeting

those parts for increased quality control and testing

is an effective approach to fault reduction. Fault-

proneness of a software module is the probability

that the module contains faults. A correlation exists

between the fault-proneness of the software and the

measurable attributes of the code (i.e. the static

metrics) and of the testing (i.e. the dynamic metrics).

Prediction of fault-prone modules provides one way

to support software quality engineering through

improved scheduling and project control. Quality of

software is increasingly important and testing

related issues are becoming crucial for software.

Methodologies and techniques for predicting the

testing effort, monitoring process costs, and

measuring results can help in increasing efficiency

of software testing. Being able to measure the fault-

proneness of software can be a key step towards

steering the software testing and improving the

effectiveness of the whole process. In the past,

several metrics for measuring software complexity

and testing thoroughness have been proposed. Static

metrics, e.g., the McCabe's cyclomatic number or

the Halstead's Software Science, statically computed

on the source code and tried to quantify software

complexity. Despite this it is difficult to identify a

reliable approach to identifying fault-prone software

components.

Clustering is used to determine the intrinsic

grouping in a set of unlabelled data. It is the process

of organizing objects into groups whose members

are similar in some way. Among various clustering

techniques available in literature K-Means

clustering approach is most widely used technique.

But due to the crisp nature of the technique some

modules having an ambiguous behaviour may be

misclassified into a wrong class. For example, some

software module only show either fail result of pass

result, there are changes that module sometimes pass

Received: February 17, 2017 2

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.01

in certain cases but can fail in certain tests leading to

ambiguous decision, whether the system is correctly

working and must be delivered or is faulty must be

re-engineered. Thus, leading to degradation in the

process of analysis of the fault proneness of the

system and thus affecting the quality of the software.

To overcome this shortcoming, we have used

RFCM clustering technique. It is a hybrid technique

which deals with ambiguities, vagueness and

indiscernibility using the concepts from the theory

of fuzzy sets and rough sets both. The fuzzy nature

helps in finding the membership of an element for

given cluster. Thus we are able to calculate that

amount of similarity between element and the

cluster to which it has been assigned. The drawback

here is the generation of overlapping clusters. These

overlapping clusters make it hard to decide the

assignment of elements to one specific cluster in the

real world scenario. This is the place where the use

of rough set theory proves useful. It provides a

region for data points which completely belong to a

given cluster and this region is called lower

approximation. The next region that exists is the

upper approximation where the data points aren’t a

part of the cluster. The region in between the lower

and the upper approximation is the region known as

boundary region. It is here that the data points not

having a crisp belongingness to either of the

aforementioned area lie. In this paper RFCM is used

for the process of investigating the fault proneness

of software modules for the dataset obtained from

the PROMISE software engineering repository.

The paper is organized as follows: section 2

provides the details of existing work related to

software fault prediction. The next section deals

with the traditional clustering methods and their

drawbacks. Section 4 provides the proposed RFCM

clustering for measuring the fault proneness of

software modules. In section 5, the computational

experimental results have been discussed followed

by the references.

2. Literature review

All Several efforts have been made in research

for software fault prediction and assessment using

various techniques [1-3]. Agresti and Evanco [4]

worked on a model to predict defect density based

on the product and process characteristics for Ada

program. There are many papers advocating

statistical models and software metrics [5]. Gaffney

and Davis [6, 7] of the Software Productivity

Consortium developed the phase-based model. It

uses fault statistics obtained during the technical

review of requirements, design, and the coding to

predict the reliability during test and operation.

One of the earliest and well known efforts to

predict software reliability in the earlier phase of the

life cycle was the work initiated by the Air Force’s

Rome Laboratory [8]. For their model, they

developed prediction of fault density which they

could then transform into other reliability measures

such as failure rates.

To do this the researchers selected a number of

factors that they felt could be related to fault density

at the earlier phases. Most of them are based on size

and complexity metrics. To achieve high software

reliability, the number of faults in delivered code

should be reduced. The faults are introduced in

software in each phase of software life cycle and

these faults pass through subsequent phases of

software life cycle unless they are detected through

testing or review process. Finally, undetected and

uncorrected faults are delivered with software. To

achieve the target software reliability efficiently and

effectively, faults should be identified at early stages

of software development process. During early

phase of software development testing/field failure

data is not available. Therefore, the prediction is

carried out using various factors relevant to

reliability.

A study was conducted by Zhang and Pham [9]

to find the factors affecting software reliability. The

study found 32 potential factors involved in various

stages of the software life cycle. In another recent

study conducted by Li and Smidt [10], reliability

relevant software engineering measures have been

identified. They have developed a set of ranking

criteria and their levels for various reliability

relevant software metrics, present in the first four

phases of software life cycle. Recently, Kumar and

Misra [11] tried for early software reliability

prediction considering the six top ranked measures

given by [10] and software operational profile.

Sometimes, it may happen that some of these top

ranked measures are not available, making the

prediction result unrealistic.

Software metrics can be classified in three

categories: product metrics, process metrics, and

resources metrics [12]. Product metrics describe

characteristics of the product such as size,

complexity, design features, performance and

quality level etc. Process metrics can be used to

improve software development process and

maintenance. Resources metrics describe the project

characteristics and execution. Approximately thirty

software metrics exist, which can be associated with

different phases of software development life cycle.

Among these metrics some are significant predictor

Received: February 17, 2017 3

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.01

to reliability. From the above literature, following

observations are made. Firstly, it is observed that

predicting faults early is very important for the

entire software development process and reliability.

Secondly, the reliability of software is a function of

the number of the remaining faults.  Thirdly, data

available from existing software’s and their

proneness to faults can be of great use for detecting

the effectiveness of a technique in the prediction of

same. The existing data can be analysed and the

results compared with the already available

classification results. Also, addition of soft

computing techniques to these methods can improve

the prediction ability of the software.

In this paper, we propose to use a hybrid RFCM

technique which makes use of concepts from the

theory of both fuzzy sets and rough sets to handle

ambiguity and vagueness in better way. The fuzzy

nature helps in finding the membership of an

element for given cluster. Thus we are able to

calculate that amount of similarity between element

and the cluster to which it has been assigned. The

drawback here is the generation of overlapping

clusters.

These overlapping clusters make it hard to

decide the assignment of elements to one specific

cluster in the real world scenario. This is the place

where the use of rough set theory proves useful. It

provides a region for data points which completely

belong to a given cluster and this region is called

lower approximation. The next region that exists is

the upper approximation where the data points

aren’t a part of the cluster. The region in between

the lower and the upper approximation is the region

known as boundary region. It is here that the data

points not having a crisp belongingness to either of

the aforementioned area lie.

3. Traditional clustering methods

In this session we discuss about traditional c-

means and fuzzy c- means clustering technique.

3.1 C- means clustering

C-means is the most widely used prototype

based partitional clustering algorithms. It is an

iterative process until all data points stabilizes [13].

In hard c-means, each object must be assigned to

exactly one cluster. The clustering ensures that the

similarity between the data points with in a cluster is

maximum than the data points of other clusters. The

objective of this algorithm is to minimize the

squared error function given in Eq. (1)

J= ∑ ∑ ‖xi
j

− 𝑐𝑗‖n
i=1

k
j=1 (1)

Where, ‖𝑥𝑖
𝑗

− 𝑐𝑗‖ is a chosen measure of distance

between a data point 𝑥𝑖
𝑗
 and the cluster center 𝑐𝑗 is

an indicator of the distance of the n data points from

their respective cluster centers.

3.2 Fuzzy c- means clustering

The fuzzy c-means (FCM) algorithm proposed

by Bezdek [14, 15] is the fuzzy variant of the

conventional c-means algorithm. The algorithm is

based on the minimization of the objective function

given in Eq. (2)

J = ∑ ∑ uij
m‖xi

j
− cj‖

2
n
i=1

k
j=1 (2)

This methodology is useful when the required

number of clusters is available. The primary

improvement of FCM over conventional c-means is

the fact that it can assign partial membership to data

points. This means the use of concept of likelihood

rather than complete membership. The method can

be very useful at times but is highly susceptible to

noise and outliers. The primary drawback is the fact

that it generates overlapping clusters. The

membership values is calculated using Eq. (3) and

the fuzzy centers are calculated using Eq. (4)

uij= 1 ∑ (
‖xi-cj‖

‖xi-c𝑝‖
)

2

m-1k
p=1⁄ (3)

subject to :

 ∑ u𝑖𝑗=1, k
j=1 ∀ i

 0< ∑ uij < 𝑛, n
j=1 ∀j

Where, 𝜇𝑖𝑗 is the membership of ith data to jth

cluster, m is the fuzzy index where m ∈ (1,∞), c is

the number of cluster centres.

cj= ∑ (uij)
m

xi
n
i=1 ∑ (uij)

mn
i=1⁄ (4)

Where, cj is the fuzzy center of the cluster j.

The algorithm iteration stops, when the condition

 maxi j {|uij
k+1-uij

k |} < ε , where ε is the termination

criteria between 0 and 1 is and k is the number of

iterations.

Received: February 17, 2017 4

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.01

3.3 Limitations of traditional clustering methods

There are existent drawbacks to the c-means and

the fuzzy variant of this clustering algorithm. They

take long computational time and c-means is

sensitivity to the initial guess and thus leads to local

minima. The fuzzy c-means is also sensitivity to

noise and provides low (or even no) membership

degree for outliers or to the noisy data.

4. Rough fuzzy c-means clustering

algorithm for software fault prediction

RFCM algorithm extends the c-means algorithm

by integrating both fuzzy set and rough set theory

[16, 17]. In this hybrid method, the benefits of both

fuzzy sets and rough sets are added to the traditional

c- means and thus we obtain a robust algorithm [18].

The fuzzy set algorithm provides membership

values to each of the elements of the set and it ends

as overlapping partitions which are helpful in few

applications. In rough set theory, the concepts like

upper approximation, lower approximation and

boundary condition further helps to handle

ambiguity in better way than Fuzzy c- means.

By hybridizing rough, fuzzy and c-means

together it enables to efficiently handle the

uncertainty, incompleteness and vagueness of

dataset during classification or clustering [19, 20].

In RFCM technique, each cluster consists of 3

parameters, namely, a cluster centroid which is the

mean or prototype of the cluster, a crisp lower

approximation which holds the data points

completely belonging to the set, and a fuzzy

boundary which holds data points possibly

belonging to the set and also falls under the rough

boundary with fuzzy membership.

The formal representation of the notations and

the RFCM algorithm used for predicting software

fault prone modules is as follows: Let L(vj) and

U̅(vj) be the lower and upper approximations of

cluster vj , and B (vj) = �̅�(𝑣𝑗) - L(vj) denote the

boundary region of cluster vj .

4.1 Objective function

The objective function of the RFCM algorithm

which is to be minimized is as given in Eq. (5). In

Eq. (5) the parameters w and w̃ =1-w are the weights

related to lower approxiamtion and the boundary

region. μ
ij
 is the mebership of the object i in cluster

j.

 JRF=

{

w×A1+w̃×B1 if L(vj) ≠∅, B(vj) ≠∅

A1 if L(vj) ≠∅, B(vj) =∅

B1 if L(vj) =∅, B(vj) ≠∅

 (5)

Where

A1= ∑ ∑ uij
m‖xi-cj‖

2

xi ∈ L(vj)
k
j=1 ; (6)

and

B1= ∑ ∑ uij
m‖xi-cj‖

2

xi∈B(vj)
k
j=1 (7)

According to the lower approximations and

boundary region definitions of rough sets, if an

object xi∈ L(vj), then xi∉ L(vp),∀p ≠j and xi∉B(vj),

∀j. In simple, the object 𝑥𝑖 is certainly enclosed in

cluster vj . In this case, the weights of the objects

are independent of other centroids and clusters.

Further, the objects that fall in the lower

approximation should have similar influence on the

coresponding centroid and cluster rather, if

xi∈ B(vj), then the object xi possibly belongs to vj

and potentially belongs to another cluster. Hence,

the objects in boundary regions should have

different influence on the centroids and clusters. So,

in RFCM, the data is partitioned into two classes -

lower approximation and boundary and only the

objects in boundary are fuzzified as in fuzzy c-

means and the membership values of objects in

lower approximation is μ
ij
=1. Thus in RFCM 𝐴1

reduces to

A1= ∑ ∑ ‖xi-cj‖
2

xi ∈ L (vj)
k
j=1 (8)

and B1 has the same expression as given in Eq. (7).

4.2 Cluster centroids

The new cluster prototypes (centroids) are

calculated as given in Eq. (9).

Cj
RF= {

w×C1+w̃×D1 if L(vj)≠∅,B (vj) ≠ ∅

C1 if L(vj)≠∅, B(vj) = ∅

 D1 if L(vj) =∅, B(vj) ≠ ∅

 (9)

Received: February 17, 2017 5

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.01

Where

 C1=
1

|L(vj)|
∑ xix i ∈ L(vj)

 (10)

 D1=
1

nj

∑ uij
m

xi ∈ B (v j) xi (11)

 ni= ∑ (xj ∈ B(βi)
uij

m) (12)

and |L(vj)| represents the cardinality of L(vj) .

The equation is based on the weighting average

of the crisp lower approximation and fuzzy

boundary and has both the effects of fuzzy

memberships and lower and upper bounds.

From Eq. (9), we observe that the cluster

prototypes (centroids) depends on the parameters w

and �̃�, and fuzzifer m rule their relative influence

and the values are given by 0 < �̃�< 𝑤 < 1.

4.3 RFCM algorithm

The algorithmic steps are as follows:

Step 1: Assign initial centroids 𝑐𝑗 , where j = 1,…,k

Step 2: Set value for m, ϵ , δ and iteration counter

Step 3: Compute uij
m using Eq. (3) for k clusters and

n objects.

Step 4: If uij and uip are the two highest

memberships of the object xi and (uij – uip)

≤ δ, then xi ∈ U̅(vj) and xi ∈ U̅(vp) Further,

xi is not part of any lower bound.

Step 5: Otherwise, xi ∈ L(vj) and by the properties

of rough sets, xi ∈ U̅(vj)

Step 6: Update uij for k clusters and n objects

considering their lower and boundary

regions

Step 7: Compute new centroid using Eq. (9)

Step 8: Repeat the steps 2 to 7, by incrementing t,

until | uij (t) - uij(t -1)| > ϵ.

In RFCM, the partitioning of the data set into

lower approximation and boundary is mainly based

on the value of δ which is determined basically

using Eq. (13)

δ =
1

n
 ∑ (uij - uip)n

i=1 (13)

Where, n is the total number of objects, uij and uip

are the highest and second highest memberships of

xi.

The flow chart of the proposed algorithm is

given in Fig. 1. The system design for the proposed

work is given in Fig. 2.

Figure.1 Flowchart for RFCM Approach

Figure.2 System design

Received: February 17, 2017 6

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.01

5. Computational experiments and the

results obtained

For conducting experiments on the proposed

techniques, DATATRIEVE Transition/Software

defect prediction dataset is chosen from PROMISE

repository [21]. For predicting future error prone

software modules, we have used unsupervised

techniques namely, c means, fuzzy c- means and

Rough fuzzy c- means.

The c-means algorithm basically partitions the

dataset into specified number of crisp clusters where

we don’t have option of predicting future error

prone modules. In the second technique, fuzzy c-

means clustering technique, the software modules

are partitioned into set of overlapping clusters where

modules have the membership of both fault prone

and non-fault prone cluster. As our intended aim is

to find the future error prone ambiguous module, the

third technique, hybrid rough fuzzy c- means

clustering technique determines the ambiguous

modules falling in the boundary region.

By the term ambiguous, we mean that the

particular modules can’t be classified with surety for

their degree of being prone to potential errors. Such

modules, if when classified using crisp clustering

techniques may be misclassified as completely safe

or vice versa thus increasing the risk of unexpected

faults in the software system.

The results obtained for the set of experiments

conducted are given in Table 1. The results show

that traditional partitioning method, c- means has

generated crisp binary results depicting whether a

module is fault prone or non-fault prone.

Table 1. Computational experimental results

Class c- means FCM RFCM

Non fault

prone

115 110 107

Fault Prone 15 50 30

Total 130 160 137

Overlapping No Yes Yes

Boundary Not

detected

Not detected Detected

with 7

modules

Ambiguous

region

Not

present

Not

ambiguous

but its

overlapping

clusters

Elements

in

boundary

region are

ambiguous

While applying Fuzzy c-means, we find the

modules falling in both the clusters and hence there

is overlap among the clusters stating that 30

modules belong to both the clusters which cannot be

termed as ambiguous but stated as overlap. On the

contrary, when Rough fuzzy c-means is applied,

there are seven modules lying in the boundary

showing an ambiguous behavior.

The benefit of RFCM would be that, the

boundary region in RFCM accommodates the

ambiguous elements (software modules) which

could lead to unexpected failures. The existence of

upper approximation region in RFCM makes it easy

to deal with outliers and the lower approximations

helps in keeping the membership of particular

modules to a specific cluster thus dealing with their

overlapping nature.

The data points in Fig. 3 are the set of data

points representing the software modules to be

clustered for partitioning into sets of fault prone

modules and non-fault prone modules. When

clustering techniques are applied on the data points,

the data points are grouped into clusters as given in

Fig. 4 and Fig. 5.

In these figures, the green colored data points

belong to cluster 1 and yellow colored data points

belong to cluster 2 and the red indicator indicates

the cluster centroids. From Fig. 4, we also observe

that there are few data points belonging to both

clusters being on the same point thus indicating

ambiguity.

In Fig. 5, the boundary shows some set of

modules which are to be concentrated much as those

are future error prone software modules which may

affect software reliability. Hence, the results of these

clustering techniques help the software test team and

the developers to concentrate on these modules to

great extent so that detailed analysis of those

modules will help in achieving high reliable systems.

Figure.3 Set of software modules before partitioning

DataPoints

Received: February 17, 2017 7

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.01

Figure.4 Software modules clustered into fault Prone

and non-fault Prone without boundary region

Figure.5 Software modules clustered into fault Prone

and non-fault Prone with overlapping boundary region

6. Conclusion

Software fault prediction is considered to be an

important task in software development process.

The conventional machine learning methods for

classification allows the user to know whether the

module under test is fault prone or not- fault prone.

In reality, there is a chance that, the module

which is passed in testing is not concentrated much

for future faults that might arise due to several

reasons. In this paper, we used RFCM clustering

technique to find the ambiguous modules. Dataset

from PROMISE software engineering repository has

been taken for the analysis. The obtained results

were promising enough in achieving the separation

between fault prone modules, non-fault prone

modules and the boundary region which holds

modules which might be fault prone in future. This

is the benefit obtained using the proposed method

Rough Fuzzy c- means approach which helps in

highlighting the ambiguous software modules whose

prediction increases the reliability of the system

when the software team focuses on those modules.

Basically, it helps the software team to take pro-

active measures towards possible software failures,

which otherwise would go unnoticed if some

conventional technique were used for the analysis.

The precision of this technique is higher when

compared to conventional techniques and this makes

it suitable for tasks which are critical in nature.

Hence, the proposed approach has more chances of

applicability for several other applications in real

world. In future, the performance of the clustering

can be assessed using appropriate cluster validity

measures to know the quality of the clusters formed

and also optimization techniques can be applied to

further improve the performance of the clustering

algorithms.

References

[1] S. Chidamber, and C. Kemerer, "A metrics suite

for object-oriented design", IEEE Transactions

on Software Engineering, Vol. 20, No.6, pp.476-

493, 1994.

[2] A. Kaur and R. Malhotra, “Application of

Random Forest in Predicting Fault-Prone

Classes”, In: Proc. of International Conf. On

Advanced Computer Theory and Engineering,

Phuket, Thailand, pp. 37-43, 2008.

[3] F. Lanubile, A. Lonigro, and G. Visaggio,

“Comparing Models for Identifying Fault-Prone

Software Components”, In: Proc. of Seventh

International Conf. On Software Engineering

and Knowledge Engineering, pp. 12-19, June

1995.

[4] W.W. Agresti, and W.M. Evanco, "Projecting

software defects from analyzing Ada designs",

IEEE Transactions on Software Engineering,

Vol. 18, No. 11, pp. 988-997, Nov 1992.

[5] C.W. Runeson, and M. C. Ohlsson, “A Proposal

for Comparison of Models for Identification of

Fault-Proneness”, Dept. of Communication

Systems, Lund University, LNLS 2188, pp. 341-

355, Profes 2001.

[6] J E. Gaffney, and C. F. Davis, “An Approach to

Estimating Software Errors and Availability”,

In: Proc. of International Workshop On Minnow

Brook Workshop on Software Reliability, SPC-

TR-88-007, Version 1.0, 1988.

Cluster 1 Cluster 2 Centroid

Cluster 1 Cluster 2 Centroid

Received: February 17, 2017 8

International Journal of Intelligent Engineering and Systems, Vol.10, No.6, 2017 DOI: 10.22266/ijies2017.1231.01

[7] J.E. Gaffney, and J. Pietrolewiez, “An

Automated Model for Software Early Error

Prediction (SWEEP)”, In: Proc. of 13th Minnow

Brook Workshop on Software Reliability, Blue

Mountain Lake, NY, 1990.

[8] Rome Laboratory (RL), Methodology for

Software Reliability Prediction and Assessment,

Technical Report RL-TR-92-52.Vol.1 and 2,

1992.

[9] X. Zhang, and H. Pham, “An Analysis of
Factors Affecting Software Reliability”, The

Journal of Systems and Software, Vol. 50, No.1,

pp. 43-56, 2000.

[10] M. Li, and C. Smidts, “A Ranking of Software

Engineering Measures Based on Expert

Opinion”, IEEE Trans. on Software Eng., Vol.

29, No. 9, pp. 811-824, 2003.

[11] K. S. Kumar, and R. B. Misra, “ An Enhanced

Model for Early Software Reliability Prediction

using Software Engineering Metrics”, In: Proc.

of 2nd International Conf. on Secure System

Integration and Reliability Improvement,

pp.177-178, 2008.

[12] S. H. Kan, Metrics and Models in Software

Quality Engineering, Vol. 2, Addison-Wesley

Professional, 2002.

[13] J.MacQueen, “Some Methods for Classification

and Analysis of Multivariate Observation”, In:

Proc. Fifth Berkeley Symp. Math. Statistica and

Probability, pp. 281-297, 1967.

[14] J. C. Bezdek, Pattern Recognition with Fuzzy

Objective Function Algorithms, Plenum Press,

New York, 1981.

[15] J. C. Bezdek, R. Ehrlich, and W. Full, “FCM:

The fuzzy c-means clustering algorithm”,

Computers & Geosciences, Vol. 10, No.2-3, pp.

191-203, 1984.

[16] Z. Pawlak, “Rough sets”, International Journal

of Parallel Programming, Vol.11, No.5, pp.

341-356, 1982.

[17]Z. Pawlak,“Rough Classification”, International

Journal of Man-Machine Studies, Vol. 20, No.5,

pp. 469-483, 1984.

[18] P. Maji, and S.K. Pal, “RFCM: A hybrid

clustering algorithm using rough and fuzzy

sets”, Fundamenta Informaticae, Vol. 80, No.4,

pp. 475-496, 2007.

[19] M. Banerjee, S. Mitra, and S. K. Pal, “Rough-

Fuzzy MLP: Knowledge Encoding and

Classification”, IEEE Transactions on Neural

Networks, Vol. 9, No.6, pp. 1203–1216, 1998.

[20] D. Dubois, and H. Prade, “Putting Fuzzy Sets

and Rough Sets Together”, Intelligent Decision

Support, pp. 203–232, 1992.

[21]G. Boetticher, T. Menzies, and T. Ostrand,

“PROMISE Repository of Empirical Software

Engineering Data”, West Virginia University,

Department of Computer Science, 2007.

